

#### **Description**

The CV8013N is a high efficiency,
Qi-compliant wireless power receiver,
targeted for 5W portable applications. The
CV8013N converts an AC power signal from
a resonant tank into a regulated DC output
voltage with 5V. Which integrated Low
RDS(on) synchronous rectifier and ultra-low
dropout offer high efficiency making the
product ideally suited for battery-operated
applications.

CV8013N integrated an 1T-8051

Microprocessor offering a high level of program ability, an 12bit high precise ADC, a programmable current limit. High integration, To minimizing the external component count and cost effective solution. Work with different WPC compliance transmitter (TX), CV 8013 can deliver 5W.

## Wireless power system

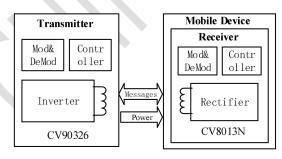



Figure 1 CVS Wireless Power System

#### **Features**

- Single-chip RX solution supporting up to 5W application
- Compatible with WPC v1.2.4 Qi Standard
- Internal Integrated High efficiency Synchronous
   Rectifier
- Up to 83% peak DC-DC efficiency with CV90326
   TX
- Programmable output Voltage: 5V
- Programmable current limit
- Embedded Microprocessor
- Dedicated remote temperature sensing
- Over voltage, over current, over temperature protection
- Integrated AD-Enable for wireless by-pass
- ~20 to +85°C ambient operating temperature range
- QFN32 (5mm x 5mm; 0.5mm pitch)

## **Typical Applications**

- Wireless power RTx solution for portable devices
- Mobile phone
- TWS Earbuds
- E-cigarettes
- Tablets
- Accessories
- Stationary device power supply



## 1. Block diagram

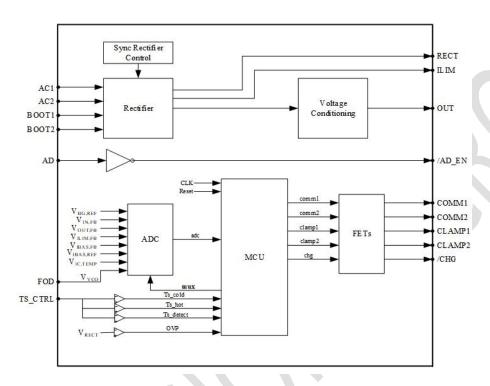



Figure 2 Block diagram of CV8013N

## 1.1 Typical Application Circuit

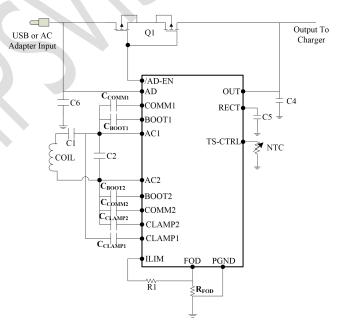
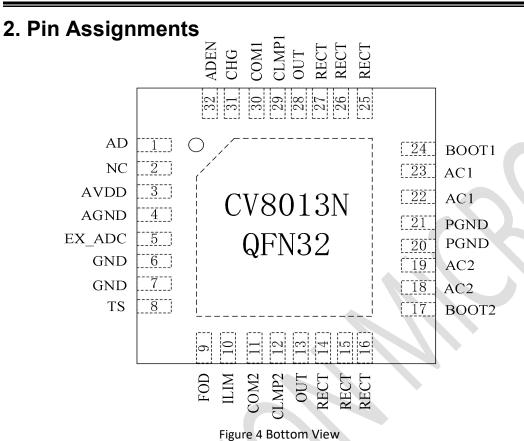




Figure 3 Typical application schematic of CV8013N





## 2.1 Pin configuration and functions

| PIN NO | PIN NAME | DESCRIPTION                                                                      |
|--------|----------|----------------------------------------------------------------------------------|
| 1      | AD       | Adapter sense pin.                                                               |
| 2      | NC       | NC                                                                               |
| 3      | AVDD     | Supply voltage                                                                   |
| 4      | AGND     | Ground                                                                           |
| 5      | EX_ADC   | Minimum voltage configuration                                                    |
| 6      | GND      | Ground                                                                           |
| 7      | GND      | Ground                                                                           |
| 8      | TS       | Temperature sense, connect to NTC thermistor resistor                            |
| 9      | FOD      | Input pin to use for FOD calibration                                             |
| 10     | ILIM     | Programmable over-current limit pin. Connect to over-current protection resistor |
| 11     | COM2     | Open-drain FET used to output to communicate with primary coil                   |





| PIN NO | PIN NAME | DESCRIPTION                                                                                                 |
|--------|----------|-------------------------------------------------------------------------------------------------------------|
| 12     | CLMP2    | Cause RX coil to be detuned to reduce the amount of the                                                     |
|        | -        | received energy, to avoid over voltage cased.                                                               |
| 13     | OUT      | Output pin, used to deliver power to the load                                                               |
| 14     | RECT     | Filter capacitor for synchronous rectifier                                                                  |
| 15     | RECT     | Filter capacitor for synchronous rectifier                                                                  |
| 16     | RECT     | Filter capacitor for synchronous rectifier                                                                  |
| 17     | BOOT2    | Bootstrap capacitor for synchronous rectifier                                                               |
| 18     | AC2      | AC input power via external coil                                                                            |
| 19     | AC2      | AC input power via external coil                                                                            |
| 20     | PGND     | Ground                                                                                                      |
| 21     | PGND     | Ground                                                                                                      |
| 22     | AC1      | AC input power via external coil                                                                            |
| 23     | AC1      | AC input power via external coil                                                                            |
| 24     | BOOT1    | Bootstrap capacitor for synchronous rectifier                                                               |
| 25     | RECT     | Filter capacitor for synchronous rectifier                                                                  |
| 26     | RECT     | Filter capacitor for synchronous rectifier                                                                  |
| 27     | RECT     | Filter capacitor for synchronous rectifier                                                                  |
| 28     | OUT      | Output pin, used to deliver power to the load                                                               |
| 29     | CLMP1    | Cause RX coil to be detuned to reduce the amount of the received energy, to avoid over voltage cased.       |
| 30     | COM1     | Open-drain FET used to output to communicate with primary coil                                              |
| 31     | /CHG     | Charging indicator.                                                                                         |
| 32     | /AD_EN   | Push-pull driver for dual PFET circuit that can pass AD input to the OUT pin; Used for adapter MUX control. |

Version 1.0



## 3. Electrical characteristics

### 3.1 Absolute Maximum Rating

| Parameter               | Condition               | MIN  | ТҮР | MAX  | UNIT   |
|-------------------------|-------------------------|------|-----|------|--------|
| Input Voltage           | EN1,EN2,CHG,FOD,TS,ILIM | -0.3 |     | 7    | V      |
| mpat voltage            | Other Pins              | -0.3 |     | 20   | V      |
| Input Current           | AC1, AC2                |      |     | 2    | A(RMS) |
| Output Current          | OUT                     |      |     | 1.25 | A      |
| Junction<br>Temperature |                         |      |     | 150  | ōC     |
| ESD(HBM)                | All pins                |      | ±2  |      | kV     |

#### 3.2 Thermal characteristics

| Parameter | Description                            | MIN | ТҮР | MAX | UNIT |
|-----------|----------------------------------------|-----|-----|-----|------|
| ОЈА       | Junction to ambient thermal resistance |     | 47  |     | ōC\M |

### 3.3 Recommend characteristics

| Parameter       | Description          | MIN | TYP | MAX | UNIT |
|-----------------|----------------------|-----|-----|-----|------|
| V <sub>IN</sub> | Input voltage range  | 4   |     | 10  | V    |
| I <sub>IN</sub> | Input current        |     |     | 1.5 | А    |
| Іоит            | Output current       |     |     | 1   | А    |
| Ісомм           | COMM current         |     |     | 0.5 | Α    |
| TJ              | Junction Temperature | 0   |     | 125 | ōС   |

### 3.4 Electrical characteristics

| Parameter              | Description                                  | MIN                    | TYP | MAX                   | UNIT |
|------------------------|----------------------------------------------|------------------------|-----|-----------------------|------|
| UVLO                   | Under-voltage lock out                       | 2.8                    | 3.0 | 3.2                   | V    |
| V <sub>RECT(OVP)</sub> | V <sub>RECT</sub> over voltage protection    |                        | 12  |                       | V    |
| V <sub>RECT(REG)</sub> | V <sub>RECT</sub> range set by communication | V <sub>OUT</sub> +0.12 |     | V <sub>OUT</sub> +2.0 | V    |
| V <sub>OUT(REG)</sub>  | Regulated output voltage                     | 4.5                    | 5.0 | 12.5                  | V    |
| I <sub>OUT</sub>       | Output current range                         |                        |     | 1.25                  | А    |

Version 1.0

5

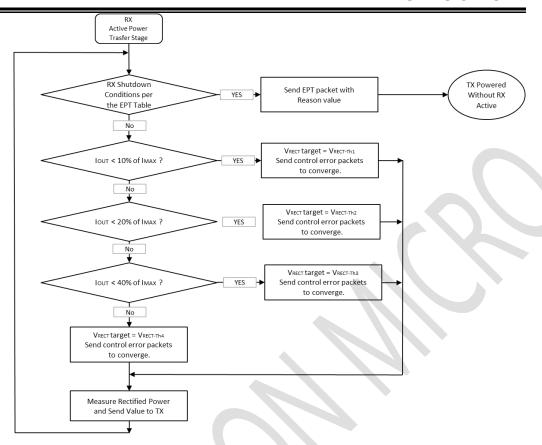
| Parameter                 | Description                             | MIN | ТҮР | MAX | UNIT |
|---------------------------|-----------------------------------------|-----|-----|-----|------|
| $V_{TS}$                  | Temperature sense bias voltage          | 4.5 | 5.0 | 5.5 | V    |
| R <sub>TS</sub>           | Pull-up resistor for TS to bias voltage | 90  | 100 | 110 | kΩ   |
| T <sub>J(SHUTDOWN)</sub>  | Thermal shutdown temperature            |     | 150 |     | ōС   |
| T <sub>J(HYS)</sub>       | Thermal shutdown hysteresis             |     | 20  |     | ōC   |
| R <sub>DS(ON,COM)</sub>   | COM1 and COM2                           |     | 1.0 |     | Ω    |
| $f_{COMM}$                | Communication frequency                 |     | 2.0 |     | kb/s |
| R <sub>DS(ON,CLAMP)</sub> | CLAMP pin MOSFET                        |     | 0.5 |     | Ω    |

# 4. Function description

### 4.1 Sync Rectifier

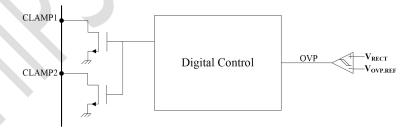
Dynamic rectifier adjust the purpose is to optimize efficiency and reduce the overall LDO power consumption

$$P_{DIS} = (V_{RECT} - V_{OUT})*I_{OUT}$$


The rage of dynamic adjustment is as follows (see table below)

| Output Current Percentage | V <sub>RECT</sub> (V)   |
|---------------------------|-------------------------|
| 0~10%                     | V <sub>OUT</sub> + 2.00 |
| 10%~20%                   | V <sub>OUT</sub> + 1.5  |
| 20%~40%                   | V <sub>OUT</sub> + 0.56 |
| >40%                      | V <sub>OUT</sub> + 0.12 |

Wherein,  $I_{OUT}$  current percentage is determined according to the maximum output current  $I_{MAX}$  setting by  $R_{ILIM}$ .


V<sub>RECT</sub> Dynamic adjustment is accomplished by the controlling program of RXthrough communicating with TX. Control flow chart is as below.



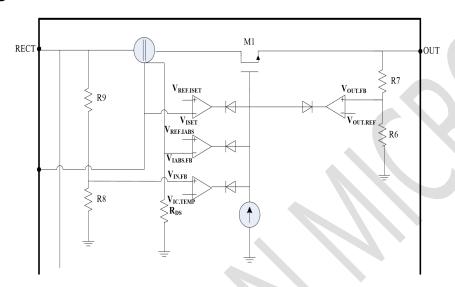


### 4.2 VRECT Over-voltage protection

VRECT through internal comparator, generate over-voltage signal OVP and send the OVP signal to digital logic. Digital logic sends OVP interrupts to MCU. RX controlling program drives CLMP pin to cause RX coil to be detuned to reduce the amount of the received energy. Thereby, rapidly reduce VRECT to a safe range.



#### 4.3 VRECT relevant parameters


| Parameter                | Description                              | MIN                    | TYP | MAX                   | UNIT |
|--------------------------|------------------------------------------|------------------------|-----|-----------------------|------|
| V <sub>RECT(REG)</sub>   | V <sub>RECT</sub> range set by COMM      | V <sub>OUT</sub> +0.12 |     | V <sub>OUT</sub> +2.0 | V    |
| V <sub>RECT(TRACK)</sub> | V <sub>RECT</sub> above V <sub>OUT</sub> |                        | 120 |                       | mV   |

Version 1.0



| V <sub>OVP,REF</sub> | V <sub>RECT</sub> over voltage protection | 12  | V |
|----------------------|-------------------------------------------|-----|---|
| R <sub>DS(ON)</sub>  | CLAMP pin MOSFET                          | 0.5 | Ω |

#### **4.4 LDO**



LDO schematic diagram is as above. The functions of the 4 amplifiers are as follows.

#### 4.5 VOUT, FB

 $V_{\text{OUT}}$  is fed back to the amplifier negative input through a resistor divider network and compare with the internal default setting to control M1 to output the stable voltage.

The relevant parameters are as follows:

| Parameter             | Description                     | MIN     | TYP    | MAX     | UNIT |
|-----------------------|---------------------------------|---------|--------|---------|------|
| K <sub>RO</sub>       | Feedback Resistor Ratio         | 1.2/8.0 |        | 1.2/4.5 |      |
| V <sub>OUT,REG</sub>  | V <sub>OUT</sub> Reference      |         | 1.2174 |         | V    |
| I <sub>OUT, MAX</sub> | Max Current Limit               |         |        | 125     | Α    |
| I <sub>OUT, DIS</sub> | Quiescent Current when disabled |         | 20     | 35      | μΑ   |

#### 4.6 VILIM

The  $R_{ILIM}$ , is the external resistor connected with ILIM pin. The voltage sampling value  $V_{ILIM}$  input to the amplifier negative input pin and is compared with the reference voltage  $V_{ILIM,REF}$ . If the voltage value  $V_{ILIM}$  exceeds the threshold  $V_{ILIM,REF}$ , then reduce  $I_{OUT}$  output current by controlling M1.

The calculation of maximum output current  $I_{\text{MAX}}$  is as follows:



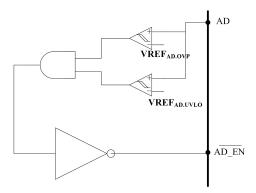
 $R_{ILIM} = K_{ILIM} / I_{MAX}$ 

Considering 20% margin of the setting value  $I_{MAX}$ ,  $I_{ILIM}$ =1.2\* $I_{MAX}$ . $R_{ILIM}$  is calculated by the following equation.

 $R_{ILIM} = K_{ILIM} / I_{LIM} = K_{ILIM} / 1.2 I_{MAX}$ 

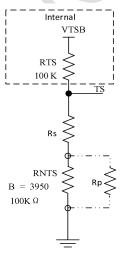
The relevant parameters are as follows:

| Parameter             | Description                | MIN | ТҮР | MAX | UNIT |
|-----------------------|----------------------------|-----|-----|-----|------|
| K <sub>ILIM</sub>     | Current Limit Factor       |     | 450 |     | Ω    |
| V <sub>ILIM,REF</sub> | I <sub>LIM</sub> Reference |     | 1.2 |     | V    |


### 4.7 End Power Transfer Package (WPC Header 0x02)

The WPC allows for special commands for the receiver to terminate power transfer from the transmitter termed End Power Transfer (EPT) packet. The table below specifies the V1.2 reasons column and their corresponding data field value. The condition column corresponds to the methodology used by CV8013N to send equivalent message.

| MESSAGE          | VALUE | CONDITION                                                       |  |
|------------------|-------|-----------------------------------------------------------------|--|
| Unknown          | 0x00  | AD>3.6V                                                         |  |
| Charge complete  | 0X01  | TS/CTRL <0.3V; charge complete                                  |  |
| Internal Fault   | 0x02  | Vic,TEMP: Vic_TEMP>Vj,Off                                       |  |
| Over temperature | 0x03  | TS < VHOT                                                       |  |
| Over voltage     | 0x04  | NOT Send, Send 0x03 code to reduce power transfer in this case. |  |
| Over current     | 0x05  | Not Send                                                        |  |
| Battery Failure  | 0x06  | Not Send                                                        |  |
| Reconfigure      | 0x07  | Not Send                                                        |  |
| No Response      | 0x08  | Once Vrect voltage cannot reach 6.5V                            |  |




#### 4.8 Adapter Enable



In order to be compatible with external adapter plugged in, AD pins are used to monitor the input voltage of adapter. When AD is above VREF<sub>AD,OVP</sub>, means external adapter is plugged in. Internal comparatorpulls AD\_EN pin to logic low. AD\_EN at logic low drives external PMOS to enable the wired charging path. Meanwhile, AD\_EN signal is sent to digital logic, RX control program sends EPT to notify TX to stop power transmission. If AD\_EN is below VREF<sub>AD,OUVLO</sub>, means external adapter is unplugged. Internal cooperator pulls AD\_EN pin to logic high, cut off the wired charging path and the chip.

#### 4.9 External Temperature Sense



TS pin is used to monitor the external temperature by using NTC resistor network. Internal pull-up resistor  $V_{TSB}$  RTS and external resistor composes voltage division circuit. The internal ADC converts the value of  $V_{TS}$  voltage. And the over temperature protection will be triggered when the  $V_{TS}$  less then  $V_{TS}$  less than  $V_{TS}$  will send EPT (end power transfer) package to TX, and stop to output.

10

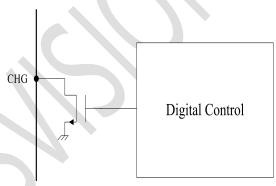


\*To revise Rs and Rp resistors to change over temperature protection (OTP) trigger point setting,

Rs=
$$0 \Omega$$
, Rp: NC, the OTP trigger point is  $60^{\circ}$  C;

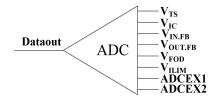
The calculation formula is as follow:

$$(5V*Rntc)/(RTS+Rntc)=1V$$


To rise Rs resistance value, the OTP trigger point will be rised (>60° C);

To select resistor value for Rp to set OTP triggle point (<60° C);

The related parameters are as follows:


| Parameter       | Description              | MIN | TYP | MAX | UNIT |
|-----------------|--------------------------|-----|-----|-----|------|
| $V_{TSB}$       | Internal TS Bias Voltage |     | 5   |     | V    |
| R <sub>TS</sub> | Pullup Resistor for NTC  |     | 100 |     | kΩ   |

### 4.10 Charging Status



Digital logic drives CHG pin to notify external system that  $I_{OUT}$  is being output, indicating that wireless charging is in progress.

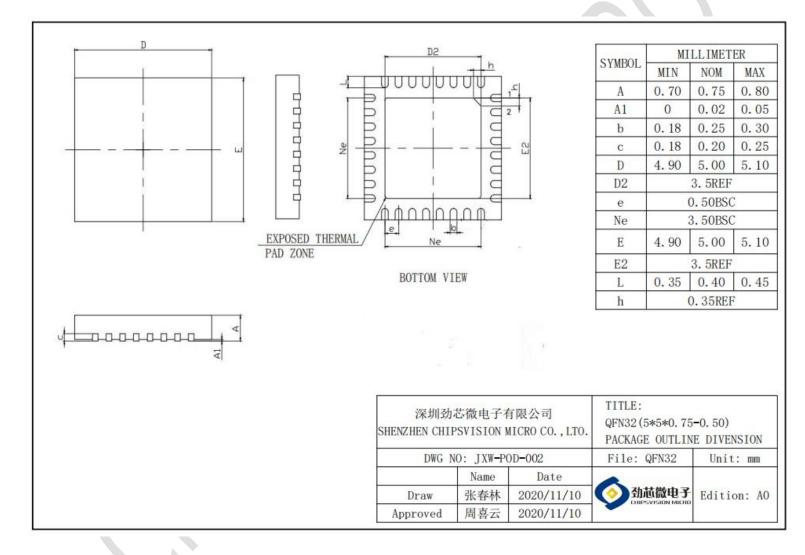
#### 4.11 Internal ADC





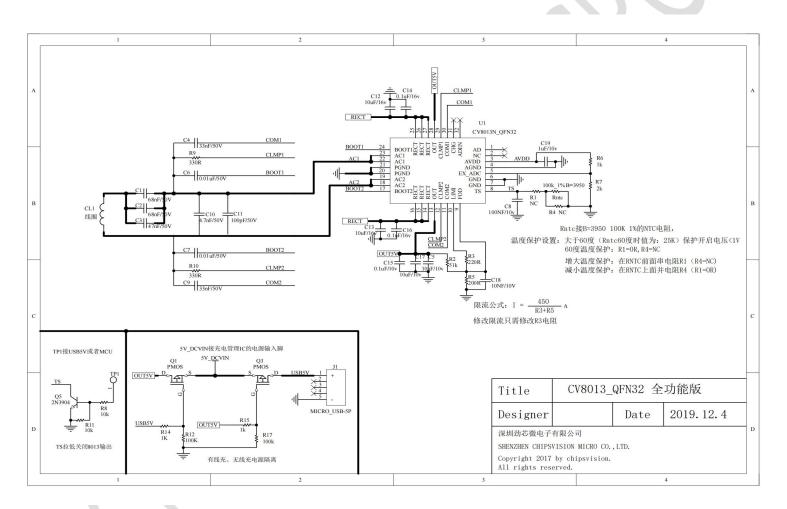
ADC input 8 sets internal voltage signals and sends to digital logic after digital-to-analog conversion.

RX control program make the corresponding detection and judgment.


| Input Signal         | Description                        | Range (V) |  |
|----------------------|------------------------------------|-----------|--|
| V <sub>TS</sub>      | External Temperature Sense Voltage | TBD       |  |
| V <sub>IC,TEMP</sub> | Internal Temperature Sense Voltage | TBD       |  |
| $ m V_{IN,FB}$       | V <sub>RECT</sub> Feedback Voltage | TBD       |  |
| $V_{\rm OUT,FB}$     | V <sub>OUT</sub> Feedback Voltage  | TBD       |  |
| $V_{FOD}$            | I <sub>OUT</sub> sample Voltage    | TBD       |  |
| $V_{\rm ILIM}$       | I <sub>LIM</sub> sample Voltage    | TBD       |  |
| ADCEX1               | External Analog Signal1            | TBD       |  |
| ADCEX2               | External Analog Signal2            | TBD       |  |

## 5. Package information

| Orderable Part<br>Number | Description and Package        | MSL<br>Rating | Shipping<br>Packagin<br>g | Ambient<br>Temperatur<br>e |
|--------------------------|--------------------------------|---------------|---------------------------|----------------------------|
| CV8013N                  | QFN32 (5mm x 5mm; 0.5mm pitch) | MSL3          | Tape<br>and reel          | 0°C to +85°C               |


Note: The package outline drawings is on page 13 of this document.







## **6. Application Circuit**

