

HCA611

AEC-Q100 Qualified, Programmable Linear Hall Sensor IC

Features and Functional Block Diagram

- AEC-Q100 automotive qualified
- Linear Hall, customer programmable, high resolution offset and sensitivity trimming with EEPROM
- Programmable sensitivity: 1mV/G 24mV/G
- Factory programmed sensitivity and quiescent output voltage TC with extremely stable temperature performance
- Temperature stable guiescent voltage output and sensitivity
- Extremely low noise and high resolution
- 240kHz bandwidth achieved with optimized chopper stabilization techniques
- Under-voltage protection
- Output voltage clamp provides short circuit diagnostic
- · Output spiking suppress during fast current step inputs
- Wide temperature range: -40°C to 150°C
- Lead-Free Package: Flat TO-92, TO-94, SOT-89-3L
- High ESD Protection
- RoHS Compliant 2011/65/EU

TO-92S TO-94

Package

SOT-89-3L

Applications

- · Current sensing module
- Motor control
- Linear Position Detection
- Rotary Position Sensing
- Magnetic Encoder
- Ferrous metal sensing
- Liquid level sensing
- Vibration sensing
- Weight sensing

VCC Signal Remodulation Signal Remodulation Carsellation EEPROM And control logic

Description

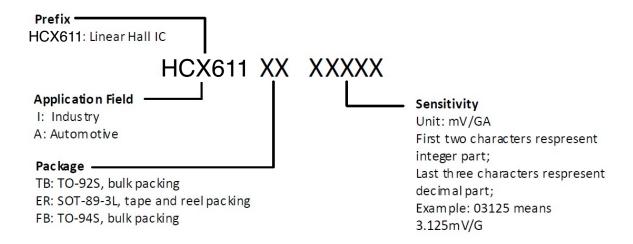
Functional Block Diagram

The HCA611 is a customer programmable, low noise high accuracy linear Hall effect-based sensor IC. It is packaged in subminiature package to allow for easy integration with a magnetic core to create a highly accurate current sensing module. The programmable nature of the HCA611 enables it to account for manufacturing tolerances in the final current sensing module assembly.

These ratiometric Hall effect sensor ICs provide a voltage output that is proportional to the applied magnetic field. The quiescent voltage output is user adjustable around 50% of the supply voltage and the output sensitivity is programmable within a range of 1 mV/G to 24 mV/G.

This temperature-stable device is available in a through-hole single in-line package (TO-92S). The accuracy of the device is enhanced via programmability on the OUT pin for end of-line optimization without the added complexity and cost of a fully programmable device. The device using EERPOM to optimize device sensitivity and the quiescent output voltage (QVO) (output with no magnetic field) for a given application or circuit. The HCA611 also allow for optimized performance over temperature through programming the temperature coefficient for both Sensitivity and QVO at end of line test.

The features of this linear device makes it ideal for use in industrial and automotive applications requiring high accuracy and are guaranteed over a wide temperature range, –40°C to+150°C.



1. Product Family Members

Part Number	Marking ID	Description
HCA611TB	CA611	Flat, TO-92S package, bulk packing (1000 units per bag)
HCA611FB	CA611	Flat, TO-94 package, bulk packing (1000 units per bag)
*HCA611ER	CA611	SOT-89-3L package, tape and reel packing (1000 units per reel)

^{*}SOT-89-3L package preliminary

2. Pin Definitions and Descriptions

TO-92S (T)	SOT-89-3L (E)	TO-94 (E)	Name	Туре	Function
1	1	1	VDD	Supply	Supply Voltage pin
3	3	2	OUT	Output	Open Collector Output pin
2	2	3	GND	Ground	Ground pin (no connection pin for TO-94)
		4	GND	Ground	Ground pin

3. Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Units
Supply Voltage	Vcc	-	6	V
Reverse Supply Voltage	VRCC	-0.1	-	V
Output Voltage	VIOUT	-	6	V
Reverse Output Voltage	Vriout	-0.1	-	V
Output Source Current	lout(source)		2	mA
Output Sink Current	lout(sink)		10	mA
Maximum Number of EEPROM Write Cycles	EEPROM(max)		100	Cycles
Operating Ambient Temperature	TA	-40	150	°C
Storage Temperature	Ts	-65	165	°C
Junction temperature	T _{J(max)}		165	°C
Magnetic Flux	В	No I	imit	Gauss

Note: Exceeding the absolute maximum ratings may cause permanent damage. Exposure to absolutemaximum- rated conditions for extended periods may affect device reliability.

4. ESD Protections

Parameter	Value	Unit
All pins 1)	+/-8000	V
All pins ²⁾	+/-500	V
All pins 3)	+/-750	V

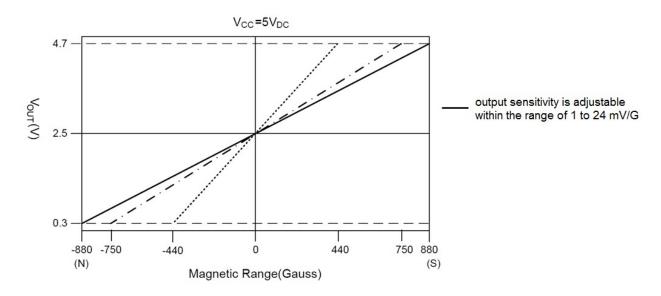
- 1) HBM (Human Body Mode) according to AEC-Q100-002
- 2) MM (Machine Mode) according to AEC-Q100-003
- 3) CDM (charged device mode) according to AEC-Q100-011

5. Function Description

The Cosemitech™ HCA611 programmable linear Hall-effect current sensor IC has been designed to achieve high accuracy and resolution without compromising bandwidth. The goal is achieved through new proprietary linearly interpolated temperature compensation technology that is programmed at the Cosemitech factory and provides sensitivity and offset that are virtually flat across the full operating temperature range. Temperature compensation is done in the digital domain with integrated EEPROM technology, without sacrificing the analog signal path 80 kHz bandwidth, making this device ideal for HEV inverter, DC-to-DC converter, and electric power steering (EPS) applications.

This ratiometric Hall-effect sensor IC provides a voltage output that is proportional to the applied magnetic field. The customer can configure the sensitivity and quiescent (zero field) output voltage through programming on the VCC and output pins, to optimize performance in the end application. The quiescent output voltage is user-adjustable around 50% of the supply voltage, VCC, and the output sensitivity is adjustable within the range of 1 to 24 mV/G.

The sensor IC incorporates a highly sensitive Hall element with a BCD interface integrated circuit that employs a low noise small-signal high-gain amplifier, a clamped low-impedance output stage, and a proprietary, high bandwidth dynamic offset cancellation technique. These advances in Hall-effect



technology work together to provide an industry leading sensing resolution at the full 80 kHz bandwidth.

Device parameters are specified across an extended ambient temperature range: –40°C to 150°C. The HCA611 sensor IC is provided in subminiature package that is lead (Pb) free, with 100% matte tin lead frame plating.

6. Transfer Characteristics

7. Parameters Specification

Valid through the full range of TA, CBYPASS=100nF, VCC = 5 V, unless otherwise specified.

ELECTRIC	CAL CHARACTERISTICS					
Vcc	Supply Voltage		4.5	5	5.5	V
Icc	Supply Current	No load on V _{OUT}	-	7	10	mA
t PO	Power-On Time ²	Ta = 25°C, C _{L(РРОВЕ)} = 10pF	_	30	_	μs
Vuvlohi	Linday valtaga Thysolad	T _A = 25°C, V _{CC} rising	2.8	2.9	3	V
Vuvlolow	Under voltage Threshold	T _A = 25°C, V _{CC} falling	2.5	2.6	2.7	V
Vz	Supply Zener Clamp Voltage	T _A = 25°C, I _{CC} = 30mA	6	7.3	1	٧
BWi	Internal Bandwidth	Small signal –3 dB	-	240		kHz
fc	Chopping Frequency ³	T _A = 25°C (Programmable)	_	1000	200 0	kHz
OUTPU	T CHARACTERISTICS					
VCLP(HIGH)	Outsit Valta as Olama 4	T _A = 25°C, R _{L(PULLDWN)} = 10 kΩ to GND	4.55	_		V
VCLP(LOW)	Output Voltage Clamp ⁴	$T_A = 25$ °C, $R_{L(PULLUP)}$ = 10 kΩ to VCC		_	0.4 5	V
	Clamp Disable Bit			1		Bit
Vsat(HIGH)	Output Saturation Vallage	T _A = 25°C, R _L (PULLDWN) = 10 kΩ to GND	4.8	-	_	V
Vsat(low)	Output Saturation Voltage ²	$T_A = 25$ °C, $R_{L(PULLDWN)}$ = 10 kΩ to VCC	_	_	0.2	V

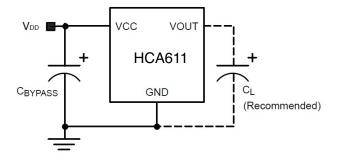
\/					I	
V _N	Output Referred Noise ⁵	T _A = 25°C, CL = 1 nF	_	1*Sens _{init}	-	mV _{p-p}
VNRMS	Input Referred Noise Density	T _A = 25°C, No load, f< <bwi< td=""><td></td><td>1.5</td><td></td><td>mG/√(H z)</td></bwi<>		1.5		mG/√(H z)
Rоuт	DC Output Resistance		-	<1	_	Ω
				<u>, </u>		
RL(PULLUP)		VOUT to VCC	4.7	_	_	kΩ
RL(PULLDW N)	Output Load Resistance	VOUT to GND	4.7	_	_	kΩ
C_L	Output Load Capacitance ⁶	VOUT to GND	1	1	10	nF
tR	Rise time	T _A = 25°C, magnetic field step of 400G, CL=1nF, Sens=2mV/G		2.6		μs
Tresponse	Response time	T _A = 25°C, magnetic field step of 400G, CL=1nF, Sens=2mV/G		2.1		μs
ted	Propagation Delay time	T _A = 25°C, magnetic field step of 400G, CL=1nF, Sens=2mV/G		2.2		μs
tclp	Delay to Clamp	T _A = 25°C, magnetic field step of 400G, CL=1nF, Sens=2mV/G	-	10	-	μs
QUIESCEN	T VOLTAGE OUTPUT (Vou	$-(\mathbf{Q})^2$				
Vout(QBI)init	Initial Unprogrammed Quiescent Voltage Output ^{2,8}	T _A = 25°C		2.5		V
Vout(QBI)PR	Quiescent Voltage Output Programming Range ^{2,4,9}	T _A = 25°C	2.35	-	2.6 5	V
QVO	Quiescent Voltage Output Programming Bits ¹⁰			8		
			_	°	-	bit
Stepvout(Q	Average Quiescent Voltage Output Programming Step Size2,11,12	T _A = 25°C	1.9	2.3	2.8	bit mV
	Average Quiescent Voltage Output Programming Step	T _A = 25°C T _A = 25°C	1.9 –	-		
) Errpgvout(Average Quiescent Voltage Output Programming Step Size2,11,12 Quiescent Voltage Output Programming Resolution ^{2,13}		1.9	2.3 ±0.5 ×		mV
) Errpgvout(Average Quiescent Voltage Output Programming Step Size2,11,12 Quiescent Voltage Output Programming Resolution ^{2,13}	T _A = 25°C	1.9	2.3 ±0.5 ×		mV
) Errpgvout(Average Quiescent Voltage Output Programming Step Size2,11,12 Quiescent Voltage Output Programming Resolution ^{2,13}	T _A = 25°C SENSITIVITY (Sens) ² SENS_COARSE =	1.9	2.3 ±0.5 × Stepνουτ(α)		mV mV
Errpgvout(Q)	Average Quiescent Voltage Output Programming Step Size2,11,12 Quiescent Voltage Output Programming Resolution ^{2,13}	$T_{A} = 25^{\circ}\text{C}$ SENSITIVITY (Sens) ² $SENS_COARSE = 000, T_{A} = 25^{\circ}\text{C}$ $SENS_COARSE = 001, T_{A} = 25^{\circ}\text{C}$ $SENS_COARSE = 010, T_{A} = 25^{\circ}\text{C}$	1.9 -	2.3 ±0.5 × Stepvout(Q)		mV mV
) Errpgvout(Average Quiescent Voltage Output Programming Step Size2,11,12 Quiescent Voltage Output Programming Resolution ^{2,13}	T _A = 25°C SENSITIVITY (Sens) ² SENS_COARSE = 000, T _A = 25°C SENS_COARSE = 001, T _A = 25°C SENS_COARSE =	1.9 -	2.3 ±0.5 × Stepνουτ(α) 0.85 1.4		mV mV/G mV/G
Errpgvout(Q)	Average Quiescent Voltage Output Programming Step Size2,11,12 Quiescent Voltage Output Programming Resolution ^{2,13}	T _A = 25°C SENSITIVITY (Sens) ² SENS_COARSE = 000, T _A = 25°C SENS_COARSE = 001, T _A = 25°C SENS_COARSE = 010, T _A = 25°C SENS_COARSE = 010, T _A = 25°C	1.9 	2.3 ±0.5 × Stepvout(Q) 0.85 1.4 2.3		mV mV/G mV/G

MAGOLOGY series

	110 1 - 750		17.2	_	mV/G
	110, T _A = 25°C SENS COARSE =				
	111, T _A = 25°C	_	28	_	mV/G
	SENS_COARSE = 000 , $T_A = 25$ °C	0.6	-	1	mV/G
Sensitivity Programming	SENS_COARSE = 001 , $T_A = 25$ °C	1	_	1.6	mV/G
Range ^{4,9}	SENS_COARSE =	1.6	-	2.7	mV/G
	SENS_COARSE =	2.7	-	4.5	mV/G
	011, T _A = 25°C				
	SENS_COARSE = 100 , $T_A = 25$ °C	4.5	-	7.3	mV/G
	SENS_COARSE =	7.3	-	12. 1	mV/G
	SENS_COARSE =	12.1	_	20. 2	mV/G
	SENS_COARSE = 111, T _A = 25°C	20.2		32. 9	mV/G
Coarse Sensitivity Programming Bits ¹⁴		-	3	-	bit
Fine Sensitivity		_	8	-	bit
3	SENS_COARSE = 000. T _A = 25°C	2.4	3.3	3.9	μV/G
	SENS_COARSE =	3.9	5.5	6.3	μV/G
	SENS_COARSE =	6.3	8.9	10. 6	μV/G
and Temperature	SENS_COARSE =	10.5	14.8	17. 6	μV/G
Programming Step	SENS_COARSE =	17.6	24.2	28. 5	μV/G
SIZE2,14,15	SENS_COARSE =	28.5	40.2	47. 3	μV/G
	SENS_COARSE =	47.3	67.2	78. 9	μV/G
	SENS_COARSE =	78.9	109.4	128 .5	μV/G
Sensitivity Programming Resolution ^{2,13}	T _A = 25°C	_	±0.5 × Stepsens	-	μV/G
ROGRAMMED SENSITIVI	TY TEMPERATURE CO	DEFFICIE			
Sansitivity Tomporatura	T _A = 150°C, T _A = –				
Coefficient ²	40°C, calculated relative to 25°C	_	0.02	_	%/°C
Sensitivity Drift Through	T _A = 25°C to 150°C	_	±1.5	_	%
Range2,9,15	$T_A = -40^{\circ}\text{C to } 25^{\circ}\text{C}$	_	±1.8	_	%
ROGRAMMED QUIESCEN	IT VOLTAGE OUTPUT	TEMPER	RATURE CO	EFFIC	IENT
Quiescent Voltage Output Temperature Coefficient ²	T _A = 150°C, calculated relative to	_	0.1	_	mV/°C
	Coarse Sensitivity Programming Bits ¹⁴ Fine Sensitivity Programming Bits ¹⁰ Average Fine Sensitivity and Temperature Compensation Programming Step Size2,14,15 Sensitivity Programming Resolution ^{2,13} ROGRAMMED SENSITIVI Sensitivity Temperature Coefficient ² Sensitivity Drift Through Temperature Range2,9,15 ROGRAMMED QUIESCEN Quiescent Voltage Output	Sensitivity Programming Range ^{4,9} Sensitivity Programming Range ^{4,9} SENS_COARSE = 001, T _A = 25°C SENS_COARSE = 010, T _A = 25°C SENS_COARSE = 100, T _A = 25°C SENS_COARSE = 101, T _A = 25°C SENS_COARSE = 110, T _A = 25°C SENS_COARSE = 110, T _A = 25°C SENS_COARSE = 111, T _A = 25°C SENS_COARSE = 110, T _A = 25°C SENS_COARSE = 101, T _A = 25°C SENS_COARSE = 101, T _A = 25°C SENS_COARSE = 001, T _A = 25°C SENS_COARSE = 011, T _A = 25°C SENS_COARSE = 011, T _A = 25°C SENS_COARSE = 110, T _A = 25°C SENS_COARSE = 111, T _A = 25°C SENS_COARSE = 110, T _A = 150°C SENS_COARSE = 110, T	Sensitivity Programming Range 4.9 SENS_COARSE = 001, T _A = 25°C SENS_COARSE = 010, T _A = 25°C SENS_COARSE = 1.6 O11, T _A = 25°C SENS_COARSE = 1.6 O11, T _A = 25°C SENS_COARSE = 100, T _A = 25°C SENS_COARSE = 100, T _A = 25°C SENS_COARSE = 100, T _A = 25°C SENS_COARSE = 101, T _A = 25°C SENS_COARSE = 110, T _A = 25°C SENS_COARSE = 100, T _A = 25°C SENS_COARSE = 000, T _A = 25°C SENS_COARSE = 001, T _A = 25°C SENS_COARSE = 001, T _A = 25°C SENS_COARSE = 011, T _A = 25°C SENS_COARSE = 011, T _A = 25°C SENS_COARSE = 100, T _A = 25°C SENS_COARSE = 110, T _A = 25°C SENS_COARSE = 111, T _A = 111, T _A = 111, T _A =	Sensitivity Programming Range ^{4,9}	Sensitivity Programming Range ^{4.9}

ΔVΟ U τ(Q)Τ	Quiescent Voltage Output Drift Through	T _A = 25°C to 150°C;	-15		15	mV
С	Temperature Range ^{2,9,15}	T _A = -40°C to 25°C	-30		+30	mV
ERROR CO	MPONENTS					
Linerr	Linearity Sensitivity Error _{2,16}			<±1		%
		Sens=24mV/G		<±1.5		%
Symerr	Symmetry Sensitivity Error ²			<±1.3		%
		Sens=24mV/G		<±1.5		%
Raterrvout(Q)	Ratiometry Quiescent Voltage Output Error ^{2,17}	Through supply voltage range (relative to V_{CC} = 5 V $\pm 5\%$); SENS_COARSE = 00	-1		+1	%
Raterrsens	Ratiometry Sensitivity Error _{2,17}	Through supply voltage range (relative to V _{CC} = 5 V ±5%)		±1		%
Raterrclp	Ratiometry Clamp Error ^{2,18}	Through supply voltage range (relative to $V_{CC} = 5 V$ ±5%), $T_A = 25^{\circ}C$		<±1		%
ΔSenspkg	Sensitivity Drift Due to Package Hysteresis ²	T _A = 25°C, after temperature cycling, 25°C to 150°C and back to 25°C	-	±1.5	_	%
ΔSenslife	Sensitivity Drift Over Lifetime ¹⁹	TA = 25°C, shift after AEC Q100 grade 0 qualification testing		±1		%

- ¹ 1 G (gauss) = 0.1 mT (millitesla).
- ² See Characteristic Definitions section.
- 3 f_C varies up to approximately $\pm 20\%$ over the full operating ambient temperature range, T_A, and process.
- ⁴ Sens, VOUT(Q), VCLP(LOW), and VCLP(HIGH) scale with VCC due to ratiometry.
- ⁵ Noise, measured in mV_{PP} and in mV_{RMS}, is dependent on the sensitivity of the device.
- ⁶ Output stability is maintained for capacitive loads as large as 10 nF.
- ⁷ High-to-low transition of output voltage is a function of external load components and device sensitivity.
- ⁸ Raw device characteristic values before any programming.
- ⁹ Exceeding the specified ranges will cause sensitivity and Quiescent Voltage Output drift through the temperature range to deteriorate beyond the specified values.
- ¹⁰Refer to Functional Description section.
- ¹¹Step size is larger than required, in order to provide for manufacturing spread. See Characteristic Definitions section.
- ¹²Non-ideal behavior in the programming DAC can cause the step size at each significant bit rollover code to be greater than twice the maximum specified value of StepVOUT(Q) or StepSENS.
- ¹³Overall programming value accuracy. See Characteristic Definitions section.
- ¹⁴Each HCA611 part number is factory programmed and temperature compensated at a different coarse sensitivity setting. Changing coarse bits setting could cause sensitivity drift through temperature range, ΔSens_{TC}, to exceed specified limits.
- ¹⁵Cosemitech will be testing and temperature compensating each device at 150°C. Cosemitech will not be testing devices at –40°C. Temperature compensation codes will be applied based on characterization data.
- ¹⁶Linearity applies to output voltage ranges of ±2 V from the quiescent output for bidirectional devices.
- 17 Percent change from actual value at V_{CC} = 5 V, for a given temperature, through the supply voltage operating range.



 18 Percent change from actual value at V_{CC} = 5 V, T_A = 25°C, through the supply voltage operating range.

8. Application Information

8.1 Typical Application Circuit

¹⁹Based on characterization data obtained during standardized stress test for Qualification of Integrated Circuits. Cannot be guaranteed. Drift is a function of customer application conditions. Please contact Cosemitech for further information.

8.2 Power-On Time (t_{PO})

When the supply is ramped to its operating voltage, the device requires a finite time to power its internal components before responding to an input magnetic field.

Power-On Time (t_{PO}) is defined as: the time it takes for the output voltage to settle within ±10% of its steady-state value under an applied magnetic field, after the power supply has reached its minimum specified operating voltage (VCC(min)) as shown in Figure 1.

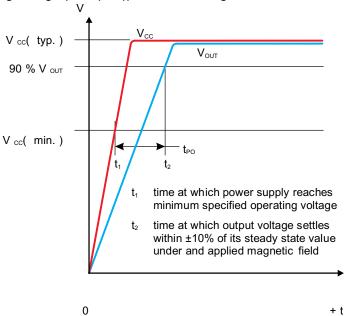


Figure 1. Power-on Time Definition

8.3 Temperature Compensation Power-On Time (t_{TC})

After power-on time (tpo) elapses, trc is also required before a valid temperature compensated output.

8.4 Propagation Delay (tpd)

The time interval between a) when the applied magnetic field reaches 20% of its final value, and b) when the output reaches 20% of its final value (see Figure 2).

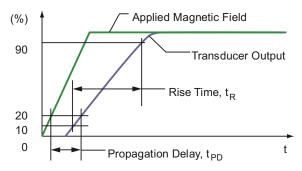


Figure 2: Propagation Delay and Rise Time Definitions

8.5 Rise Time (tr)

The time interval between a) when the sensor IC reaches 10% of its final value, and b) when it reaches 90% of its final value (see Figure 2).

8.6 Response Time (tresponse)

The time interval between a) when the applied magnetic field reaches 80% of its final value, and b) when the sensor reaches 80% of its output corresponding to the applied magnetic field (see Figure 3). The 90%-90% is also shown in the Electrical Characteristics table.

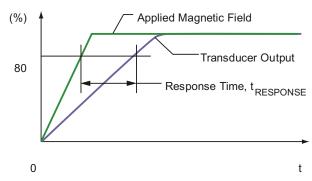


Figure 3: Response Time Definition

8.7 Delay to Clamp (t_{CLP})

A large magnetic input step may cause the clamp to overshoot its steady-state value. The Delay to Clamp (t_{CLP}) is defined as: the time it takes for the output voltage to settle within $\pm 1\%$ of its steady-state value, after initially passing through its steady-state voltage, as shown in Figure 4.

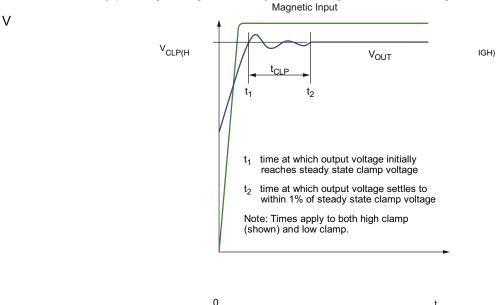
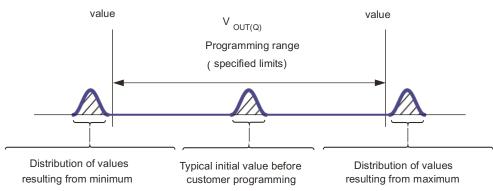


Figure 4: Delay to Clamp Definition

8.8 Quiescent Voltage Output (VOUT(Q))


In the quiescent state (no significant magnetic field: B = 0 G), the output (VOUT(Q)) has a constant ratio to the supply voltage (VCC) throughout the entire operating ranges of VCC and ambient temperature (TA).

8.9 Initial Unprogrammed Quiescent Voltage Output (VOUT(Q)init)

Before any programming, the Quiescent Voltage Output (VOUT(Q)) has a nominal value of VCC / 2, as shown in Figure 5.

 $V \; \text{OUT(Q)PR (min)} \; V \; \text{OUT(Q)PR (max)} \quad \text{programming code} \; V \; \text{OUT(Q)} \\ \text{init} \; \; \text{programming code} \\ \text{V OUT(Q)} \\ \text{PR (min)} \; V \; \text{OUT(Q)} \\ \text{PR (max)} \; \; \text{programming code} \\ \text{V OUT(Q)} \\ \text{PR (min)} \; \text{PR (max)} \\ \text{PR (max)} \\ \text{PR (max)} \; \text{PR (max)} \\ \text{PR (max$

Figure 5: Quiescent Voltage Output Range Definition

8.10 Average Quiescent Voltage Output Programming Step Size (StepVOUT(Q))

The Average Quiescent Voltage Output Progamming Step Size (StepVOUT(Q)) is determined using the following calculation:

$$StepVOUT(Q) = \frac{VOUT(Q)maxcode - VOUT(Q)mincode}{2^{n} - 1}$$
(1)

Where n is the number of available programming bits in the trim range, 9 bits, VOUT(Q)maxcode is at decimal code 255, and VOUT(Q)mincode is at decimal code 256.

8.11 Quiescent Voltage Output Programming Resolution (ErrPGVOUT(Q))

The programming resolution for any device is half of its programming step size. Therefore, the typical programming resolution will be:

$$Err_{PGVOUT(Q)}(typ) = 0.5 \times Step_{VOUT(Q)}(typ)$$
 (2)

8.12 Quiescent Voltage Output Temperature Coefficient (TCQVO)

Device $V_{\text{OUT}(Q)}$ changes as temperature changes, with respect to its programmed Quiescent Voltage Output Temperature Coefficient, TC_{QVO} . TC_{QVO} is programmed at 150°C and calculated relative to the nominal $V_{\text{OUT}(Q)}$ programming temperature of 25°C. TC_{QVO} (mV/°C) is defined as:

$$TC_{QVO} = [V_{OUT(Q)T2} - V_{OUT(Q)T1}][1/(T2 - T1)]$$
 (3)

where T1 is the nominal $V_{\text{OUT}(Q)}$ programming temperature of 25°C, and T2 is the TC_{QVO} programming temperature of 150°C. The expected $V_{\text{OUT}(Q)}$ through the full ambient temperature range (Vout(Q)EXPECTED(TA)) is defined as:

$$Vout(Q)EXPECTED(TA) = Vout(Q)T1 + TCQVO(TA - T1)$$
 (4)

 $V_{\text{OUT}(Q)\text{EXPECTED}(TA)}$ should be calculated using the actual measured values of $V_{\text{OUT}(Q)\text{T1}}$ and TC_{QVO} rather than programming target values.

8.13 Quiescent Voltage Output Drift Through Temperature Range (AVOUT(Q)TC)

Due to internal component tolerances and thermal considerations, the Quiescent Voltage Output $(V_{OUT(Q)})$ may drift from its nominal value through the operating ambient temperature (T_A) . The Quiescent Voltage Output Drift Through Temperature Range $(\Delta_{VOUT(Q)TC})$ is defined as:

$$DVOUT(Q)TC = VOUT(Q)(TA) - VOUT(Q)EXPECTED(TA)$$
 (5) $\Delta V_{OUT(Q)TC}$

should be calculated using the actual measured values of $\Delta Vout(Q)(TA)$ and

 ΔV OUT(Q)EXPECTED(TA) rather than programming target values.

8.14 Sensitivity (Sens)

The presence of a south polarity magnetic field, perpendicular to the branded surface of the package face, increases the output voltage from its quiescent value toward the supply voltage rail. The amount of the output voltage increase is proportional to the magnitude of the magnetic field applied. Conversely, the application of a north polarity field decreases the output voltage from its quiescent value. This proportionality is specified as the magnetic sensitivity, Sens (mv/G), of the device, and it is defined as:

$$Sens = \frac{VOUT(BPOS) - VOUT(BNEG)}{BPOS - BNEG}$$
(6)

where BPOS and BNEG are two magnetic fields with opposite polarities.

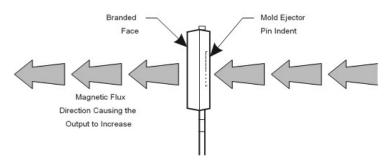


Figure 6: Magnetic Flux Direction

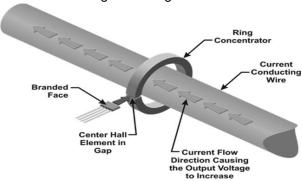


Figure 7: Sensor in Ring Concentrator

8.15 Initial Unprogrammed Sensitivity (Sensinit)

Before any programming, Sensitivity has a nominal value that depends on the SENS COARSE bits setting. Each CH611 variant has a different SENS COARSE setting.

8.16 Sensitivity Programming Range (SensPR)

The magnetic sensitivity (Sens) can be programmed around its initial value within the sensitivity range limits: Senser(min) and Senser(max). Exceeding the specified Sensitivity Range will cause Sensitivity Drift Through Temperature Range (ΔSens_{TC}) to deteriorate beyond the specified values. Refer to the Quiescent Voltage Output Range section for a conceptual explanation of how value distributions and ranges are related.

8.17 Average Fine Sensitivity Programming Step Size (StepSENS)

Refer to the Average Quiescent Voltage Output Programming Step Size section for a conceptual explanation.

8.18 Sensitivity Programming Resolution (ErrPGSENS)

Refer to the Quiescent Voltage Output Programming Resolution section for a conceptual explanation.

8.19 Sensitivity Temperature Coefficient (TCSENS)

Device sensitivity changes as temperature changes, with respect to its programmed sensitivity temperature coefficient, TC_{SENS}. TC_{SENS} is programmed at 150°C and is calculated relative to the nominal sensitivity programming

$$\begin{split} TC_{SENS} &= \big(\frac{Sens_{T2} - Sens_{T1}}{Sens_{T1}} \times 100\%\big) \big(\frac{1}{T2 - T1}\big) \\ Sens_{EXPECTED(TA)} &= Sens_{T1} \times \left(100\% + \frac{TC_{SENS}(TA - T1)}{100}\right) \end{split}$$
temperature defined as:

of 25°C. TC_{SENS} (%/°C) is

(7)

Sensexpected(TA) should be calculated using the actual measured values of Sens_{T1} rather than programming target values.

8.20 Sensitivity Drift Through Temperature Range (ΔSensTC)

Second-order sensitivity temperature coefficient effects cause the magnetic sensitivity, Sens, to drift from its expected value over the operating ambient temperature range (TA). The Sensitivity Drift

Through Temperature Range (
$$\Delta Sens_{TC}$$
) is defined as:
$$\Delta Sens_{TC} = \frac{Sens_{TA} - Sens_{EXPECTED(TA)}}{Sens_{EXPECTED(TA)}} \times 100\%$$
(9)

8.21 Sensitivity Drift Due to Package Hysteresis (ΔSensPKG)

Package stress and relaxation can cause the device sensitivity at T_A = 25°C to change during and after temperature cycling. The sensitivity drift due to package hysteresis (△Sens_{PKG}) is defined as:

$$\Delta SensPKG = \frac{Sens_{(25oC)2} - Sens_{(25oC)1}}{Sens_{(25oC)1}} \times 100\%$$
(10)

where Sens_{(25°C)1} is the programmed value of sensitivity at T_A = 25°C, and Sens_{(25°C)2} is the value of sensitivity at $T_A = 25^{\circ}$ C, after temperature cycling T_A up to 150°C and back to 25°C.

8.22 Linearity Sensitivity Error (LinERR)

The CH611 is designed to provide a linear output in response to a ramping applied magnetic field. Consider two magnetic fields, B1 and B2. Ideally, the sensitivity of a device is the same for both fields, for a given supply voltage and temperature. Linearity error is present when there is a difference between the sensitivities measured at B1 and B2.

8.23 Linearity Error

$$\begin{array}{c} \text{Lin}_{\text{ERRPOS}} = (1 - \frac{\text{SensBPOS2}}{\text{SensBNEG2}}) \\ \text{Lin}_{\text{ERRNEG}} = \left(1 - \frac{\text{SensBPOS2}}{\text{SensBNEG2}}\right) \\ \text{Sens}_{\text{BX}} = |\text{Vout}_{\text{(BX)}}\text{-Vout}_{\text{(O)}}| \end{array} \qquad \begin{array}{c} \text{magnetic fields. Linearity Error (\%) is} \\ \text{measured and defined as:} \\ \text{(11)} \\ \text{(12)} \end{array}$$

Where: /Bx and BPOSx and BNEGx

are positive and negative magnetic

fields, with respect to the quiescent voltage output such that |BPOS2| = 2 × |BPOS1| and |BNEG2| = 2 × |BNEG1|.

Then:

8.24 Symmetry Sensitivity Error (SymERR)

The magnetic sensitivity of an CH611 device is constant for any two applied magnetic fields of equal magnitude and opposite polarities. Symmetry Error, Symerce (%), is measured and defined as:

(14) where
$$Sym_{ERR} = \left(1 - \frac{SensBPOS}{SensBNEG}\right) \times 100\%$$
 Sens_{Bx} is as defined in equation 12, and BPOSx and BNEGx are positive and negative magnetic fields such that $|BPOSx| = |BNEGx|$.

8.25 Ratiometry Error (RatERR)

The CH611 device features ratiometric output. This means that the Quiescent Voltage Output ($V_{\text{OUT}(Q)}$) magnetic sensitivity, Sens, and Output Voltage Clamp ($V_{\text{CLP(HIGH)}}$) and $V_{\text{CLP(LOW)}}$) are proportional to the Supply Voltage (V_{CC}). In other words, when the supply voltage increases or decreases by a certain percentage, each characteristic also increases or decreases by the same percentage. Error is the difference between the measured change in the supply voltage relative to 5 V, and the measured change in each characteristic.

The ratiometric error in Quiescent Voltage Output, Raterrout(Q) (%), for a given supply voltage (Vcc) is defined as:

$$Rat_{ERRVOUT(QU)} = \left[1 - \frac{\frac{v_{OUT(QU)(VCC)}}{v_{OUT(QU)(SV)}}}{\frac{v_{CC}}{SV}}\right] \times 100\%$$
(15)

Raterryout(Qu) is defined in the same way as Raterryout(QB1) with a factor of 1/5 multiplied.

$$Rat_{ERRVOUT(QU)} = \left[1 - \frac{\left(\frac{V_{OUT(QU)(VCC)}}{V_{OUT(QU)(SV)}}\right)}{\frac{VCC}{5V}}\right] \times \frac{1}{5} \times 100\%$$
(16)

The ratiometric error in magnetic sensitivity, Rat_{ERRSens} (%), for a given Supply Voltage (V_{CC}) is defined as:

$$Rat_{ERRSens} = \left[1 - \frac{\frac{S_{ens(VCC)}}{S_{ens(SV)}}}{\frac{VCC}{SV}}\right] \times 100\%$$
 (17)

The ratiometric error in the clamp voltages, Raterrolp (%), for a given supply voltage (Vcc) is defined as:

$$Rat_{ERRCLP} = \left[1 - \frac{\frac{(S_{CLP(VCC)})}{S_{CLP(SV)}}}{\frac{VCC}{SV}}\right] \times 100\%$$
 (18)

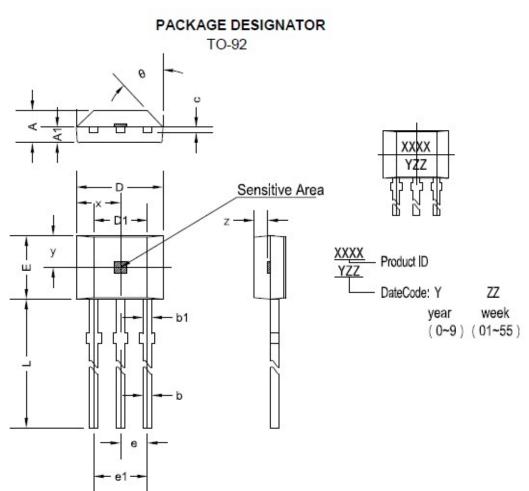
where VCLP is either VCLP(HIGH) or VCLP(LOW).

8.26 Power-On Reset Voltage (V_{POR})

On power-up, to initialize to a known state and avoid current spikes, the CH611 is held in Reset state. The Reset signal is disabled when V_{CC} reaches V_{PORH} and time t_{PORR} has elapsed, allowing the output voltage to go from a high-impedance state into normal operation. During power-down, the Reset signal is enabled when V_{CC} reaches V_{PORL} , causing the output voltage to go into a high-impedance state. (Note that a detailed description of POR can be found in the Functional Description section).

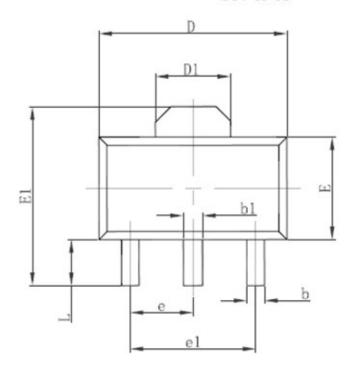
8.27 Power-On Reset Release Time (tpork)

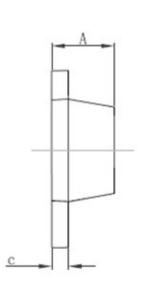
When V_{CC} rises to V_{PORH} , the Power-On Reset Counter starts. The CH611 output voltage will transition from a high-impedance state to normal operation only when the Power-On Reset Counter has reached t_{PORR} and V_{CC} has been maintained above V_{PORH} .


Revision History

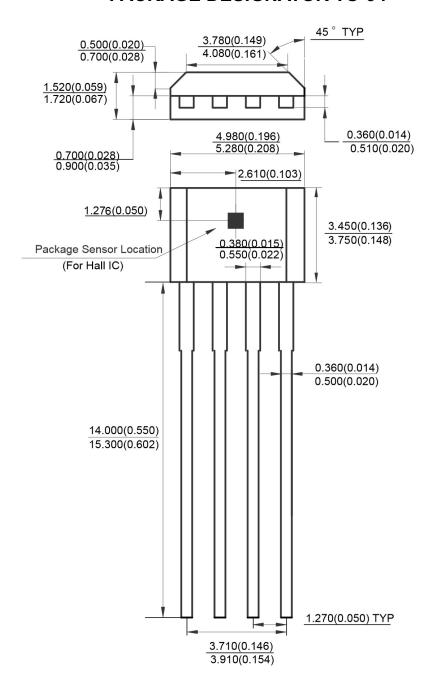
Date	Revision	Change
May 2020	1	Initial release
May 2021	1.1	Updated front page

9. Package Information:




Symbol	Dimensions in	n Millimeters	Dimensions	in Inches	
Symbol	Min	Max	Min	Max	
Α	1.420	1.670	0.056	0.066	
A1	0.660	0.860	0.026	0.034	
b	0.350	0.560	0.014	0.022	
b1	0.400	0.550	0.016	0.022	
С	0.360	0.510	0.014	0.020	
D	3.900	4.200	0.154	0.165	
D1	2.970	3.270	0.117	0.129	
E	2.900	3.280	0.114	0.129	
е	1.270 TYP		0.050	TYP	
e1	2.440	2.640	0.096	0.104	
L	13.500	15.500	0.531	0.610	
X	2.02	5TYP	0.080TYP		
У	1.54	1.545TYP		0.061TYP	
Z	0.500TYP		0.020TYP		
θ	45°	TYP	45°	TYP	

PACKAGE DESIGNATOR SOT-89-3L



Cumbal	Dimensions	In Millimeters	Dimension	s In Inches		
Symbol	Min.	Max.	Min.	Max.		
Α	1.400	1.600	0.055	0.063		
b	0.320	0.520	0.013	0.020		
b1	0.400	0.580	0.016	0.023		
С	0.350	0.440	0.014	0.017		
D	4.400	4.600	0.173	0.181		
D1	1.550	REF.	0.061	REF.		
E	2.300	2.600	0.091	0.102		
E1	3.940	4.250	0.155	0.167		
е	1.500 TYP.		0.060 TYP.			
e1	3.000	TYP.	0.118	0.118 TYP.		
L	0.900	1.200	0.035	0.047		

PACKAGE DESIGNATOR TO-94

