

HC92X Hall Effect IC

Extremely temperature-stable and Stress- resistant sensor IC

FEATURES and FUNCTIONAL DIAGRAM

- AEC-Q100 automotive qualified (HCA92X)
- Digital Unipolar-Switch Hall Sensor
- Superior Temperature Stability
- Multiple Sensitivity Options (BOP / BRP): +30 / +15 Gauss; +70 / +30 Gauss; +140 / 60 Gauss; +150 / +100 Gauss; +250 / +200 Gauss
- On board voltage regulator for 2.5V to 22V range
- Open Drain Output (25-mA Sink)
- Resistant to physical stress
- Output short-circuit protection
- Operation from unregulated supply
- Reverse-battery and freewheeling protection
- Solid-state reliability
- Wide Operating temperature range: -40 to 150 °C
- Small package sizes TO-92S, SOT23 and SOT-89
- RoHS-compliant material meets directive 2011/65/EU

DESCRIPTION

The HCA92X/HCI92X Hall-effect sensor is extremely temperature-stable and stress-resistant sensor ICs, especially suited for operation over extended temperature ranges from -40°C to 150°C. Superior high temperature performance is possible through dynamic offset cancellation, which reduces the residual offset voltage normally caused by device over-molding, temperature dependencies, and thermal stress.

The device includes a voltage regulator, Hall-voltage generator, small-signal amplifier, chopper stabilization, Schmitt trigger, and a short circuit protected open-drain output to sink up to 25 mA.

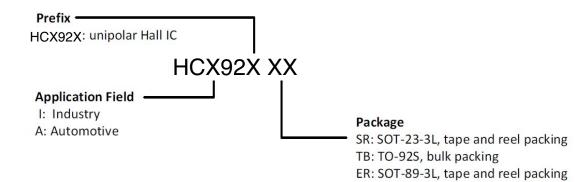
An on-board regulator permits operation with supply voltages of 2.5 to 22 V. The advantage of operating down to 2.5V is that the device can used in 2.5V applications or with additional external resistance in series with the supply pin for greater protection against high-voltage transient events.

The HCA92X/HCI92X series is digital unipolar Hall switch. When the applied magnetic flux density exceeds the BOP threshold, the chip open-drain output goes low. The output stays low until the field decreases to less than BRP, and then the output goes to high impedance.

The HCA92X/HCI92X also integrated internal clamps against supply/output transients; output short circuits protection; reverse battery conditions.

Three package styles provide a magnetically optimized package for most applications, SOT-23, TO-92S and SOT-89. Each package type is lead (Pb) free (suffix, –T), with a 100% matte-tin-plated lead-frame.

<u>huacan</u>

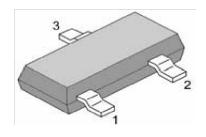

1.Product Family Members

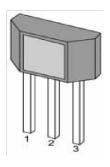
Part Number	Marking ID	Description
HCA921SR	C921	Unipolar-Switch, Hall-effect digital sensor IC, SOT-23-3L package, tape and reel packing (3000 units per reel)
HCA921TB	C921	Unipolar-Switch, Hall-effect digital sensor IC, flat, TO-92S package, bulk packing (1000 units per bag)
HCA921ER	C921	Unipolar-Switch, Hall-effect digital sensor IC, SOT-89-3L package, tape and reel packing (1000 units per reel)
HCA922SR	C922	Unipolar-Switch, Hall-effect digital sensor IC, SOT-23-3L package, tape and reel packing (3000 units per reel)
НСА922ТВ	C922	Unipolar-Switch, Hall-effect digital sensor IC, flat, TO-92S package, bulk packing (1000 units per bag)
HCA922ER	C922	Unipolar-Switch, Hall-effect digital sensor IC, SOT-89-3L package, tape and reel packing (1000 units per reel)
HCA923SR	C923	Unipolar-Switch, Hall-effect digital sensor IC, SOT-23-3L package, tape and reel packing (3000 units per reel)
НСА923ТВ	C923	Unipolar-Switch, Hall-effect digital sensor IC, flat, TO-92S package, bulk packing (1000 units per bag)
HCA923ER	C923	Unipolar-Switch, Hall-effect digital sensor IC, SOT-89-3L package, tape and reel packing (1000 units per reel)
HCA924SR	C924	Unipolar-Switch, Hall-effect digital sensor IC, SOT-23-3L package, tape and reel packing (3000 units per reel)
НСА924ТВ	C924	Unipolar-Switch, Hall-effect digital sensor IC, flat, TO-92S package, bulk packing (1000 units per bag)
HCA924ER	C924	Unipolar-Switch, Hall-effect digital sensor IC, SOT-89-3L package, tape and reel packing (1000 units per reel)
HCA925SR	C925	Unipolar-Switch, Hall-effect digital sensor IC, SOT-23-3L package, tape and reel packing (3000 units per reel)
НСА925ТВ	C925	Unipolar-Switch, Hall-effect digital sensor IC, flat, TO-92S package, bulk packing (1000 units per bag)
HCA925ER	C925	Unipolar-Switch, Hall-effect digital sensor IC, SOT-89-3L package, tape and reel packing (1000 units per reel)
HCI921SR	I921	Unipolar-Switch, Hall-effect digital sensor IC, SOT-23-3L package, tape and reel packing (3000 units per reel)
HCI921TB	I921	Unipolar-Switch, Hall-effect digital sensor IC, flat, TO-92S package, bulk packing (1000 units per bag)
HCI921ER	1921	Unipolar-Switch, Hall-effect digital sensor IC, SOT-89-3L package, tape and reel packing (1000 units per reel)
HCI922SR	1922	Unipolar-Switch, Hall-effect digital sensor IC, SOT-23-3L package, tape and reel packing (3000 units per reel)
НСІ922ТВ	1922	Unipolar-Switch, Hall-effect digital sensor IC, flat, TO-92S package, bulk packing (1000 units per bag)
HCI922ER	1922	Unipolar-Switch, Hall-effect digital sensor IC, SOT-89-3L package, tape and reel packing (1000 units per reel)
HCI923SR	1923	Unipolar-Switch, Hall-effect digital sensor IC, SOT-23-3L package, tape and reel packing (3000 units per reel)

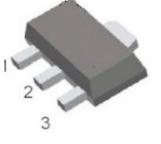
MAGOLOGY series DS-HC92X-SC-rev1.0

ʹʹͶͶϘ

<u>NUA</u>		Unipolar Switch Hall effect digital sensor IC flat TO 92S package bulk packing
		DS-HC92
HCI923TB	1923	Unipolar-Switch, Hall-effect digital sensor IC, flat, TO-92S package, bulk packing (1000 units per bag)
HCI923ER	1923	Unipolar-Switch, Hall-effect digital sensor IC, SOT-89-3L package, tape and reel packing (1000 units per reel)
HCI924SR	1924	Unipolar-Switch, Hall-effect digital sensor IC, SOT-23-3L package, tape and reel packing (3000 units per reel)
HCI924TB	1924	Unipolar-Switch, Hall-effect digital sensor IC, flat, TO-92S package, bulk
		packing (1000 units per bag)
HCI924ER	1924	Unipolar-Switch, Hall-effect digital sensor IC, SOT-89-3L package, tape and reel packing (1000 units per reel)
HCI925SR	1925	Unipolar-Switch, Hall-effect digital sensor IC, SOT-23-3L package, tape and reel packing (3000 units per reel)
HCI925TB	1925	Unipolar-Switch, Hall-effect digital sensor IC, flat, TO-92S package, bulk packing (1000 units per bag)
HCI925ER	1925	Unipolar-Switch, Hall-effect digital sensor IC, SOT-89-3L package, tape and reel packing (1000 units per reel)






MAGOLOGY series DS-HC92X-SC-rev1.0

2.Pin Definitions and Descriptions

SOT-23-3L (S)	TO-92S (T)	SOT-89-3L (E)	Name	Туре	Function
1	1	1	VDD	Supply	Supply Voltage pin
2	3	3	OUT	Output	Open Collector Output pin
3	2	2	GND	Ground	Ground pin

SOT-23-3L

TO-92S

SOT-89-3L

3. Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Units
Supply Voltage	VDD	-	24	V
VDD Reverse Voltage VDD	Vrdd	-22		V
Supply Current	Idd	-	20	mA
Output Voltage	Vout	-0.3	24	V
Output Current	Iout	-	25	mA
Operating Ambient Temperature	T _A	-40	150	°C
Storage Temperature	Ts	-50	150	°C
Junction temperature	TJ	-50	165	°C
Magnetic Flux	В	No I	Limit	Gauss

Note: Exceeding the absolute maximum ratings may cause permanent damage. Exposure to absolutemaximum- rated conditions for extended periods may affect device reliability.

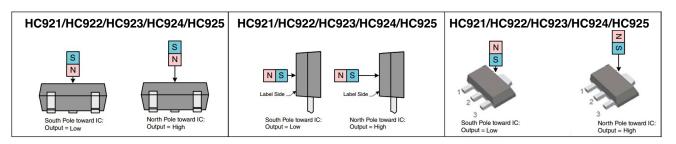
4.ESD Protections

Parameter	Value	Unit
All pins ¹⁾	+/-8000	V
All pins ²⁾	+/-200	V
All pins ³⁾	+/-750	V

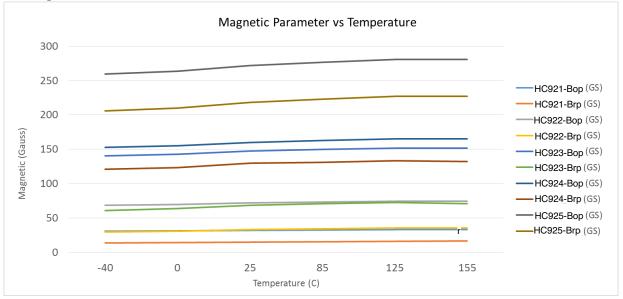
1) HBM (Human Body Mode) according to AEC-Q100-002

2) MM (Machine Mode) according to AEC-Q100-003

3) CDM (charged device mode) according to AEC-Q100-011


5. Function Description

The HCA92X/HCI92X exhibits digital unipolar switching characteristics. Therefore, it requires only south poles or north poles (depend on the package type) to operate properly.


When the applied magnetic flux density exceeds the BOP threshold, the chip open-drain output goes low. The output stays low until the field decreases to less than BRP, and then the output goes to high impedance.

A magnetic hysteresis BHYST keeps BOP and BRP separated by a minimal value. This hysteresis prevents output oscillation near the switching point.

6. Magnetic Activation

7. Temperature Characteristics

MAGOLOGY series DS-HC92X-SC-rev1.0

MAGOLOGY series DS-HC92X-SC-rev1.0 8. Parameters Specification (VCC=3.3V supply, TA= -40 °C to 150 °C except where otherwise specified.)

Symbol	Parameter	Test Condition	Min	Тур.	Max	Units
Vdd	Supply voltage	-40 °C to 150 °C	2.5	-	22	V
Idd	Supply Current	$V_{DD} = 3.3 V$	-	1.6	3	mA
VZSUPPLY	Supply Zener Clamp Voltage	$I_{CC} = 7 \text{ mA}; \text{ TA} = 25^{\circ}\text{C}$	24			V
Vzout	Output Zener Clamp Voltage	$I_{OUT} = 3mA$	24			V
Vrcc	Reverse Battery Zener				-22	V
Ircc	Reverse Battery Current	$V_{CC} = -22 V$	-5			mA
Fc	Chopping Frequency			500		KHz
tpo	Power-On Time	$TA = 25^{\circ}C; C_{LOAD} = 10$ pF	_	_	30	μs
VDSon	Output saturation voltage	at 20mA, Gauss >BOP	-	-	0.4	V
Ioff	Output Leakage Current	VOUT = 24 V; Switch state = Off	-	-	10	uA
IOUT(lim)	Output Current Limit	Short-Circuit Protection	30	_	90	mA
Tr	Output rise time	$R_{\text{LOAD}} = 820 \ \Omega, \ C_{\text{LOAD}} = 10 \ \text{pF};$	-	0.2	2	uS
T _F	Output fall time	$R_{LOAD} = 820\Omega$, $C_{LOAD} = 10 \text{ pF}$;	-	0.1	2	uS
Td	Output delay Time	B=Brp-100G to Bop+100G in 1us		13	25	μs
Rтн	Thermal resistance: SOT-23-3L TO-92S SOT-89-3L	-	- -	303 203 230	- -	°C /W °C/W °C/W
Fsw(2)	Maximum Switching Frequency		20	30		KHz
Т	Operating temperature	-	-40	-	150	°C
Ts	Storage temperature:	-	-40	-	150	°C
HCA921/H	ICI921					
Bop	Magnetic operating point	T _A =-40°C to 150°C	20	35	50	Gauss
Brp	Magnetic release point	T _A =-40°C to 150°C	10	20	40	Gauss
Bhyst	Magnetic hysteresis window BOP-BRP	T _A =-40°C to 150°C	10	15	30	Gauss
Bo	Magnetic offset; $B_0 = (BOP + BRP) / 2$	T_A =-40°C to 150°C		27.5		Gauss
HCA922/H	ICI922					
Bop	Magnetic operating point	T_A =-40°C to 150°C	40	60	80	Gauss
Brp	Magnetic release point	T_A =-40°C to 150°C	20	30	50	Gauss
Bhyst	Magnetic hysteresis window BOP-BRP	T _A =-40°C to 150°C	15	30	45	Gauss

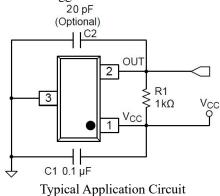
'nUacan

						o1 0
					MAC DS-H	OLO C92X-S
Bo	Magnetic offset; $B_0 = (BOP + BRP) / 2$	T_A =-40°C to 150°C		45		Gauss
HCA923/I	HCI923					
Вор	Magnetic operating point	T_A =-40°C to 150°C	110	140	170	Gauss
Brp	Magnetic release point	T_A =-40°C to 150°C	40	60	80	Gauss
Bhyst	Magnetic hysteresis window BOP-BRP	T_A =-40°C to 150°C	50	80	110	Gauss
Bo	Magnetic offset; $B_0 = (BOP + BRP) / 2$	T_A =-40°C to 150°C		100		Gauss
HCA924/I	HCI924					
Bop	Magnetic operating point	T_A =-40°C to 150°C	120	145	170	Gauss
Brp	Magnetic release point	T_A =-40°C to 150°C	80	105	130	Gauss
Внуят	Magnetic hysteresis window BOP-BRP	T_A =-40°C to 150°C	25	40	60	Gauss
Bo	Magnetic offset; Bo = (BOP + BRP) / 2	T_A =-40°C to 150°C		125		Gauss
HCA925/I	HCI925					
Bop	Magnetic operating point	T_A =-40°C to 150°C	210	250	290	Gauss
Brp	Magnetic release point	T_A =-40°C to 150°C	160	200	240	Gauss
Внуят	Magnetic hysteresis window BOP-BRP	T_A =-40°C to 150°C	25	50	75	Gauss
Bo	Magnetic offset; $B_0 = (BOP + BRP) / 2$	T_A =-40°C to 150°C		225		Gauss

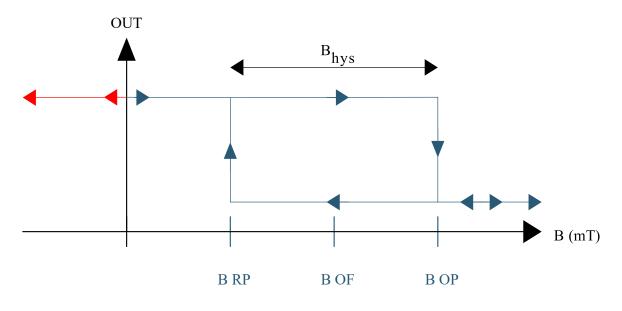
(1) 1 mT = 10 Gauss

(2) Bandwidth describes the fastest changing magnetic field that can be detected and translated to the output.

NOTICE


The magnetic field strength (Gauss) required to cause the switch to change state (operate and release) will be as specified in the magnetic characteristics. To test the switch against the specified magnetic characteristics, the switch must be placed in a uniform magnetic field.

9. Application Information


9.1 Typical Application

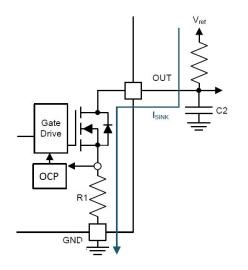
It is recommended that an external capacitor C1 is connected to the supply. This can reduce the noise injected into the device. Normal 0.1uF is suggested.

9.2 Device Output

If the device is powered on with a magnetic field strength between BRP and BOP, then the device output is indeterminate and can either be Hi-Z or Low. If the field strength is greater than BOP, then the output is pulled low. If the field strength is less than BRP, then the output is released.

9.3 Output Stage

(1)


The HCA92X/HCI92X output stage uses an open-drain NMOS, and it is rated to sink up to 30 mA of current. For proper operation, calculate the value of the pullup resistor R1 using Equation 1.

$$\frac{V_{\text{ref}} \max}{30 \text{ mA}} \le \text{R1} \le \frac{V_{\text{ref}} \min}{100 \text{ }\mu\text{A}}$$

The size of R1 is a tradeoff between the OUT rise time and the current when OUT is pulled low. A lower current is generally better, however faster transitions and bandwidth require a smaller resistor for faster switching. In addition, ensure that the value of R1 > 500 Ω to ensure the output driver can pull the OUT pin close to GND.

MAGOLOGY series DS-HC92X-SC-rev1.0

<u>huacan</u>

Select a value for C2 based on the system bandwidth specifications as shown in Equation 2.

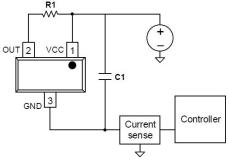
$$2 \times f_{\rm BW} \ (\rm Hz) < \frac{1}{2\pi \times \rm R1 \times \rm C2}$$
⁽²⁾

Most applications do not require this C2 filtering capacitor.

9.4 Protection Circuits

The HCA92X/HCI92X device is fully protected against overcurrent and reverse-supply conditions.

9.5 Overcurrent Protection (OCP)


An analog current-limit circuit limits the current through the FET. The driver current is clamped to IOCP. During this clamping, the rDS(on) of the output FET is increased from the nominal value.

9.6 Reverse Supply Protection

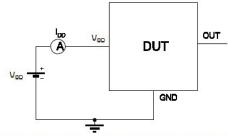
The HCA92X/HCI92X device is protected in the event that the VCC pin and the GND pin are reversed (up to -22 V).

9.7 Alternative Two-Wire Application

For systems that require minimal wire count, the device output can be connected to VCC through a resistor, and the total supplied current can be sensed near the controller.

2-Wire Application Current

can be sensed using a shunt resistor or other circuitry.

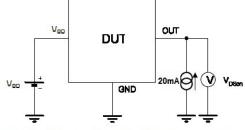

MAGOLOGY series DS-HC92X-SC-rev1.0

MAGOLOGY series DS-HC92X-SC-rev1.0

10. Test Conditions Note: DUT=Device Under Test

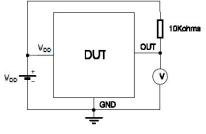
Supply Current

Note 1 - The supply current Into represents the static supply current. OUT is left open during measurement


Note 2 - The device is put under magnetic field with B<BRP

Output Leakage Current

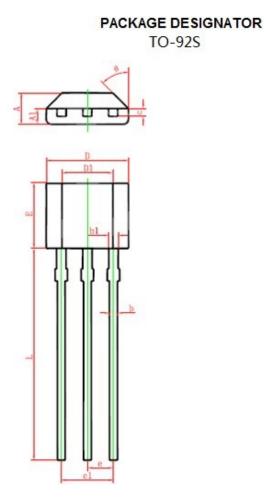
Note 1 - The device is put under magnetci field with B<BRP


Output Saturation Voltage

Note 1 - The output saturation voltage VDSon is measured at VDD=3.3 V and VDD=20V

Note 2 - The device is put under magnetic field with B>BOP

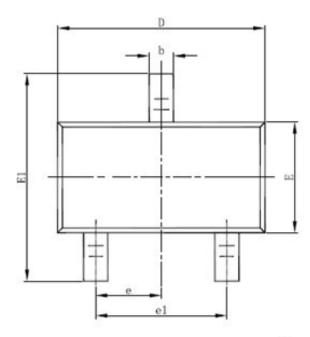
Magenetic Thresholds

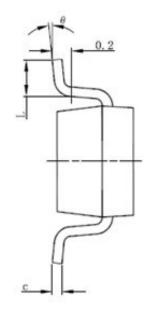


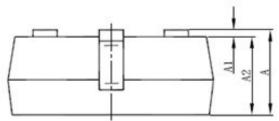
Note 1 - Bop is determined by putting the device under magnetic field swept from BRPmin up to BoPmax until the output is switched on.

Note 2 - BRP is determined by putting the device under magnetic field swept from BoPmax down to BRPmin until the output is switched off.

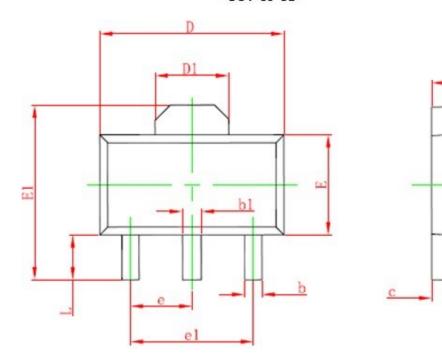
11. Package Information:


Cumhal	Dimensions	In Millimeters	Dimension	s In Inches	
Symbol	Min.	Max.	Min.	Max.	
A	1.420	1.620	0.056	0.064	
A1	0.660	0.860	0.026	0.034	
b	0.350	0.480	0.014	0.019	
b1	0.400	0.550	0.016	0.022	
С	0.360	0.510	0.014	0.020	
D	3.900	4.100	0.154	0.161	
D1	2.280	2.680	0.090	0.106	
E	3.050	3.250	0.120	0.128	
е	1.270	TYP.	0.050	TYP.	
e1	2.440	2.640	0.096	0.104	
L	15.100	15.500	0.594	0.610	
θ	45°	TYP.	45°	TYP.	





PACKAGE DESIGNATOR SOT-23-3L



Combal	Dimensions In	Millimeters	Dimensions	In Inches
Symbol	Min	Max	Min	Max
Α	1.050	1.250	0.041	0.049
A1	0.000	0.100	0.000	0.004
A2	1.050	1.150	0.041	0.045
b	0.300	0.500	0.012	0.020
С	0.100	0.200	0.004	0.008
D	2.820	3.020	0.111	0.119
E	1.500	1.700	0.059	0.067
E1	2.650	2.950	0.104	0.116
е	0.950(BSC)	0.037	(BSC)
e1	1.800	2.000	0.071	0.079
L	0.300	0.600	0.012	0.024
θ	0°	8°	0°	8°

PACKAGE DESIGNATOR SOT-89-3L

Sumbal	Dimensions	In Millimeters	Dimensions In Inches		
Symbol	Min.	Max.	Min.	Max.	
A	1.400	1.600	0.055	0.063	
b	0.320	0.520	0.013	0.020	
b1	0.400	0.580	0.016	0.023	
С	0.350	0.440	0.014	0.017	
D	4.400	4.600	0.173	0.181	
D1	1.550	DREF.	0.061 REF.		
E	2.300	2.600	0.091	0.102	
E1	3.940	4.250	0.155	0.167	
e	1.500 TYP.		0.060	TYP.	
e1	3.00	0 TYP. 0.118 TYP.		TYP.	
L	0.900	1.200	0.035	0.047	