

S222T-ISC

PLC 通信模块硬件规格书

S222T-ISC 模块规格书

办公室: 深圳市宝安区西乡街道共乐社区铁仔路 50 号凤凰智谷 B 座 14 层 工厂: 中国湖南省长沙市浏阳经开区利通路 8 号

TEL: +86-755-2955-8186 **Website:** www.fn-link.com

客户批准:	公司
	标题
	签名
	日期
	欧智诵

修订历史

版本	日期	修订内容	拟定	 核准
1.0	2022/05/16	初版	Tz	Qjp
2.0	2022/10/26	1. 更新公司 logo; 2. 增加 IO 口设计建议; 3. 更新测点说明,以免产生歧义; 4. 修正部分列印错误。	Lsp	Qjp
2.1	2022/11/07	1. 更正产品尺寸,主要是厚度; 2. 修正列印错误。	Lsp	Qjp

目录

1	概述	1
	1.1 介绍	1
	1.2 特性	1
	1.3 通用规格	3
	1.4 推荐工作条件	3
2	模组 PIN 脚定义	4
	2.1 模组外观	4
	2.2 引脚框图	4
	2.3 背部测试点	5
	2.4 引脚定义	5
3	模组封装尺寸	7
4	硬件设计说明	7
	4.1 输入电源要求	7
	4.2 10 设计建议	7
	4.3 PLC 模组对接整机设计	8
	4.4 CCO和 STA 典型组网示意图	9
5	关键物料清单	10
6	订购信息	10
7	标签信息	11
	7.1 模组标签	11
	7.2 包装标签	11
8	包装信息	12
	8.1 包装方式	12
	9.2 栽类// 自	12

1 概述

1.1 介绍

- S222T-ISC 是一款全集成的电力载波(PLC)通讯模块,超小型化尺寸、结构紧凑、 金手指封装,可广泛应用于智能路灯、智能家居、智慧停车、中央空调及泛在电力物 联网末端设备等各种 PLC 即时通讯应用场景。
- S222T-ISC 基于联芯通 VC6322TF 芯片,它集成了 32 位 ARM Cortex M4 MCU 和 32 位 DSP, 嵌入式 Flash 或 SDRAM 内存,基于 OFDM 调制 解调的 PLC PHY、高性价比的模拟前端(AFE)以及丰富的外围接口。
- S222T-ISC 提供 UART、PWM、GPIO、ADC 等丰富的外设接口,集成了内置线驱 Line-Driver。

1.2 特性

CPU 和存储性能

- 集成了 32 位 ARM Cortex M4 MCU
- 集成 2MB 片上 ROM
- 集成 2MB 片上 SDRAM

物理层特性

- 支持 700 kHz~12 MHz 帯宽
- 采用 OFDM 技术, 子载波支持 BPSK、QPSK、16QAM 调制
- 采用 Turbo 编码技术,编码速率支持 1/2 和 16/18
- 支持 FEC 和 CRC 功能,强大的去噪和纠错能力
- China SGCC Q/GDW 11612
- IEEE 1901.1 通信协议

组网特性

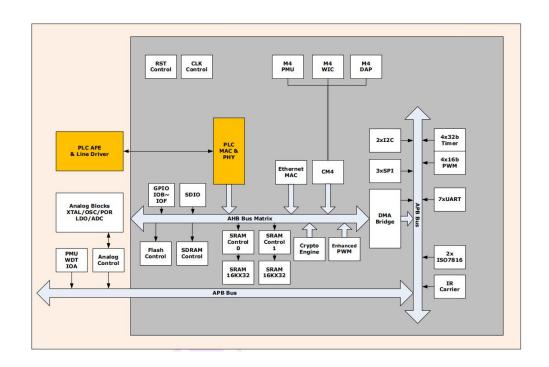
- 支持快速自组网, 1V1 组网时间小于 10s, 100 个节点典型组网时间约 3 分钟, 支持最大组网节点数 1015
- 支持动态路由,多路径寻址
- 支持 Mesh 组网, 无 CCO 节点通信

外围接口

● UART 接口、GPIO 接口、PWM 输出 、ADC 输入

通信指标

- 内有高增益 Line driver, 7V 供电, PLC 发射带内 PSD 可达-38dbm/Hz
- 接收最大抗衰减能力大于 100dB



功耗及其他

- 静态功耗≤0.4W
- 动态运行功耗≤3W
- 工作环境温度范围: -40℃~+85℃
- 存储温度范围: -40° C to 125° C
- 模组尺寸: LxWxH:20.0*14.2*3.9mm


模块框图

模块内部方框图:

模块典型应用框图:

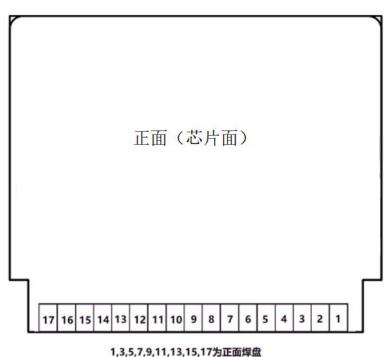
1.3 通用规格

模块名称	S222T-ISC	
主IC	VC6322TF	
主要接口	UART, PWM, GPIO, ADC	
·圣片子	电力线载波通信,OFDM 调制方式。	
通信方式	220V 交流电网、110V 交流电网和低压直流电网	
尺寸 LxWxH: 20.0*14.2*3.9mm (不计入金手指)		
PCB 厚度 1.2±0.1mm		

1.4 推荐工作条件

工作电压	3.3V ±100mV
工作温度	-40°C to +85°C
存储温度	-40°C to +125°C

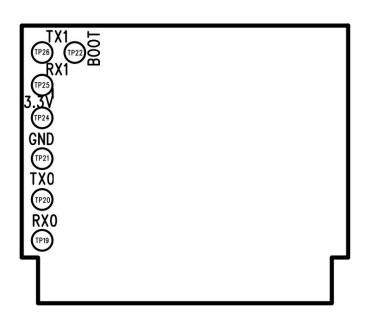
3


2 模组 PIN 脚定义

2.1 模组外观

2.2 引脚框图

1,3,5,7,9,11,13,15,17为正面焊盘 2,4,6,8,10,12,14,16为背面焊盘



2.3 背部测试点

背部测试点说明:

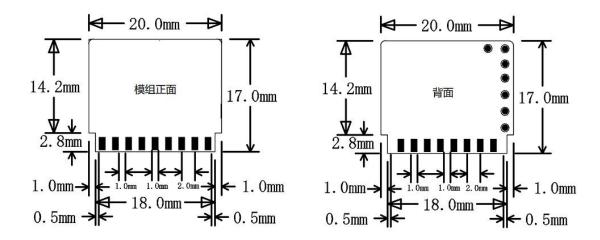
TP20 (TX0) 及 TP19 (RX0) 分别指 UART0 的发送和接收, TP26 (TX1) 及 TP25 (RX1) 分别指 UART1 的发送和接收, TP24 为 3.3V 电源, TP21 为参考地。TP22 为烧录模式控制信号。

UART0 用于模组的固件烧录,LOG 打印以及通过上位机进行 PLC 组网调测。UART1 测点仅供生产测试使用。

2.4 引脚定义

以下为模组引脚默认定义功能说明:

S222T-ISC PIN 定义				
Number	Number PIN Name 备注说明			
1	3.3Vin	模组 3.3V 电源输入管脚		
2	GND	系统 GND		
2	3 10C9	默认为 GPIOC9,通用输入输出 IO		
3		应用时串接 33 欧姆 damping 电阻		
4		模组默认为 UART1_RX,外部业务通信串口接收		
	UART1_RXD	复用信号 1: GPIOA13,通用输入输出 IO		



		默认为 PWM2 输出
5	PWM2	可复用为 GPIOB13,通用输入输出 IO
		应用时串接 33 欧姆 damping 电阻
	LIADT1 TVD	模组默认为 UART1_TX,外部业务通信串口发送
6	UART1_TXD	复用信号 1: GPIOB3,通用输入输出 IO
7	IOA5	默认为 GPIOA5,通用输入输出 IO,应用时串接 33 欧姆 damping 电阻
	PWM1	默认为 PWM1 信号输出
8		复用信号 1: GPIOB6,通用输入输出 IO
8		复用信号 2: UART4_TX
		应用时串接 33 欧姆 damping 电阻
	D14/4.40	默认为 PWM0 信号输出
9		复用信号 1: GPIOBO,通用输入输出 IO
	PWM0	复用信号 2: UART4_RX
		应用时串接 33 欧姆 damping 电阻

10	NC	NC 引脚,悬空	
11	ADC2	ADC(Analog to Digital Converter)输入(采样电压不能超过 1.2V!),应	
		用时串接 33 欧姆 damping 电阻	
12	IOA6	默认为 GPIOA6,通用输入输出 IO,应用时串接 33 欧姆 damping 电阻	
12	ADC1	ADC(Analog to Digital Converter)输入(采样电压不能超过 1.2V!),应	
13		用时串接 33 欧姆 damping 电阻	
14	GND	系统 GND	
15	PLC-	PLC- 通信口,需设计防护和耦合电路隔离 AC 电源	
16	GND	系统 GND	
17	PLC+	PLC+ 通信口,需设计防护和耦合电路隔离 AC 电源	

3 模组封装尺寸

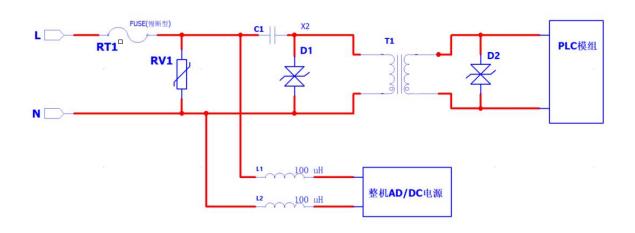
PCB 厚度为 1.2±0.1mm, 金手指开槽宽度要大于 1.3mm。

4 硬件设计说明

4.1 输入电源要求

	Min.	Тур.	Max.	Unit
3.3Vin	3. 0	3. 3	3. 6	V
ADC1/ADC2	/	/	1.2	V

- ADC 输入, 电压不能超过 1.2V。
- 主板靠近模组 3.3V 输入端,至少放置一颗 10uF 对地储能电容及一颗 0.1uF 去耦电容,降低电源纹波,纹波峰峰值 100mVpp 以内。
- 模组与主板其他电路共用 3.3V 时,使用 600R/100MHz、耐流 1A 及以上的磁珠隔离。
- 模组 3.3V 供电保障 1A 及以上电流需求。
- 良好的地回流设计。


4.2 IO 设计建议

对 GPIO, PWM 及 ADC 接口,应用时请串接 33 欧姆 damping 电阻。

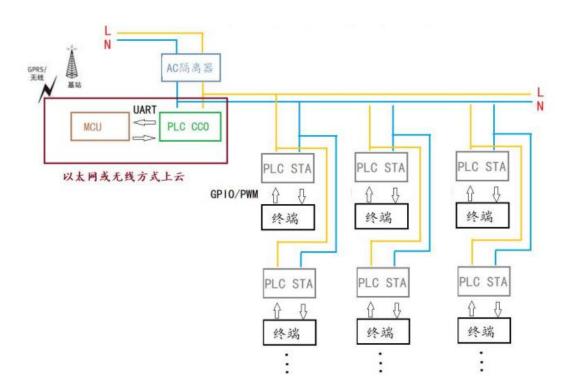
4.3 PLC 模组对接整机设计

*整机产品设计端,L,N线上的安规防护设计,PLC信号耦合设计,强烈建议参考下面的线路图和物料选型,

说明:图中 T1 变压器为 4:3 变压器;C1 安规电容推荐选择 100nF 安规电容;初次级双向 TVS 或 TSS 保护管(D1/D2)为必选(要求结电容越小越好);L/N 线上 PLC 信号接入点需要在压敏电阻(RV1)后面,压敏电阻结电容建议小于 600pF。PLC 信号后面需串接两个差模电感(L1/L2)与整机电源做隔离,差模电感感值推荐大于 100uH。如下为部分上述物料的推荐型号。

物料名称	供应商	供应商料号	物料描述	位号
TSS 管	捷捷微	CP0080ABN	SMA, CP0080ABN TSS 保护管	D1, D2
变压器	立凯	II T43-250	耦合变压器 5000v -40~85℃ PIN1-2=25uH LT43-250(立凯)	Т1
安规电容	深华星	WHM00006	插件, X2-104K-额定电压 310VAC,100nF	C1
压敏电阻	EPCOS	B72220-S511-K101	AC510V, DC670V SIOV-S20K510	RV1
差模电感	岑科	CKPK1012-100uH/K-U15	差模电感, 100uH, ±10%, −25℃~+85℃	L1, L2

其他设计注意事项:


设计建议要点:

● 电源纹波对 PLC 性能有影响, 3.3V 纹波峰峰值需在 100mVpp 以内。

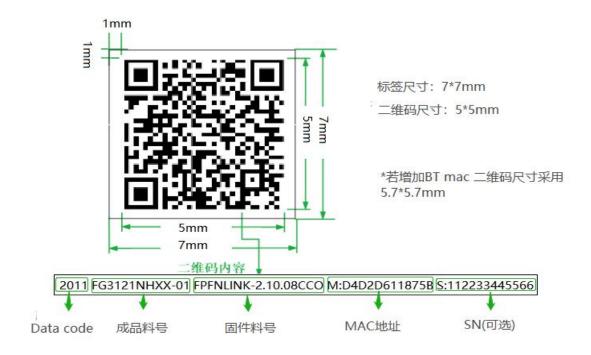
- 与窄带几百 KHz 的通信信号相比,宽带载波通信频带更宽、频率更高,要求在通信通道零火线间 不能有大电容器件存在,减少对通信信号的衰减。图中,在差模电感前面部分禁止有超过 600pF 电容器件存在(如是多个器件并联,需考虑并联结电容容值总和)。
- 如果整机需要通过 X 电容降低 L-N 上的差分噪声,建议将 X 电容放置 100uH 电感之后,这样除了能够降低噪声,还能增大载波通道的阻抗,减少对 PLC 信号的衰减,同时建议容值是 2.2nF (容值越小越好)。如果需要使用 Y 电容,也请放置在电感之后 (Y 电容容值同样越小越好,但 Y 电容对 PLC 信号的影响小于 X 电容)。
- 集中器 DCDC 电源开关频率建议选择低于 1MHz,抑制带外噪声,高频带外影响限制在 10dB 以内,降低整机 EMI 超标风险,同时减少对载波通信的影响。
- 根据整机的防护等级要求,建议选用合适的压敏电阻以及保险丝搭配使用,但压敏电阻的结电容 建议越小越好(L-N 并联电容总和不超过 600pF)。
- 整机保护压敏电阻, 其保护能力要涵盖 PLC 载波电路。布局布线要做到外部电源线路先经过压敏 电阻, 再给 PLC 载波电路和其他电路供电。
- PCB layout 时,注意 AC220 强电保持与 PLC 模组弱电端的安规间隙要求。
- PLC 载波电路的 RX 通道,特别是滤波器、耦合线圈部分也容易吸收空间电磁辐射干扰,恶化单板 底噪,降低 PLC 接收性能。所以,在器件布局中,干扰源电路,如 DCDC 要求远离敏感电路。

4.4 CCO和 STA典型组网示意图

5 关键物料清单

序号	物料名称	物料描述	厂商
1	IC	VC6322TF	联芯通
2	晶体	2016,25MHz,CL10pf 10ppm	东晶, 泰晶, 鸿星, 晶威特
3	PCB	黑色,四层,FR4,化金	翔宇, 广东科翔, 顺络, 信利

6 订购信息


Part NO.	Description
FGS222TISC-00	S222T-ISC 模组, VC6322TF, 20.0*14.2*3.9mm, 金手指版本, 17PIN 成品

7 标签信息

7.1 模组标签

出货模组上,每个模组都贴有标签二维码,标签二维码信息内容如下:

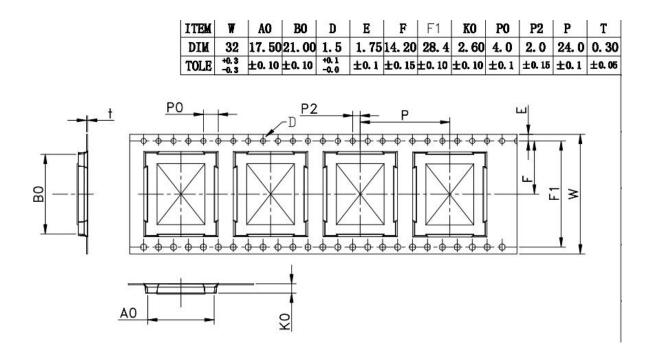
7.2 包装标签

出货模组,在内包装(如静电袋)以及外箱纸盒上,贴有标签的信息内容



8 包装信息

8.1 包装方式


出货采用载带包装,一卷 800pcs

(注: 结合实际订单情况,会根据订单调整数量信息)

8.2 载带信息

