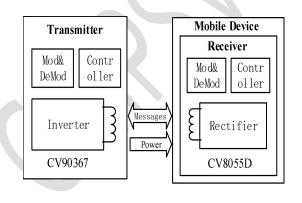


支持Oi2(MPP15W)无线充电发射SOC

概述


CV90367是一颗无线充电发射SoC芯片,支持PD2.0,PD3.0,QC2.0,QC3.0,AFC等多种适配器供电。支持Qi V1.2、Qi V1.3以及Qi2.0最新标准,支持单线圈/多线圈无线充电应用,支持Qi标准BPP 5W、苹果7.5W、PPDE三星10W、EPP 15W、MPP15W充电;支持客户私有协议,功率高达80W。

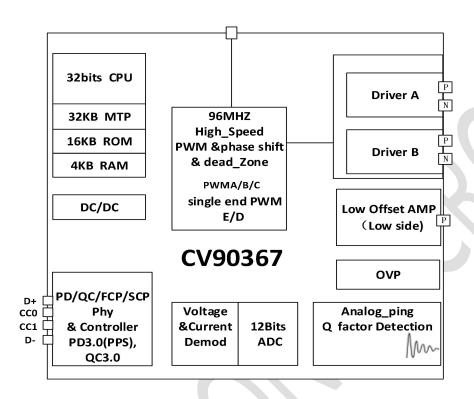
CV90367可设置欠压保护, 硬件过 压保护、过流保护、过温保护等功能, 支持Q值、FOD检测。

集成全桥驱动电路和电压&电流两路通讯解码功能模块,CV90367采用QFN48封装,可显著缩小PCB尺寸以及降低BOM成本。

应用

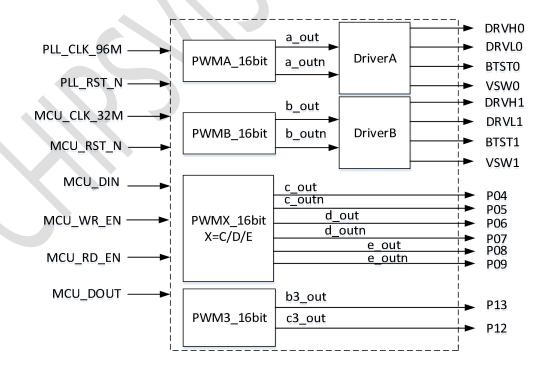
- ☆ 标准、高功率无线充电底座
- ☆ 车载无线充电设备
- ☆ 移动电源无线充电设备

特性


- 符合Qi V1.2、V1.3和Qi2.0 标准;
- 支持Qi标准BPP 5W、苹果7.5W、PPDE 三星10W、EPP 15W充电, MPP15W; 支 持客户私有协议, 功率高达80W;
- 内置32bits 高速CPU核;
- 内置32KB MTP, 16KB Mask ROM, 4KB RAM; 支持Type-C口升级FW;
- 支持 PD2. 0, PD3. 0 PPS, QC2. 0, QC3. 0, AFC和SCP等多种快充协议;
- 内置全桥MOS栅极驱动器;
- 内置 4 对互 补 16bits 高速 PWM@128MHz, 2路高速独立16bits PWM;
- 8路12bits高精度ADC;
- 内置电压、电流双路解码;
- 内置低零漂运放;
- 内置硬件过压保护;
- 支持Q值检测;
- 支持 FOD 异物检测功能;
- 11 个GPIO,支持I2C,UART通信。

产品信息

产品型号	封装	封装尺寸
CV90367	QFN48	6.00 * 6.00 * 0.75 mm



1 系统图

2 功能描述

2.1 全桥控制PWM

PWM采用128MHz频率设计,集成4路PWM输出组成,分别是A/B, C/D, E (本文使用i来代表A/B/C/D/E), 其中ABC互补输出,分别是i_OUT/i_OUTN, D, E单端输出。其中A/B路集成内部Driver A 和Driver B。

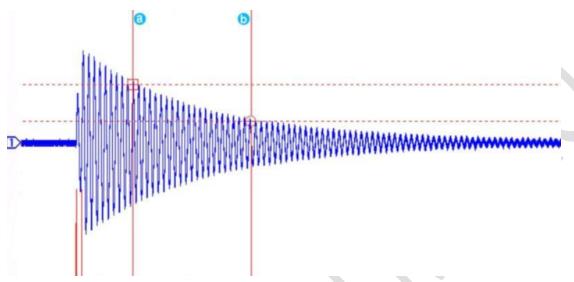
特性描述:

- 每一路A/B, C/D, E有一个16位向上自动装载计数器,16位可配置的周期/占空比以及8位死区寄存器;
- 允许在指定数目的计数器周期之后更新定时器寄存器重复计数:
- A/B, A/C, C/D, 可以分别组合成全桥, 三路全桥输出, 互不干扰, 每一组保持同步, 可以移相、调脉宽, 死区, 注A/C也可以组合成全桥;
 - 其中A/B组成全桥,两者共用A路的周期、占空比,死区使用各自的, B路以A路为基准,可以进行移相;
 - 其中A/C组成全桥,两者共用A路的周期、占空比,死区使用各自的, C路以A路为基准,可以进行移相,其中C路所使用的资源为B路,C路的 资源复用到D路上,可以独立工作;
 - 其中C/D组成全桥,两者共用C路的周期、占空比,死区使用各自的, D路以C路为基准,可以进行移相。
- A/B/C可以组成6路pwm互补输出,
 - 共用A路的A COUNT、周期:
 - 占空比、死区分别使用各自的;
 - C路的资源复用到D路;
- 刹车输入,支持硬件刹车以及软件刹车;
- 每一路i OUT/i OUTN各自有输出使能控制;
- 支持在线动态改变周期、占空比、死区以及360度移相寄存器等,确保周期的完整性;

PWM3_16BIT是由二路独立PWM输出组成,分别是B3_OUT/C3_OUT。

PWM3 16BIT有一个16位的A COUNT自动装载计数器组成。

特性描述:


- 基本的定时:
- 支持同时驱动2路PWM波形输出。

3

2.2 Q值检测

开启半桥驱动上管,使LC存储一定能量后开启半桥驱动下管,LC电路自振放电,形成一个高频的按照指数衰减的震荡,波形如下图所示:

检测Va、Vb峰值电压,并记录中间脉冲数N,用下面格式算出电路Q值。

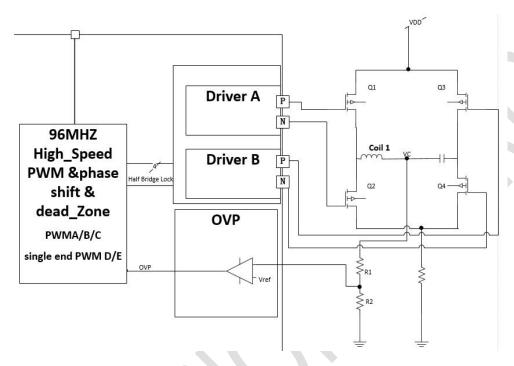
Q值公式: Q = $(2\pi f) \cdot L/R$ = $(Nb-Na) \cdot \pi/\ln(Va/Vb)$;

Va=1000mV,

Vb=200mV;

Ln(Va/Vb) = Ln5 = 1.609.

2. 3模拟ping

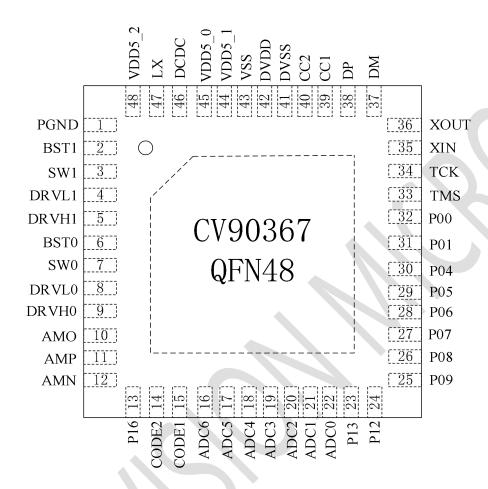

CV90367会向LC发送一个很短的脉冲,LC就会发生震荡。当有RX接近时,LC的震荡幅值就会改变,从而检测到有RX。模拟ping可以大幅降低TX待机的平均功耗。

2.4 硬件过压保护

CV90367内置硬件过压保护电路。使芯片具备快速触发保护机制,避免因异常(如异物)情况造成线圈谐振电压过高而对发射系统器件和接收设备受到高压冲击。 CV90367具有三重过压保护机制,第一层为软件保护, 当VC电压达到或接近软件预设保护电压时, 软件将停止增加发射能量; 当VC电压经过R1/R2分压值高过比较器N端电压(3.3V)时, 硬件保护机制触发, OVP信号将产生Ha1f Bridge Lock信号, 将全桥工作模式锁定为半桥(Q3关闭、Q4常开),此时, Tx 发射能量减半,同时产生OVP中断,如果此时TX接收RX通讯信号正常, VC电压不

再持续升高,软件可决定系统是否恢复正常充电;如果在半桥工作模式下VC电压持续升高,系统将触发第三重保护,关闭Q1、Q3,同时常开Q2、Q4 MOSFET进入放电状态。

硬件保护电路框图


2.5 异物检测功能

CV90367使用Q值和功率损耗两种方法进行检测异物,精准快速的做出判断和保护:

- Q值检测: 当TX检测的Q值比预设值低时,会快速的发出FOD报警;
- 功率损耗: CV90367内有高精度ADC, 当TX的功率比RX收到的功率大于 设定的值时, TX会做出精准的判断和FOD保护。

3 引脚定义

3.1 引脚说明

引脚序号	引脚名称	描述
1	PGND	GND
2	BST1	半桥高压驱动自举电源引脚1
3	SW1	半桥高压驱动SW连接引脚1
4	DRVL1	半桥低压驱动输出引脚1
5	DRVH1	半桥高压驱动输出引脚1
6	BST0	半桥高压驱动自举电源引脚0
7	SWO	半桥高压驱动SW连接引脚0
8	DRVL0	半桥低压驱动输出引脚0
9	DRVH0	半桥高压驱动输出引脚0

CV90367

引脚序号	引脚名称	描述
10	AMO	运放输出端
11	AMP	运放正极输入端
12	AMN	运放负极输入端
13	P16	通用数字IO ADC通道输入
14	CODE2	电流解码信号
15	CODE1	电压解码信号
16	ADC6	ADC 输入通道6
17	ADC5	ADC 输入通道5
18	ADC4	ADC 输入通道4
19	ADC3	ADC 输入通道3
20	ADC2	ADC 输入通道2
21	ADC1	ADC 输入通道1
22 ADCO ADC 输入通道(ADC 输入通道0
23	P13	通用数字10
24	P12	通用数字10
25	P09	通用数字10
26	P08	通用数字10
27	P07	通用数字10
28	P06	通用数字10
29	P05	通用数字10
30	P04	通用数字10
31	P01	通用数字10
32	P00	通用数字10
33	TMS	烧录接口数字引脚
34	TCK	烧录接口时钟引脚
35	XIN	外部晶振输入引脚
36	36 XOUT 外部晶振输出引脚	

引脚序号	引脚名称	描述
37	DM	连接USB口DM
38	DP	连接USB口DP
39	CC1	Type-C CC1 检测引脚
40	CC2	Type-C CC2 检测引脚
41	DVSS	GND
42	DVDD	1. 8V
43	VSS	GND
44	VDD5_1	外部供电电源,5V输入
45	VDD5_0	外部供电电源,5V输入
46	DCDC	芯片DCDC电源输入引脚
47	LX	DCDC输出引脚,连接6.8uH电感
48	VDD5_2	外部供电电源,5V输入

4 极限参数

参数	符号	最小值	最大值	单位
	SWO, SW1	-0.3	30	V
	BSTO, BST1	-0.3	36	V
	DRVLO, DRVL1	-0.3	6	V
电压范围	DRVHO, DRVH1	-0.3	36	V
	DVDD	-0.3	2	V
	PGND, DVSS, VSS	-0.3	0.3	V
	Other Pin	-0.3	6	V
结温范围	ТЈ		125	$^{\circ}\!\mathbb{C}$
存储温度范围	Tstg	-40	150	$^{\circ}$ C
热阻(结温到环境)	θ ЈА	47		°C/W
人体模型(HBM)	ESD	-2000	2000	V

5 推荐工作条件

参数	符号	最小值	典型值	最大值	单位
供电电压	DCDC	5. 5		25	V
输入电压范围	VDD5	0	5	5. 5	V
	CC1, CC2	0	5	5. 5	V
	AMPIN, AMPIP, AMP OT, DP, DM	0	5	5. 5	V
I/0电压范围	P00—P06, P10— P17	0	5	5. 5	V
	ADCO — ADC4, CODE1, CODE2	0	5	5. 5	V
	AVDD, nRST, XIN, XOUT, MDAT, MCLK	0	5	5. 5	V
待机功耗	Istandby		10		mA
工作温度范围	TA	-40		85	$^{\circ}$

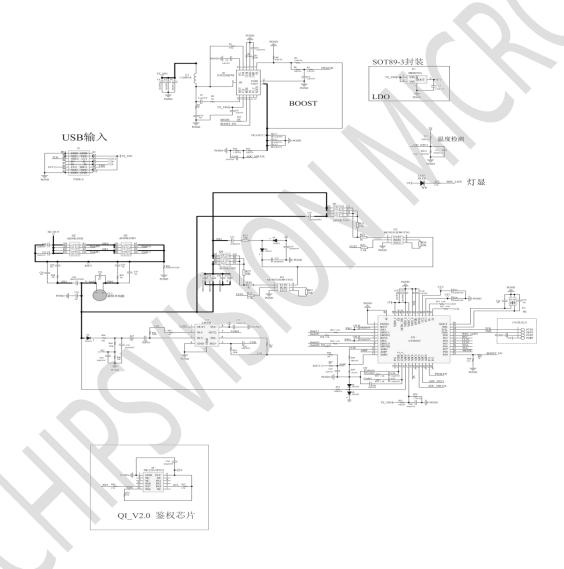
6 典型应用原理图

参考本文第11页。

7 产品信息

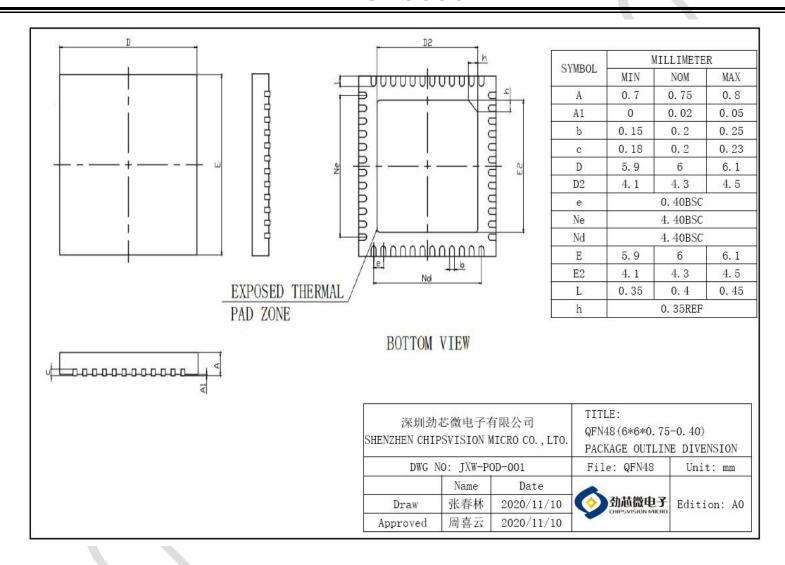
封装外形图为本文最后一页。

产品型号	封装形态	封装形态 防潮等级 6		最小包装数量	
CV90367	QFN48 (6.00 * 6.00 * 0.75 mm)	3级	卷带	3000 颗	


8 产品丝印说明

•CVSMicro CV90367 XXXXX

位置	产品丝印内容	代表涵义	是否变化
第一行	CVSMicro	公司logo	固定不变
第二行	CV90367	产品型号	固定不变
第三行	XXXXX	生产批次	变化



CV90367

CV90367

