

集成USB PD2.0/PD3.0、QC2.0/QC3.0高压快充协议SOC

1 概述

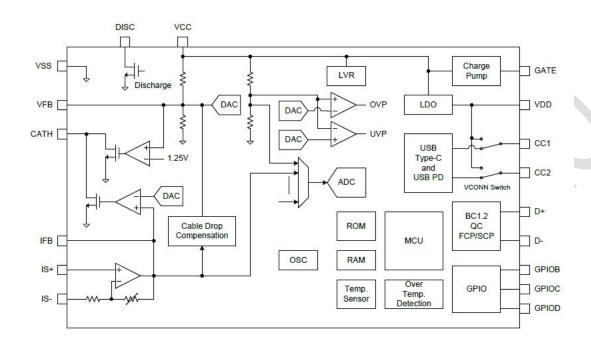
CV6036是一颗集成了USB Power Delivery (PD2.0/PD3.0)输入输出协议、QC2.0/QC3.0/QC4.0+输出快充协议、MTK PE+1.1、FCP、SCP等多功能产品,支持光耦反馈和FB反馈两种工作模式。

CV6036集成了CV/CC控制环路,高精度的ADC,以及多种安全保护功能,为适配器、移动电源、车充等提供完整的高压快充解决方案。

2 应用

- ☆ 适配器
- ☆ 车载充电设备
- ☆ 移动电源充电设备
- ☆ 插排

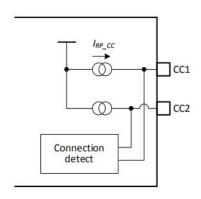
3 特性


- 工作电压3.0~24V:
- 支持光耦反馈控制和FB反馈控制;
- 集成CV/CC控制环路;
- 集成 VBUS 和 VIN 快速放电;
- 支持线路阻抗补偿;
- 支持USB PD2.0/PD3.0, (含Programmable Power Supply PPS); 可编程Type C上拉电阻; 内置VCONN电源和开关,配合E-marker功能;
- 支持BC1.2 DCP模式;
- 支持QC4.0+/QC3.0/QC2.0;
- 支持Fast Charge Protocol, Smart Charge Protocol快充:
- 支持MTK PE+1.1快充;
- 内置过压保护(OVP); 欠压保护(UVLO); 过流保护(OCP); 过温保护(OTP);
- 内置NMOS开关栅极驱动器;
- 内置电源放电MOS管;
- 8路12bits高精度ADC:
- 内嵌SHA 256硬件加解密引擎;
- 内置电压稳压器;
- 内置容阻振荡器:
- 通用GPIO接口;

4 产品信息

产品型号	封装	封装尺寸
CV6036	QFN16	4 * 4 * 0.75mm

1 应用电路图



2 功能描述

- 2.1 MCU
- 2.2 USB Type C 和 PD

2.2.1 USB Type C 之总线终端与检测

Type-C源级上拉电阻(Rp)是由一个可配置的电流源实现的,以发布电流能力。附加/分离检测由不同阈值电压的多个比较器完成来满足Type-C规范。

2, 2, 2 VCONN

VCONN通过内部MOS管开关,把VDD的输出供电给E-marked电线,最大输出功率为100mW。 VCONN的开关由芯片上的MCU来控制,在读到E-marked电线之后可以断开以降低功耗。

2.3 VBUS 控制

两种VBUS的控制模式可以配合不同的PWM控制器。

2.3.1. 光耦控制

VBUS经过芯片外面的NMOS管连接到VCC电源。VCC电压进入芯片后会和设定之参考电压比较来产生一个电流调整讯号,在CATH管脚输出。内部反馈电压由DAC控制,可以把VBUS的输出从3V以20mV的步进调整到21V。

当输出电流超过某一设定水平时,电流检测放大器会介入,通过压抑VCC电 压来限制输出电流。介入的电流水平由内部DAC来控制。

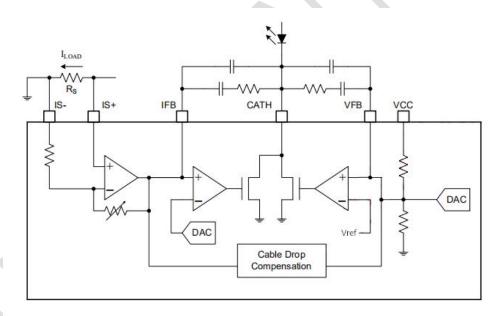


图2.3.1 光耦控制模式示意图

2.3.2 PWM反馈控制

见图2.3.2,反馈电压VFB连接到芯片外部的PWM控制器。当负载电流超过了设定的恒流值时,一个上拉的电流源会注入VFB,从而降低VBUS的电压以达至恒流的目的。在此状态时,CATH管脚需要接上补偿电容来降低电流纹波。

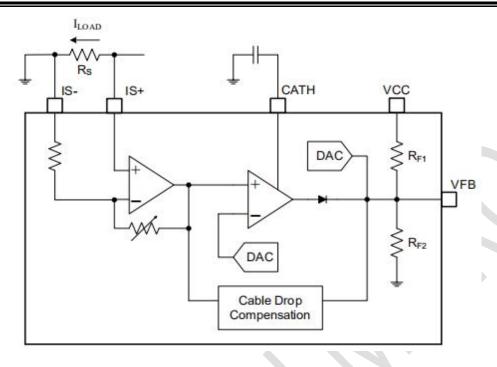


图2.3.2 直接反馈模式

2.4 导线压降补偿

电流流过导线会因导线本身的电阻而引起压降;为了补偿这个压降,一个补偿电流源会按照负载电流的大小,按比例注入VFB管脚。

2.5 保护电路

2.5.1 OVP和UVP

见图2.5.1 VCC的电压,和由DAC产生的参考电压比较,产生过压和欠压的讯号。同时,MCU会被中断,外面负载开关的控制讯号GATE会被移走,负载开关断开。

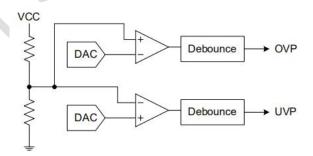


图2.5.1 产生OVP, UVP之线路

2.5.2 过流保护

负载电流讯号会被电流检测放大器放大,然后由ADC转换成数据。过流的触

发点和去抖动时间,都可以用凝件更改。

2.5.3 过温保护

芯片外面的过温保护是由一个恒流源和一个电压比较器来实现。电流源流出管脚后,在NTC热敏电阻上产生压降。当此电压低于内部设定的参考电压VOTP时,比较器输出便会报警,把GATE讯号关掉,并向MCU产生中断讯号。管脚的电压同时也可用ADC来测量。

NTC热敏电阻应选用B值为4100K的200K Ω 或100K Ω 电阻。过温保护之触发点可选95 \mathbb{C} ,105 \mathbb{C} ,115 \mathbb{C} 或125 \mathbb{C} 。

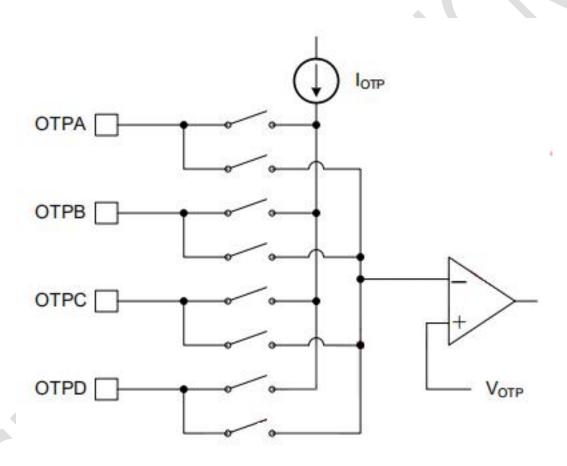


图2.5.3 外接温度检测元件示意图

2.6 芯片温度检测

芯片自带温度检测电路,数据经MCU读取之后,会按照应用本身的要求来决定是否产生过温保护。

2.7 ADC模数转换

芯片上的数模转换为12位的精度,支持超过20通道的复用,其中P04,P05,GPIOB,GPIOC和GPIOD皆可通过MCU程序接到ADC的复用输入。

2.8 USB BC1.2 和 QC3.0

芯片支持USB电池充电协议1.2版本和高压充电协议HVDCP(高压专用充电接口)QC3.0。HVDCP在D+和D-上利用USB BC1.2兼容的信令,以协商VBUS上的电压请求。QC3.0向后兼容快充1.0和2.0。快充3.0提供了更细小的电压范围:从3.6V到20V,每增加200mV。

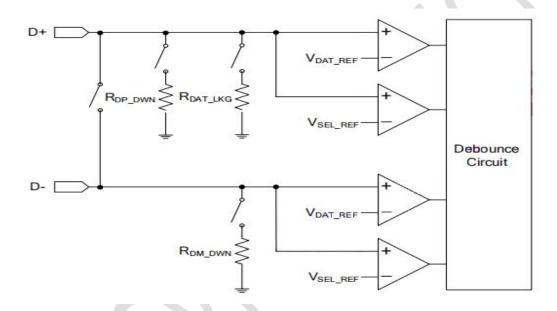
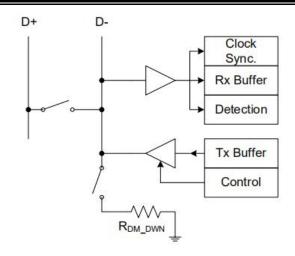



图5.8 USB 接口 D+, D- 内部线路示意图

2.9 智能充电协议 (SMART CHARGE PROTOCOL)

智能充电协议用于移动设备与自适应输出USB充电器之间的通信。它利用USB BC1.2兼容的信令和协商电压和电流请求通过D线。它实现了一个从模式收发机,包括发送端、接收端、接收时钟同步、奇偶校验和传输开始/传输结束/多字节传输检测。

2.10 电源放电

当VBUS从高电压下降时,会有需要在内部生成一条放电路径,以符合USB-PD电平过渡时间的要求。芯片上有4个不同的放电速率可以选择。

2.11 外接负载开关的驱动讯号

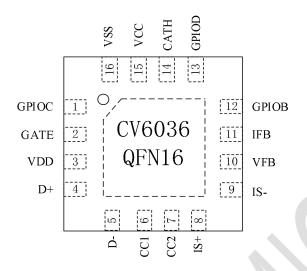
芯片外面VCC与VBUS之间,有一NMOS功率管作为开关。参考第5段"典型应用原理图"。开关导通时,其栅极必须比VCC的电压为高。芯片内部的电荷泵,会产生足够的栅极电压,在需要时把开关打开。

2.12 GPIO

所有GPIO皆可设定成输入或者输出。

2.13 看门狗计时器

看门狗定时器可用于检测CPU故障,如噪声、电压干扰、断电等引起的软件 死锁圈。看门狗定时器内部计数器溢出时,会产生复位信号,复位CPU。


2.14 重置

芯片有下列的重置讯号:

- ▶ 上电重置(POR);
- 1.8V 稳压器输出过低重置;
- VCC 电源欠压保护 (UVLO)
- VDD 电压过低重置;
- 看门狗定时器重置
- 程序计数器溢出复位

3 引脚定义

3.1 引脚说明

引脚序号	引脚名称	耐压 (V)	描述
1	GPIOC	6	数字模拟I0
2	GATE	30	外接NMOS管开关栅极控制
3	VDD	6	4. 8V稳压输出
4	D+	12	USB D+ pin
5	D-	12	USB D-pin
6	CC1	20	USB PD CC1 pin
7	CC2	20	USB PD CC2 pin
8	ISP	6	电流检测正端
9	ISN	6	电流检测负端
10	VFB	6	分流稳压反馈端
11	IFB	6	分流稳压器电流反馈
12	GPIOB	6	数字模拟I0
13	GPIOD	30	数字模拟I0
14	САТН	30	分流稳压控制端
15	VCC	30	正电源
16	VSS	_	电源地

4 电气特性

4.1 极限参数

参数	符号	最小值	最大值	单位
	VCC	-0.3	30	V
	D+, D-	-0.3	12	V
电压范围	VDD, VFB, ISP, ISN, IFB, GPIO B, GPIOC	-0.3	6	V
	CC1, CC2	-0.3	20	V
	CATH, GATE, GPIOD	-0.3	30	V
结温范围	TJ		125	$^{\circ}$ $^{\circ}$
存储温度范围	Tstg	-40	150	${\mathbb C}$
热阻(结温到环境)	θ ЈА	TBD		°C/W
人体模型(HBM)	ESD	-2000	2000	V

4.2 推荐工作条件

参数	符号	最小值	典型值	最大值	单位
供电电压	VCC	3		24	V
	CC1, CC2	0	5	5. 5	V
		0	5	5. 5	V
I/0电压范围		0	5	5. 5	V
		0	5	5. 5	V
		0	5	5. 5	V
待机功耗	Istandby		10		mA
工作温度范围	TA	-40		85	$^{\circ}$

4.3 直流参数 (Vcc=20V, 工作温度-20°C到+105°C)

4.3.1 电源 (Vcc, Vdd)

参数	符号	条件	最小值	典型值	最大值	单位
供电电压	VCC		3		24	V
VCC电流,正常工作	ICC_OPR1	VCC≥4.5V,输出无负载, MCU工作频率在10MHz			10	mA
VCC电流,正常工作	ICC_OPR2	VCC<4.5V,输出无负载,MCU 工作频率在10MHz			22	mA
生机中枢 WCU/宣告	ICC CTDDV	CC1或CC2悬空			1	mA
待机功耗,MCU停运	ICC_STDBY	CC1或CC2接5.1K下拉电阻			1.3	mA
VCO AT IT IT I'M	иши о	VCC上升	3. 5		4. 35	V
VCC欠压保护	VUVLO	VCC下降	2.6		2.85	V
内置稳压输出	VDD		4. 56		5. 04	V

4.3.2 并联稳压器

参数	符号	条件	最小值	典型值	最大值	单位
		VPWR=23V, Ta=25C,			± 1.5	%
		5V 输出				
输出电压容差	VOUT	VPWR=23V, Ta=25C,			± 2.5	%
(图4.3.2)	7001	3V ~ 21V 输出				
		VPWR=23V, Ta=-20C - 105C,			± 3.5	%
		3V ~ 21V 输出				
PPS电压步距	Vpps_step	VCC≥4.5V,输出无负载,		20		mV
115电压少距		MCU工作频率在10MHz		20		111 V
PPS限流步距	Ipps_step	VCC<4.5V,输出无负载,MCU		50		mA
110000000		工作频率在10MHz		00		11111
限流容差	A IDDC CI	1A ≤ 限流值 ≤ 3A			±150	mA
PR机谷左	Δ IPPS_CL	限流值.3A			±5	%

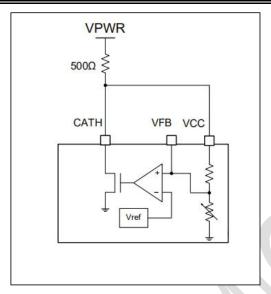


图4.3.2 并联稳压器之测试电路

4.3.3 过压和欠压保护 (OVP, UVLO)

参数	符号	条件	最小值	典型值	最大值	单位
欠压电压触发点	VOVP		3		25. 5	V
OVP步距	VOVP_STEP			0.1		V
OVP触发点误差	ΔVOVP				±5	%
UVP电压触发点	VUVP		3		25. 5	V
UVP步距	VUVP_STEP			0.1		V
UVP触发点误差	Δ VUVP				±5	%

4.3.4 过流保护 (OCP)

参数	符号	条件	最小值	典型值	最大值	单位
OCP触发点	IOCP	Rs = $5m\Omega$, Av = 80	0.5		6.4	A
OCP步距	∆ IOCP	Rs = $5m\Omega$, Av = 80, IOCP=3.6A		0.1		V

4.3.5 ADC

参数	符号	条件	最小值	典型值	最大值	单位
ADC精度	NADC			12		bit
ADC INL	INLADC	Ta = 25℃, Vin = 2.5V			±5	LSB

Version 1.0

CV6036

ADC DNL	DNLADC	Ta = 25°ℂ, Vin = 2.5V		±5	LSB
ADC参考电压	VREF_ADC	Ta = 25°C, VCC = 5V	2. 56		V

4.3.6 CC1, CC2

参数	符号	条件	最小值	典型值	最大值	单位
BMC发射输出高电平	VOH_CC		1.05	1. 125	1.2	V
BMC发射输出低电平	VOL_CC				0.075	V
BMC接收输入高电平	VIH_CC		0.67		1. 45	V
BMC接收输入低电平	VIL_CC		-0.25		0.43	V
BMC发射输出阻抗	ZDriver_CC		33		75	Ω
BMC接收输入阻抗	ZBMCRX_CC		1			ΜΩ
		0.5A电流量@5V		80		μΑ
CC1, CC2上拉电流	IRP CC	1.5A电流量@5V		180		μΑ
		3.0A电流量@5V		330		μΑ
		0.5A电流量@5V		1.6		V
CC1, CC2插入检测电平	VRd CC	1.5A电流量@5V		1.6		V
	_	3. 0A电流量@5V		2.6		V

4. 3. 7 VCONN

参数	符号	条件	最小值	典型值	最大值	单位
VCONN电压	VCONN	VCC = 5V, IVCONN = 0mA		4.85		V
, contredit	VCONN	VCC = 5V, IVCONN = 30mA		3.39		V

4.3.8 USB □ D+, D- 端

参数	符号	条件	最小值	典型值	最大值	单位
数据检测电压	VDAT_REF		0. 25	0.35	0.4	V
输出选取电压	VSEL_REF		1.8			V
D+/D-下拉电阻	RDWN		14. 25		24.8	КΩ
DCP模式时, D+, D-之间电阻	RDCP_DAT			30	40	Ω

4.3.9 外接温度检测

参数	符号	条件	最小值	典型值	最大值	单位
过温检测电流源	IOTP			20.5		μA

4.3.10 片上温度检测

参数	符号	条件	最小值	典型值	最大值	单位
内部温度检测精度	TTS				±10	${\mathbb C}$

4.3.11 GPIO

参数	符号	条件	最小值	典型值	最大值	单位
D-, IS+, IS-, VFB 输出低电平	VOL_GPIO4m	IOL = 4mA			0.4	V
D+, IFB, CATH, OTPA, OTPD 输出低电平	VOL_GPIO10 m	IOL = 10mA			0.4	V
GATE输出低电平	VOL_GATE	IOL = 5mA			4	V
GPIO输出高阻漏电	IZ_GPIO				10	μΑ
	WIII	D-, IS+, IS-, VFB	1.5		4.5	V
输入高电平	VIH	D+, GATE, IFB, CC1, CC2, CATH, OTPB, OTPA, OTPD	1.4		VCC	V
<i>捻</i>)	VII	D-	0		1.0	V
输入低电平	VIL	其他GPIO	0		0.8	V

4.4 交流讯号特性 (Vcc=20V, 温度从-20°C到+105°C)

4.4.1 内部振荡器

参数	符号	条件	最小值	典型值	最大值	单位
主振荡器频率	Fosc			16		MHz

4.4.2 USB-PD BMC发射和接收

参数	符号	条件	最小值	典型值	最大值	单位
BMC数据速率	f _{BMC}		270	300	330	KHz
BMC 讯号发射上升时间	t _{RISE_BMC}		300			ns
BMC 讯号发射下降时间	t _{FALL_BMC}		300			ns
最后上升沿到终止驱动 时间	t _{HOLD_BMC}		1			μs

CV6036

从最后一位	数据到下一	t _{IFG_BMC}		25		μs
数据包首位数据	数据之时间					
从最后一位	数据到终止	t _{END_EMC}			23	μs
驱动之	过时间					
BMC接收频宽		t _{RXFTR_BMC}		100		ns
431 10 47713						
检测非闲置	之时间窗口	t _{NIDLE_BMC}		12	20	μs
离开闲置状态	<u></u> 态所需之电	N _{NIDLE_BMC}		3		
平转		_				
BMC发射为"	(1") 脉ቋ	t _{PULSE1_BMC}	Ta = 25℃, CC 总电容 = 1010pF,	1.4	1.8	
DMC 汉别 /Y	1		CC 管脚串联电阻 = 47Ω			μs

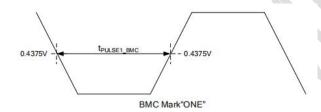


图 4.4.2a BMC 时间图

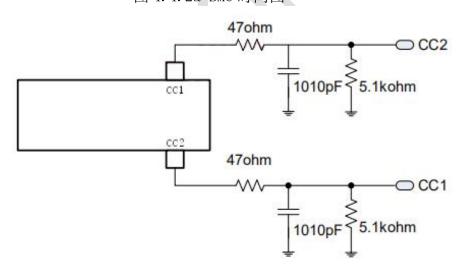
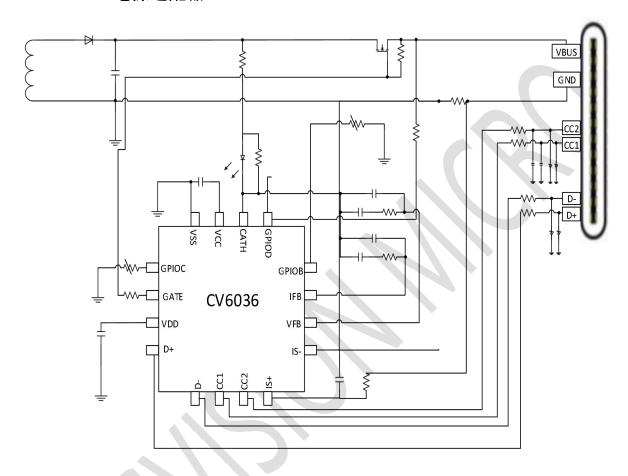
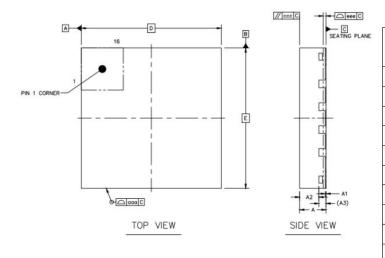
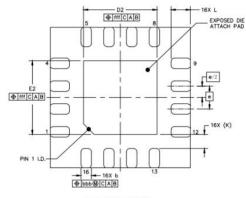



图 4.4.2b BMC 发射"1"讯号脉宽之测试电路

5 典型应用原理图


USB PD3.0 电源适配器



6 产品信息

6.1 封装图和封装尺寸:

CVMDOL	N	MILLIMETE	R
SYMBOL	MIN	NOM	MAX
A	0. 70	0.75	0.80
A1	-	0. 02	0. 05
A3		0. 20REF	
b	0. 22	0.30	0. 35
D	3. 90	4. 00	4. 10
Е	3. 90	4. 00	4. 10
D2	2	752	2. 45
E2	2	82	2. 45
е		0. 65BSC	
L	0. 30	10-	0. 65
K		0. 3REF	X7

BOTTOM VIEW

产品型号	封装形态	防潮等级	包装方式	最小包装数量
CV6036	QFN16 (4.00 * 4.00 * 0.75 mm)	3级	卷带	4000 颗