目 录

第一章	温度传感器应用电路 ····································	1
1.1	温度传感器数据采集应用电路	1
1.2	温度传感器 A/D 变换应用电路 ····································	7
1.3	温度传感器频率变换应用电路 ·······	. 12
1.4	温度传感器变送器应用电路 ·······	19
1.5	温度传感器信号调节应用电路 ······	28
1.6	— ***	
1.7		
1.8	温度传感器模块应用电路 ·······	
1.9	温度传感器其他应用电路 ·······	·· 7 3
第二章	传感器放大器应用电路,	78
2.1	传感器运算放大器应用电路 ·······	78
2.2	传感器仪器放大器应用电路 ·······	107
2.3	传感器隔离放大器应用电路	131
2.4	光传感器放大器应用电路	148
2.5	传感器特殊放大器应用电路	168
第三章	传感器通用电路 ·······	186
3.1	传感器 A/D 变换器应用电路 ····································	
3.2	传感器变送器应用电路	
3.3	传感器信号调节应用电路	
3.4	传感器接口应用电路	
3.5	传感器其他应用电路	251
第四章	光传感器基本应用电路 ······	273
4.1	EG&G 光电变换应用电路	
4.2	西门子(SIEMENS)光电变换应用电路	
4.3	德州仪器(TEXAS INSTRUMENTS)光电变换应用电路 ······	330
4.4	红外接收发射电路	396
第五章	其他传感器应用电路 ······	418
5.1	加速度传感器应用电路	418
5.2	线性变换位移传感器(LVDT)和倾角传感器应用电路	431

5.3	接近开关传感器应用电路	447
5.4	液体检测传感器应用电路 ····································	456
5.5	湿度传感器应用电路	459
5.6	烟雾检测传感器应用电路	460
5.7	气体传感器应用电路	479
5.8	α、β、γ粒子检测传感器应用电路	494
5.9	压力传感器应用电路	502
5.10	化学传感器应用电路 ······	515

第一章 温度传感器应用电路

1.1 温度传感器数据采集应用电路

热电偶数据采集电路

用途:用于温度数据采集、控制和计量等场合。

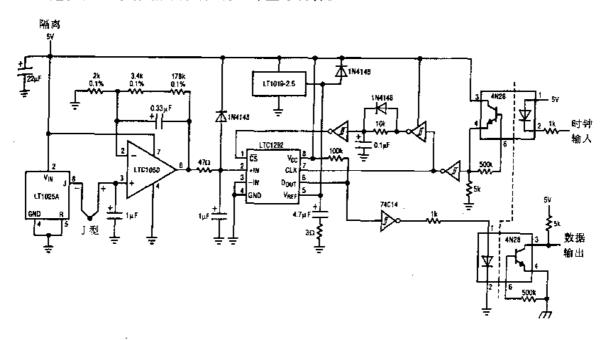


图1-1 热电偶光隔离温度监测器

电路中的 J 型热偶工作温度范围为 0℃~500℃。光隔离电路用于温度控制仪表。 LT1025A 为小功率热偶冷端补偿器, LTC1050 为精密零漂具有内电容的运算放大器, LTC1292 为单片 12 位数据采集系统, LT1019~2.5 为 2.5V 精密基准电压源。

注:LTC 系列产品和 LT 系列产品见 LINEAR 公司产品手册说明。

光隔离温度数采电路

用途:用于温度遥测和监视电路。

传感器放大输出要求信号足够大,能进行数字化处理。图中 J 型热电偶灵敏度为 $52\mu\text{A}/\Omega$,LTC1050 斩波运放产生误差 < 0.1 Ω ,用 LT1025A 进行冷端补偿。在光隔离接口中,产生两个信号,两线接至 LTC1292。高模拟信号在 CLKIN 端。用 0.1 μ F 电容去耦,使CS高。复

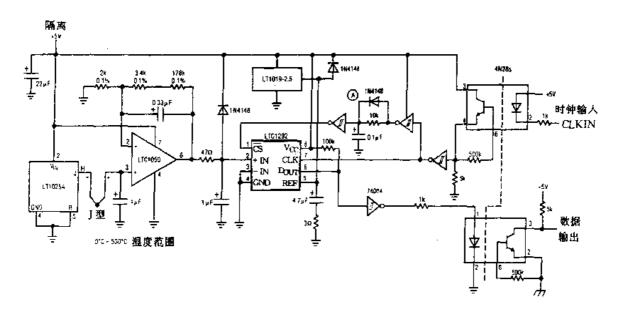
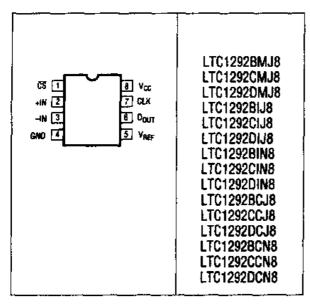



图 1-2 光隔离温度传感器监视电路

位 A/D 用于下一个变换。当 CLKIN 开始触发时, CS变低, 并持续到下一个 CLKIN 高时。

LTC1292 是单片 12 位数据采集系统。内置采样和保持电路,单电源 5V 工作,直接 3 线接 口适用于大部分 MPU 串行口和全部 MPU 并行口,通过信息最大速率为 60kHz,分辨率为 12 位,转换时间在工作温度范围内最大为 12µS,低电源电流仅 6.0mA。

管脚说明:

- $1.\overline{\text{CS}}$ 片选 2.+1N 正输入,
- 3. 1N 负输入, 4. GND 地,
- 5. V_{REF}基准源; 6. D_{OUT}输出,
- 7.CLK 时钟, 8.V_{cc}电源

图 1-3 管脚图(顶视)

LTC1292 最大绝对额定值

电源电压(V_{CC})

12V

电压

模拟和基准

输入

 $-0.3V \sim V_{CC} + 0.3V$

数字输入

 $-0.3 \sim 12V$

数字输出

 $-0.3V \sim V_{CC} + 0.3V$

功耗

500mW

. 2 .

工作温度

LTC1292BC, LTC1292CC,

LTC1292DC $0 \sim 70^{\circ}$ C

LTC1292B1, LTC1292C1,

LTC1292D1 - 40 ~ 85 ℃

LTC1292BM, LTC1292CM,

LTC1292DM $-55 \sim 125$ °C

存储温度 - 65 ~ 150℃

引线焊接温度(10s) 300℃

LTC1292 变换器和多路开关参数

($V_{\rm OC} = 5 \, \mathrm{V}$, $V_{\rm REF+} = 5 \, \mathrm{V}$, $f_{\rm CLK} = 1.0 \, \mathrm{MHz}$)

ća st.	参数		L	TC1292	В	I	TC1292	C	I	TC1292	D
参数		单位	最小	典型	最大	最小	典型	最大	最小	典型	最大
偏置误差		LSB			± 3.0			±3.0			±3.0
线性误差		LSB			±0.5			±0.5			± 0.75
增益误差		LSB			±0.5			±1.0			±4.0
最小分辨率,保证无丢失码		位			12			12			12
模拟和 REF 输入范围		V			(V	-)-0.	05 V ~ V	$C_{CC} + 0.0$	05 V		
通道接通漏电流	接通 5V	μA			±1			±Ι			± 1
	接通 QV	μA			± l			±1			±1
通道接通漏电流	接通 5V	μA			± l			± 1			± 1
	接通 0V	μA			±1			± 1			± 1

LTC1292 交流参数

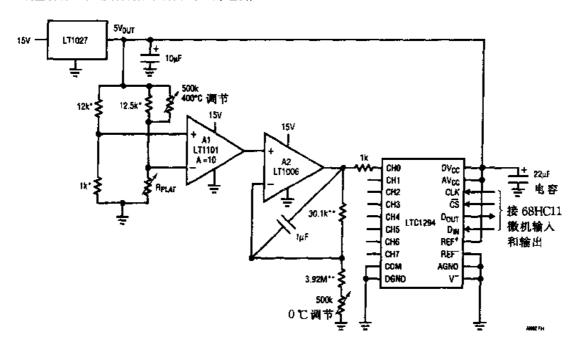
 $(V_{CC} = 5V, V_{REF+} = 5V, CLK = 1.0MHz)$

	2. 10.	条件	单位	LTC1292B/LTC1292C/LTC1292D			
符号	参数			最小	典型	最大	
fcix	时钟频率	$V_{\rm CC} = 5 \text{V}$	MHz	0.1		1.0	
t SMPL	模拟输入采样时间		时钟周期		1.5		
t _{CONV}	转换时间		时钟周期		12		

LTC1292 交流参数

 $(V_{CC} = 5V, V_{REF+} = 5V, f_{CLK} = 1.0MHz)$

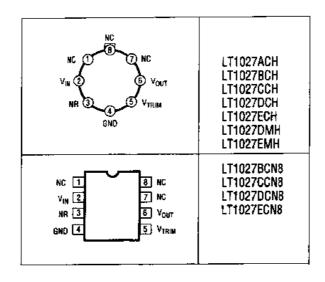
Salve 1.3	49	单 位	LTC1292B/LTC1292C/LTC1292D			
符号	参数		单位	最小	獎 型	最大
	At Ell House And		周期	14CLK		
$t_{\rm CYC}$	总周期时间)FI 793	2.5μS		
$t_{ m dDO}$	延迟时间 CLK ↓到 Dour数据有效		ns		160	300
t _{dis}	延迟时间CS↑到 Dour高		ns		80	150
t _{on}	延迟时间 CLK ↓ 到 Dour使能		ns		80	200
$t_{ m hDO}$	CLK↓以后时间输出数据继续有效		ns		130	
t _f	Dour下降时间		ns		65	130
t,	Dour上升时间	- ·	ns		25	50
t WHCLK	CLK 高时间	$V_{\rm OC} = 5 \text{ V}$	ns	300		
$t_{ m WLCLK}$	CLK低时间	$V_{\rm CC} = 5 \mathrm{V}$	ns	400		
t _{su} CS	建立时间,CLK↑之后CS↓	$V_{\rm CC} = 5 \text{V}$	ns	50		
$\iota_{\mathrm{WH}}\overline{\mathrm{CS}}$	在数据转换周期之间CS高时间	$V_{\rm CC} = 5 \text{ V}$	μs	2.5		
t _{WL} CS	数据转换时,CS低时间	$V_{\rm CC} = 5 \text{ V}$	时钟周期	14		
	输入电容	模拟输人通	рF		100	
C_{IN}		模拟输入断	рF		5	
		数字输入	рF		5	


LTC1292 数字和直流参数

 $(V_{\rm CC} = 5V, V_{\rm REF+} = 5V, f_{\rm CLK} = 1.0 {\rm MHz})$

符号	1	参	数	单位	LTC12926	I/LTC1292C/	LTC12921
শিস		∌	欽	平0%	最小	典型	最大
VIH	高电平输入电压		$V_{\infty} \approx 5.25 \text{V}$	v	2.0		
V _{EL}	低电平输入电压		$V_{\rm CC} = 4.75 \text{V}$	v			0.8
$I_{ m IH}$	高电平输入电流		$V_{\rm IN} = V_{\rm CC}$	μΑ	<u>.</u>		2,5
$I_{\rm IL}$	低电平输入电流		$V_{\rm DI} = 0 { m V}$	μA			-2.5
17	高电平输出电压		$V_{\rm OC} = 4.75 \text{ V}$, $Z_0 = 10 \mu \text{A}$	V	Ī	4.7	-
V_{OH}			$I_0 = 360 \mu A$	V	2.4	4.0	
VOL	低电平输出电压		$V_{\rm OC} = 4.75 \mathrm{V}$, $I_{\rm O} = 1.6 \mathrm{mA}$	v			0.4
,	高乙输出漏电流		V _{our} = V _{cc} CS高电平	μλ	į.		3
I _{OZ}			V _{OUT} = 0V ¯CS商电平 ┆	μ A			-3
ISOURCE	输出源电流		$V_{\text{OUT}} = 0\text{V}$	m.4		- 20	
I _{SINK}	輸出汽电流		$V_{\text{OUT}} = V_{\text{OC}}$	mA		20	
I_{∞}	正电源电流		(S商电平	mA		6.0	12
I _{RED}	基准电流		CS 高电平	μΑ	T	10	50

温度数据采集系统


用途:用于温度数据采集和控制电路

注:* 精度 0.1%, * * 1%薄膜电阻, R_{Ma}铂电阻, 在 0℃时为 1kΩ。

图 1-4 数字线性化铂电阻 RTD 信号调节器

电路中的 LT1027 为精密 5V 基准;非常低的温漂为 zppm/℃;输出源 15mA,沉 10mA;极好的瞬变响应,适用于 A/D 变换器基准输入,有噪声抑制脚;极好的长期稳定性;(0.1 Hz~10 Hz)范围内的噪声小于 1ppm。

管脚说明:

- 1.NC 不连 2.V_{IN}输入
- 3.NR 信噪 4.GND 地
- 5. V_{TRIM}调节 6. V_{OUT}输出
- 7.NC 不连 8.NC 不连

图 1-5 管脚图(顶视)

最大绝对额定值(LT1027)

电源电压($V_{\rm IN}$) 40V

输入一输出电压差 35V

输入对地电压 7V

VTRIM对地电压

正 5V

负 −0.3V

输出短路持续时间

 $V_{\rm IN} > 20{
m V}$ 10s

V_{IN}≤20V 无限

工作温度

LT1027M

- 55 ~ 125℃

LT1027C

0~70℃

存储温度

- 65 ~ 150℃

引线焊接温度(10s)

300℃

LT1027 电参数 $(T_A = 25\%, V_{IN} = 10V, I_{LOAD} = 0)$

符号	参数	测试条件	单位	最小	典型	最大
Vour	输出电压	LT1027A LT1027B, C, D	v v	4.9990 4.9975	5.000	
TCV _{OUT}	输出电压温度系数	LT1027E LT1027A.B LT1027C LT1027D LT1027E	V ppm/°C ppm/°C ppm/°C	4.9950	1 2 2 3	5.0050 2 3 5 7.5
_		8V≤V _{IN} ≤10V	ppm/V ppm/V		6	12 25
	电压调整率 	$10V \le V_{IN} \le 40V$	ppm/V ppm/V		3	6

符号	参数	测试条件	单位	最小	典型	最大
		电流源	ppm/mA		3	6
	Are the that the As	$0 \le I_{\text{OUT}} \le 15 \text{mA}$	ppm/mA			8
	负载调整率	电流沉	ppm/mA	•	30	50
		$0 \ge I_{\text{OUT}} \ge -10 \text{mA}$	ppm/mA) 		100
_	L. McC. cl., Who		mA ·		1.8	2.4
	电源电流		mA			2.8
e _n	V _{TRIM} 调节范围		mV	± 30	± 50	
	各山県おもば	0.1Hz≤f≤10Hz	μVp-p	1	3	
	│ 输出噪声电压 │	$10Hz \le f \le 1kHz$	μV_{RMS}		2.0	4.0
	温度迟滞	∆T = 25°C	ppm		10	
	长期稳定性		ppm/月		20	

LTI 101 为精密微功耗单电源仪器放大器

LT1006 为精密单电源运放

LTC1294 单片数据采集系统。在电路中,直流电源端 DV_{CC} 、交流电源端 AV_{CC} 和 REF⁺ 连在一起,REF - 模拟地 AGND 和 V - 连在一起;公共端 COM 和数字地 DGND 连在一起;模拟输入端 CHO 接信号。

热敏电阻温度数据采集电路

用途:用于温度测量

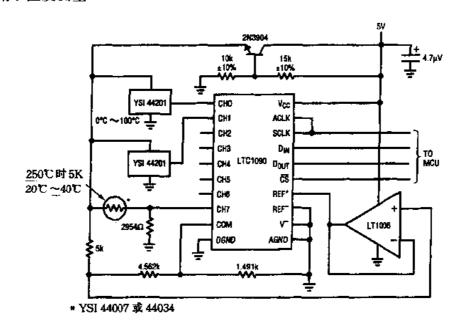


图 1-6 热敏电阻用于温度测量

电路为热敏电阻温度测量系统,覆盖温度范围为 20℃~40℃和 0℃~100℃,精度为

0.25℃ ₀

LTC1090 为单片 10 位数据采集系统,LT1006 为精密单电源运放。

1.2 温度传感器 A/D 变换应用电路

热电偶 A/D 变换电路

用途:用于温度控制和检测

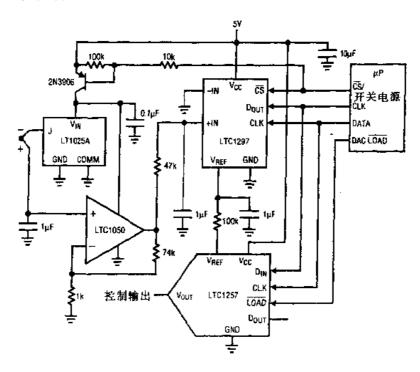


图 1-7 热电偶温度控制电路

电路为 5V 单电源 12 位冷端补偿式具有关断功能的温度控制系统电路。用 J 型热电偶进行温度监测。LT1025A 为热电偶冷端补偿电路,LTC1050 为斩波运算放大器,起放大信号作用。47kΩ、1μF 构成的 RC 网络在信号进入 A/D 变换器前起滤除噪声作用。LT1297 为 A/D 变换器,LTC1257 为基准电源,LTC1257 的输出用于系统监视时的温度控制信号。

热电偶 10 位串行 I/O 数据采集系统

用途:用于温度检测。

电路是加热炉排气温度监测电路,覆盖温度范围为 $0\% \sim 500\%$ 。LT1025A 是热电偶冷端补偿器,LTC1052 是运放,LT1019A -5 是精密基准源,LTC1091A 是单通道 10 位串行 1/0 数据采集系统。

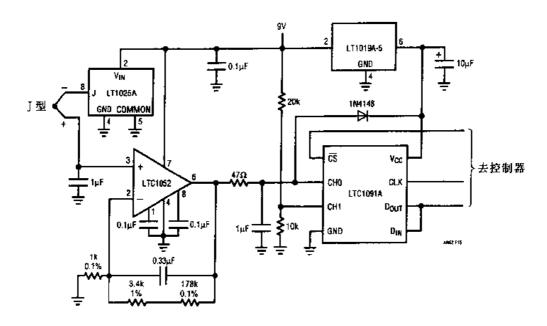


图 1-8 热电偶用于加热炉排气温度监测电路

硅温度 A/D 变换器电路

用途:用于温度测量和控制。

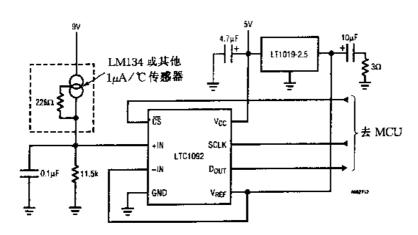


图 1-9 硅温度传感器模数变换电路

电路中的硅传感器为电流输出温度计,LTC1092 为 10 位 A/D 变换器在 – 55% ~ 125%范围,分辨率为 0.2%。LT1019 – 2.5 为精密基准电源。

生产厂家:LINEAR TECHNOLOGY

KTY81-210 温度传感器用于 A/D 变换器温度补偿电路

用涂:用于带有 A/D 变换器的微控制器电路。

电路中的 KTY81 – 210 温度传感器与线性电阻 R_5 串联,在 $0 \sim 100$ $^{\circ}$ 温度范围内及 1.127 V 至 1.886 V 之间,分压器提供与温度有关的电压 V_T ,这个电压做为 A/D 变换器的基准, V_T 的线性斜率为 S=7.59 mV/K。

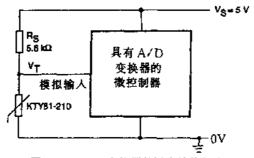


图 1-10 A/D 变换器的温度补偿电路

温度与传感器电阻的关系

(°C)	(Ω)	(T)	(Ω)
- 40	355	130	1197
- 30	386	140	1268
- 20	419	150	1340
- 10	455	160	1415
0	493	170	1493
10	533	180	1572
20	576	190	1654
25	598	200	1739
30	621	210	1825
40	668	220	1914
50	718	230	2006
60	769	240	2099
70	824	250	2195
80	880	260	2293
90	939	270	2392
100	1000	280	2490
110	1063	290	2584
120	1129	300	2668

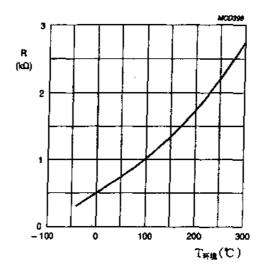


图 1-11 传感器电阻与温度的关系

生产厂家: Philips Semiconductors

AD22103 型温度传感器电路

用途:用于电源温度监测、系统温度补偿、电路板温度检测、计算机、小型仪器和工业过程

. 9 .

控制等领域。

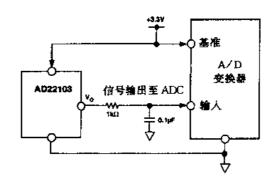


图 1-12 AD22103 应用电路

AD22103 具有信号调节电压输出温度传感器

AD22103 是具有信号调节的单片温度传感器。工作温度范围为 $0 \sim 100 \, ^{\circ}$ 。信号调节不需要调整缓冲和线性化电路,大大地简化了设计。输出电压与温度和电源电压的乘积成比例(比率测量)。输出信号摆幅从 0.25V(对应 0° C)至 3.05V(对应 $100 \, ^{\circ}$ C),采用 3.3V 单电源。

特点:温度系数 28mV/℃;100℃温度量程;精度优于 2% FS;线性度优于 0.5% FS;输出与温度 xVs 成比例;高电平低阻抗输出;有反向电源保护。

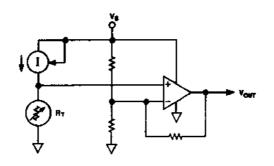


图 1-13 AD22103 简化电路方块图

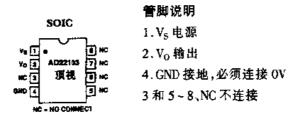


图 1-14 管脚图

最大绝对额定值

引线焊接温度

电源电压 10V 反向连续电源电压 -10V 工作温度范围 0~100℃ 存储温度范围 -65~160℃ 短路输出至 V_S 或地 无限

300℃

参 数	34 £-		AD22103K		
多 数	単位	最小	典型	最大	
转移功能	v	$V_{\text{OUT}} = (V_{\text{S}}/$	$(3.3V) \times [0.25V + (28\pi)]$	$V/C) \times T_A$	
温度系数	mV/°C		$(V_{\rm S}/3.3V) \times 28$		
总误差					
固有误差	[
$T_{A} = +25$ °C	9℃		± 0.5	±2.0	
全温度范围误差					
$T_{\rm A} = { m T_{MIN}} \sim { m T_{MAX}}$	\ \mathcal{v}_{\mathcal{C}}		± 0.75	± 2.5	
非线性	į				
$T_{\rm A} = T_{\rm MIN} \sim T_{\rm MAX}$	%FS1		0.1	0.5	
输出特性					
标称输出电压					
$Y_S = 3.3V$, $T_A = 0$ °C	\ v \		0.25		
$V_{\rm S} = 3.3 {\rm V}$, $T_{\rm A} = +25 {\rm ^{\circ}C}$	v		0.95		
$V_{\rm S} = 3.3 {\rm V}, T_{\rm A} = +100 {\rm C}$	v		3.05		
电源					
工作电压	v j	+2.7	+3.3	+3.6	
静态电流	ρ A	350	500	600	
温度范围					
确保温度范围	°C	0		+ 100	
工作温度范围	₹ %	.0		+ 100	
大學 要找			TO - 92		
			SOIC		

AD22100 型具有信号调节电压输出温度传感器电路

用途:用于系统温度补偿、电路板温度检测、电子恒温、工业过程控制、仪器和汽车工业等领域。

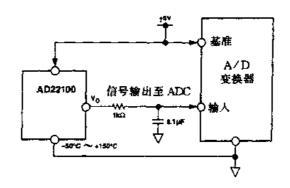


图 1-15 典型应用电路

AD22100 型具有信号调节电压输出温度传感器

AD22100 是有信号调节的单片温度传感器,工作温度范围为 – 50 ~ 150℃,信号调节不需要调节电路、缓冲器和线性化电路,简化了系统设计。输出电压与温度和电源电压的乘积(比率测量)成比例。输出电压摆幅为 0.25V(对应 - 50℃)和 4.75V(对应 150℃),用 5V 单电源工作。

特点:200℃温度量程;精度优于±2%FS;线性度优于±1%FS;温度系数为22.5mV/℃;单电源工作;反相电压保护;高电平低阻抗输出。

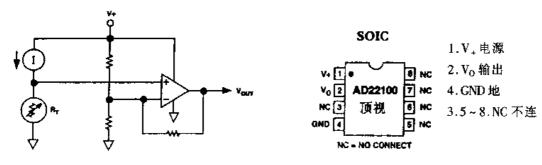
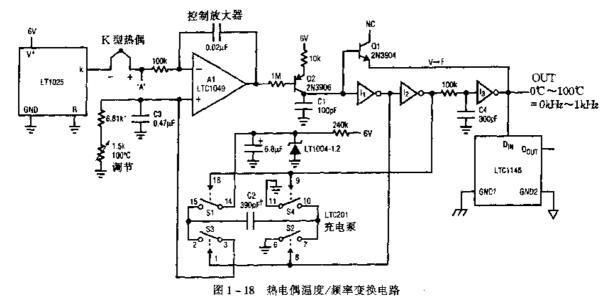


图 1-16 AD22100 型簡化电路图 技术参数(T_A = 25°C, V_I = 4V~6V)

图 1-17 管脚图

参 数	单位	1	AD22100	K		AD2210	0A		AD2210	DS
转移功能	V		$V_{\text{OUT}} = (V + /5V) \times [1.375V + (22.5mV)]$						(T _A]	
温度系数	mV∕°C		$(V + /5V) \times 22.5$							
总误差										
固有误差										
$T_{\rm A}$ = +25°C	₽C	± 0.5	5	±2.0	± 1.	0	± 2.0	±1	.0	± 2.0
全温度范围误差						_				
$T_{\Lambda} = T_{\text{MIN}}$	°C	± 0.7	5	±2.0	± 2.	0	± 3.7	± 3	.0	±4.0
$T_{\rm A} = T_{\rm MAX}$. €C	± 0.7	5	± 2.0	± 2.	0	±3.0	± 3	.0	±4.0
非线性										
$T_{\rm A} = {\rm T_{MIN}} \sim {\rm T_{MAX}}$	% FS ¹	ļ		0.5			0.5			1.0
加加						. =			-	
标称输出电压										
$V_+ = 5.0 \text{V}, T_A = 0^{\circ}\text{C}$	v		1.375							
$V_{+} = 5.0 \text{V}, T_{A} = +100 \text{°C}$	v		3.625							
$V_{+} = 5.0 \text{V}, T_{A} = -40 \text{°C}$	v				1	0.475				
$V_{+} = 5.0 \text{V}, T_{A} = +85 \text{°C}$	v					3.288				
$V_{+} = 5.0 \text{V}, T_{A} = -50 \text{°C}$	v	ł							0.250	
$V_{+} = 5.0 \text{V}, T_{A} = +150 \text{C}$	l v				ļ			 	4.750	
电源										
工作电压	V ;	+4.0	+5.0	+6.0	+4.0	+ 5.0	+6.0	+4.0	+5.0	+6.0
静态电流	μΑ		500	650		500	650	ļ	500	650
温度苞图									•	
确保温度范围	૧ ૧૦	0		+ 100	- 40		+ 85	- 50		+ 150
工作温度范围	℃ .	- 50		+ 150	- 50		+ 150	- 50		+ 150
封装型式			TO - 92			TO - 92			7O - 92	
F1 42 32 P4			SOIC			SOIC			SOIC	


生产厂家: ANALOG DEVICES

1.3 温度传感器频率变换应用电路

热电偶温度/频率变换电路

用途:用于温度计量和控制。

电路中 * 为 1RC/TRW-MTR - 5/ + 120ppm, I_1 、 I_2 、 I_3 为 74C14, + 为聚乙烯电容。电路用于热电偶传感器将温度变换成频率的测量电路。 I_3 输出 0kHz ~ 1kHz 脉冲串,对应于 0 $^{\circ}$ ~ 100 $^{\circ}$

温度范围。 I_3 输出脉冲驱动 LTC1146 的 D_{IN} 脚, GND1 连 I_3 地。 D_{OUT} 脚输出与 TTL 兼容信号。电路消耗电流最大为 460 μ A, 允许用 9V 电源工作。

LT1025 为小功率热电偶冷端补偿器,LTC1049 为小功率零漂移具有内电容的运算放大器,LTC1146 为信号隔离集成电路。

温度/频率变换电路

用途:用于温度计量和控制。

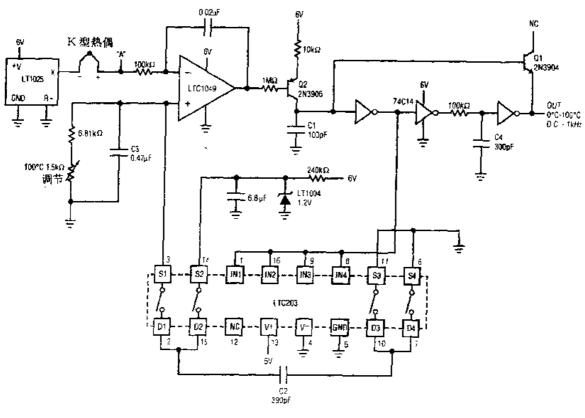
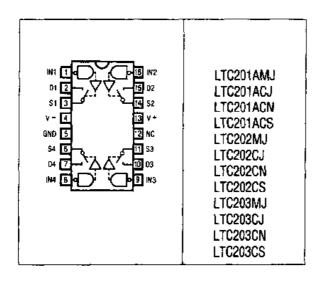



图 1-19 微功耗热电偶温度/频率变换器

LT1025 为热电偶补偿器,LTC1049 为低功耗运放。

LTC203 为低电荷注入四 MOS 模拟开关。

LTC201/LTC202/LTC203 微功耗、小电荷注入的四 MOS 模拟开关。微功耗工作;单电源 5V 或 \pm 15V 工作;低电荷注入;低接通电阻 R_{ON} ;低漏电流;与 TTL/CMOS 兼容;电源电流 I^+ 为 $40\mu A$, I^- 为 $5\mu A$;电荷注入(\pm 15V)最大值为 \pm 25PC,单电源 5V 时的典型值为 2PC; R_{ON} 典型值为 60Ω ; 信号范围为 \pm 15V。

管脚说明:

- 1.16、9、8、1N1~1N4 输入
- 2.15、10、7、D1~D4 开关 D
- 3.14、11、6、S1~S4 开关 S
- 4. V * 电源负
- 5.GND 地
- 12.NC 不连接
- 13.V*电源正

图 1-20 管脚图(顶视)

控制逻辑表

IN	LTC201 A	LTC202	LIY	C203
IN _X	1N1 – 1N4	1N1 – 1N4	1N1,1N4	1N2,1N3
0	ON	OFF	OFF	ON
1	OFF	ON	ON	OFF

LTC201, LTC202, LTC203 最大绝对额定值

电压基准到 V^-

 V^+

44V

地

25V

数字输入,S.D(见管脚)

 $-2V \sim (V^+ + 2V)$

电流

除S或D外的输入

30mA

S或D连续输入

20mA

び以び圧決個バ

70mA

S或 D峰值(脉宽 1mS,占空比最大 10%)

4kV

ESD(抗静电)敏感性

500mW

功耗(塑封)

Domin

(陶瓷封)

900mW

工作温度

0 ~ 70℃

LTC201AC/LTC202C/LTC203C

LTC201AM/LTC202M/LTC203M

存储温度

引线焊接温度(10s)

- 55 ~ 125 °C - 65 ~ 150 °C 300 °C

数字和直流参数

 $(V^+ = 15V, V^- = -15V, GND = 0V)$

۷۰ عد	ر بد	.	角位	LTC201A	M/LTC202M	/LTC203M	LTC201AC/LTC202C/LTC20				
参数	条件		单位 	最小	典型	最大	最小	典型 最			
模拟信号范围		•	v			± 15			± 15		
	V _S = ±	T _{MIN}				110			125		
R _{ON}	10V	25℃	Ω		65	110		65	125		
	$I_D = 1 \text{mA}$	T _{MAX}	1 [· · · · · · · · · · · · · · · · · · ·		160		-	160		
ΔR _{ON} /V _S			%		20			20			
△R _{ON} /温度			%/°C		0.5			0.5			
R _{ON} 匹配	$V_S = 0V, I_D$	₅ = 1mA	%		5		. =	5			
	$V_D = \pm 14$	V, V _S =			0.01	± 1		0.01	± 5		
断输入漏电流 I _s	∓14V 开关断		nA			± 100			± 100		
	$V_D = \pm 14$	$V, V_S =$			0.01	± 1		0.01	± 5		
斯输出漏电流 I _D	∓14V 开关断		nA			± 100			± 100		
	$V_D = V_S = :$	± 14V			0.02	± 1		0.02	± 5		
通道通漏电流 ln	开关通		nA -			± 200	•		± 200		
输人高电平 V _{INB}			v	2.4	-	·	2.4				
输入低电平 V _{INL}			v			0.8			0.8		
输入高或低电流 I _{INH} 和 I _{INL}	$V_{IN} = 15V,$	ov	μА			± 1			± l		

数字和直流参数

 $(V^+ = +15V, V^- = -15V, GND = 0V)$

		بدر بید	LTC201A	M/LTC202M	/LTC203M	LTC201AC/LTC202C/LTC203C		
参 数	条件	単位	最小	典型	最大	最小	最大	
C _s (OFF)关断输入电容		pF		5			5	
C _D (OFF)关断输出电容		pF		12			12	
C _D ,C _S (ON)输入/输出电容		рF		30			30	
	全部逻辑输		16		40		16	40
1*逻辑输入正电流	入连接成一				60			60
/ 逻辑输入负电流	点 V _{IN} = OV 或	μA		0.1	5		0,1	5
	4.0V		-		10			10

AC 参数

 $(V^{+} = +15V, V^{-} = -15V, GND = 0V)$

an where	A2 (4-	单位	LTC201AN	LTC201AM/LTC202M/LTC203M				
参数	条件		最小	典型	最大	最小	典型	最大
T _{ON} 导通时间	V 2V P 11 O C = 25 F			290	400		290	400
T _{OFF} 关断时间	$V_{S} = 2V, R_{L} = 1k\Omega, C_{L} = 35pF$	ns		210	300		210	300
T _{OPEN} 开路时间		ns	20	85		20	85	
断开隔离		dB		75			75	
交扰	$V_{\rm S} = 2 \text{Vp-p}$, $R_{\rm L} = 1 \text{k}\Omega$, $f = 100 \text{kHz}$			90			90	
电荷注人 Q _{INI}	$R_{\rm S} = 0\Omega$, $C_{\rm L} = 1000 {\rm pF}$, $V_{\rm S} = 0 {\rm V}$	pС		5	± 25		8	± 25
全谐波失真 THD	$V_{\rm S} = 2V_{\rm P}$ -p, $R_{\rm L} = 10 {\rm k}\Omega$	%		0.01			0.01	

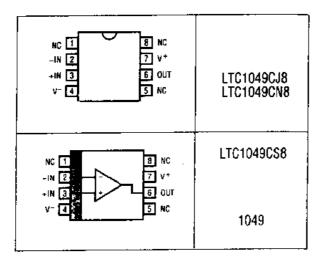
数字和直流参数

 $(V^* = +5V, V^- = GND = 0V)$

				LTC201 AM	TC201 AM/LTC202M/LTC203M		LTC201AC/LTC202C/LTC203C		
参 數	条 件		単位	最小	典型	最大	最小	典型	最大
模拟信号范围			v	0		5	Đ		5
	$V_{\rm S} = +1.5 V_{\star} + 3 V_{\star}$	Twin				450			520
R_{ON}	$I_{\rm D} = 0.25 \mathrm{mA}$	25℃	Ω		280	450		280	525
		T _{MAX}		_		650			650
$\Delta R_{ m ON}/V_{ m S}$			%	<u> </u>	20			20	
ΔR _{OM} /温度			%/°C		0.5			0.5	
RON匹配	$V_{\rm S} = 2.5 \text{V}, I_{\rm DS} = 0.2$	5mA	%		5			5	
Not to the 1 MH of the se	$V_{\rm D} = 4V, 1V; V_{\rm S} = 1V$	7,4V			0.01	± 1		0.01	±5
断开输入漏电流 Is	 开关断开		nA			± 100			± 5 ± 100
MC TO 6A do 3E et 36 x	$V_{\rm D} = 4V, 1V; V_{\rm S} = 1V$	7,4V			0.01	l ±		0.01	± 5
断开输出漏电流 I _D	 开 关断 开		nA			± 100			± 100
	$V_{\rm D} = V_{\rm S} = 1 \mathrm{V}$,4V				0.01	±l		0.01	± 5
通道接通漏电流 10) 一开关接 通		nA)		± 200			± 200
输入高电平 V _{INH}		•	V	2.4			2.4		
输入低电平 V _{INL}			v			0.8			0.8
输入高或低电流 Jinh和 JinL	$V_{\rm IN} = 5 \rm V, OV$	_ _	μA			±1			± 1

数字和直流参数

 $(V^+ = +5V, V^- = GND = 0V)$


	测试条件	26 /24	LTC201AM/LTC202M/LTC203M LTC201AC/LTC202C/LT					
参 数	侧以余件	単位	最小	典型	最大	最小	典型	最大
C _s (OFF)关新输入电容		pF		5			5	
C _D (OFF)关断输出电容		рF		12			12	
CD, Cs(ON)接通输入/输出电容	<u>-</u>	pF		30			30	
	全逻辑输人		8 20				8	20
/ 逻辑输入电流	$V_{\rm IN} = 0 \text{ V } \cancel{\text{E}} 4.0 \text{ V}$	μA			30			30

A. W.	and the date	34, /3.	LTC201AM/LTC202M/LTC203M LTC201AC/LTC202C/LTC203					
参 数	測试条件	単位	最小	典型	最大	最小	典型	最大
导通时间 T _{ON}	$V_{\rm S}=2{ m V}$, $R_{\rm L}=1{ m k}\Omega$, $C_{\rm L}=$			450	600	,	450	600
美斯时间 Topp	35pF	ns ns	i	190	300		190	300
开路时间 Topes		ns	100	250		100	250	
断开隔离	$V_{\rm S} = 2 {\rm Vp-p}$, $R_{\rm L} = 1 {\rm k}\Omega$, $f =$	dB		75			75	
干扰	100kHz	пв		90			90	
电荷注入 Q_{INJ}	$R_{\rm S} = 0\Omega$, $C_{\rm L} = 1000 {\rm pF}$. $V_{\rm S} = 2.5 {\rm V}$	рC		2			2	
总谐波失真 THD	$V_{\rm S}=2{ m Vp-p}$, $R_{\rm L}=10{ m k}\Omega$	%		0.01			0.01	

LTC1049 型具有内电容低功耗斩波稳定运算放大器

用途:用于热电偶放大和应变计放大。

特点: 低电源电流 200 μ A, 没有外接元件, 最大失调电压 10μ V, 最大失调电压温漂 0.1μ V/℃, 单电源电压为 4.75V ~ 16V, 输入共模范围含地, 输出电压摆幅含地, 典型过载恢复时间 6ms。

管脚说明:

1.5、8 NC 不连接

2. - IN 输入负

3. + 1N 输入正

4.V~ 电源负

6.OUT 输出

7.V+ 电源正

图 1-21 管脚图(顶视)

最大绝对额定值 总电源电压($V^+ \sim V^-$)

输入电压

输出短路持续时间

工作温度 LTC1049C

存储温度

引线焊接温度(10s)

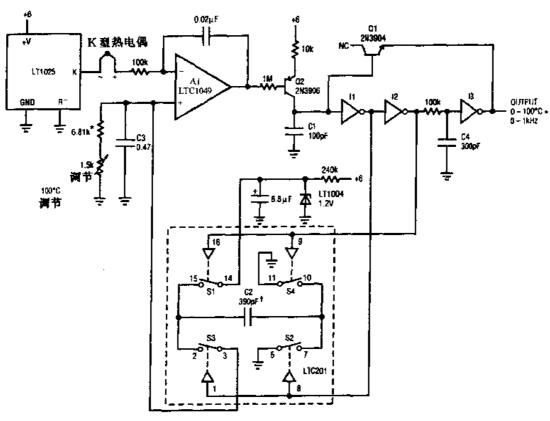
18V

 $(V^+ + 0.3V) \sim (V^- - 0.3V)$

无限

- 40 ~ 85℃

- 65 ~ 150℃

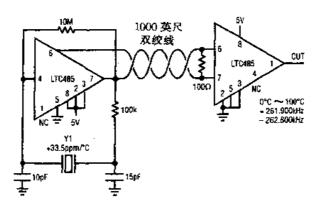

300℃

电参数(V_S = ±5V)

参数	测试条件	单位	最小	典型	最大
输入偏置电压	T _A = 25°C	μV		± 2	± 10
平均輸入失调电压温漂		μV/°C	-	±0.02	± 0.1
长期失调电压温源		nV/√mo		50	
输入失调电流	T _A = 25 ℃			± 30	± 100
棚八天间电弧	7 _A =25 G	pA.			± 150
₩ : 10 #F H : 24	T - 3597			± 15	± 50
≜入偏置电流 	$T_{\rm A} = 25^{\circ}{\rm C}$	pA			± 150
₩ . ₩ ★ # F	0.1Hz ~ 10Hz			3.0	
俞人噪声电压	0.1Hz ~ 1Hz	μ ۷р-р		1.0	
输人噪声电流密度	f = 10Hz	fA/ √Hz		2.0	
共模抑制比	$V_{\rm CM} = V^- \sim 2.7V$	dB	110	130	
电源抑制比	$V_{\rm S} = \pm 2.375 \text{V} \sim \pm 8 \text{V}$	dВ	110	130	
大信号电压增益	$R_{\rm L} = 100 \mathrm{k}\Omega$, $V_{\rm OUT} = \pm 4.9 \mathrm{V}$	dB	130	160	
	$R_{\rm L} = 10 \mathrm{k}\Omega$ $T_{\rm A} = 25 ^{\circ}\mathrm{C}$			-4.9/+4.2	
最大输出电压幅度	M[= 10M2 1 A = 23 C	_ v [-4.6/+3.2		_
	$R_{\rm L} = 100 {\rm k}\Omega$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	± 4.97		
转换速率	$R_{\rm L} = 10 {\rm k}\Omega$, $C_{\rm L} = 50 {\rm pF}$	V/µs		0.8_	
增益带宽乘积		MHz		0.8	
	无负载 T _A = 25℃			200	300
·	70 M 44 74 - 25 C	μ. [450
内部采样频率		Нz		700	

热电偶温度/频率变换电路

用途:用于温度检测和计量电路。



注:*IRC/TRW-5/+120ppm,+聚苯乙烯电容,I1,I2,I3 为 74C14,I_S=360μA,电源电压为 4.5V~10V。 图 1-22 热电偶温度/频率变换电路

电路中的 LT1025 为热电偶补偿器,LTC1049 为低功耗运放,LTC201 为低电荷注入四 MOS 模拟开关。

石英晶体温度/频率电路

用途:用于温度遥测和遥控电路

注:y1 是徽石英晶体,MTl/33.5ppm/℃,0℃时对应频率为 261.900kHz,100℃时对应频率为 262.800kHz。 图 1-23 石英晶体温度/频率变换电路

1.4 温度传感器变送器应用电路

RTD 温度传感变送器电路

用途:用于工业过程自动控制和 2J 自动化。

RTD 输入连接旁通电容可减小或消除干扰,电容接至管端 7,管脚 7 上 DC 电压不等于零,可认为该端接地。

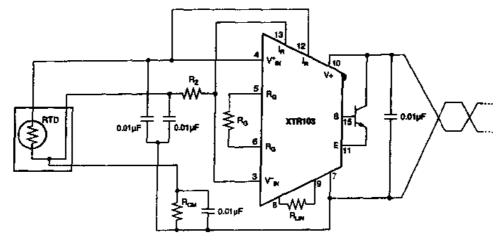


图 1-24 RTD 输入旁通电路

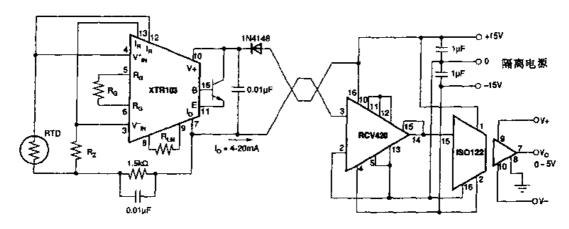


图 1-25 RTD 隔离的发送/接收电路

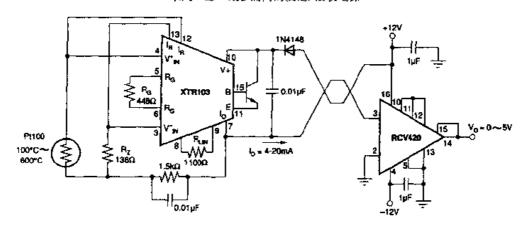


图 1-26 RID 装有±12V 电源的发送/接收电路

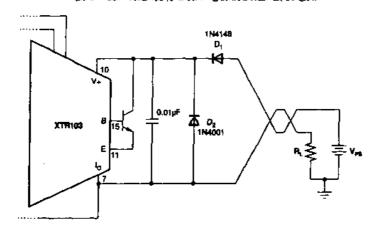


图 1-27 RTD 电路中的反向电压保护电路

图 1-27 电路表示反向输出的保护电路。 D_i 是串联保护,但它可降低电源电压 0.7V。 D_2 无电压损失,但反向时将有高电流通过。

图 1-28 电路中齐纳二极管电压为 36V,型号为 1N4753A 或 1N6286A,为提高保护功能,齐纳二极管电压小于电路的电源电压。VPS 最小值必须大于齐纳二极管的最小额定电压。由于浪涌电压能损坏半导体器件,为避免损坏,加至 XTR103 处的最大额定电压为 40V。齐纳二极管用于钳位加至 XTR103 的电压为安全电平。

图 1-29 图为 XTR103 基本连接电路。电路电源 $V_{\rm PS}$ 供全部电路,用串联负载电阻 $R_{\rm L}$ 上测压降方法测输出回路电流。两个匹配 0.8mA 电流源驱动 RTD 和电阻 $R_{\rm Z}$ 。 XTR103 输入测 RTD 和

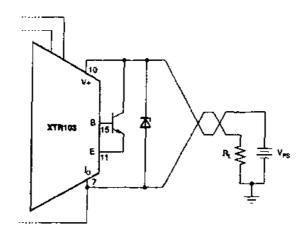
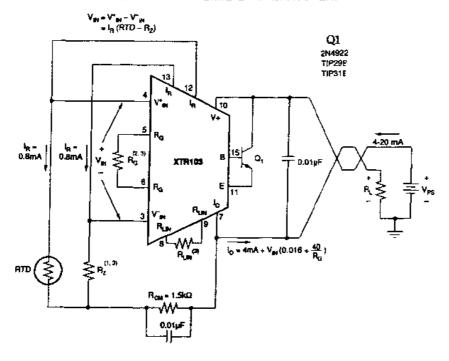



图 1-28 RTD 电路过电压液涌的保护电路

注:R2=RTD 电阻(在最低测量温度时)

$$R_G = \frac{2500}{V_{PS} - 1} \Omega$$
 (V_{PS} 是满量程 V_{IN} 输入时电压)

图 1-29 基本 RTD 温度测量电路

 $R_{\rm Z}$ 之间电压差。在低量程(最小)测量温度 $R_{\rm Z}$ 值选择等于 RTD 电阻。在最低测量温度校准 XTR103 输入偏置电压和基准失匹电流,调节 $R_{\rm Z}$ 至 4mA, $R_{\rm CM}$ 提供对 XTR103 偏压输入电压。 $R_{\rm C}$ 调增益。 $V_{\rm IN}$ 是差动输入电压。当 $R_{\rm G}$ 不连接($R_{\rm C}=\infty$),0~1V 输入,产生 4~20mA 电流输出。 $R_{\rm G}=2.5\Omega$,0~10mV 输入,产生 4~20mA 电流输出。 $R_{\rm G}$ 为其他值时可计算电流输出。负输入电压 $V_{\rm IN}$ 使输出电流小于 4mA,负 $V_{\rm IN}$ 增加,输出电流接近 3.6mA。正输入电压(大于 $V_{\rm FS}$)增加,输出电流增加可达 34mA。 $Q_{\rm I}$ 传导大部分信号电流。没有 $Q_{\rm I}$ 时,XTR103 脚 11 和 14 短接。

图 1-30 电路三线连接 RTD 可提高遥控精度, R_Z 电流回路经第三线至 RTD。假定线电阻等于 RTD 线 1 和 2,产生小的共模电压可被 XTR103 抑制。 Q_Z 晶体管在 RTD 三线连接中,如果有一线断开,XTR103 输出电流可达高电流限 35mA 或低电流限 3.6mA,这种变化很容易检测。

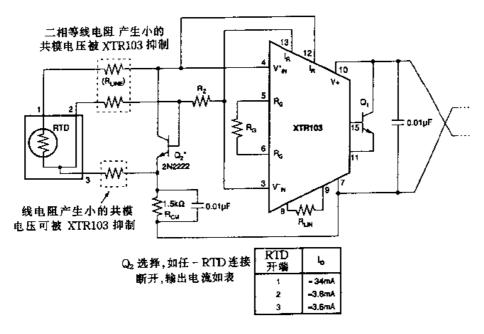


图 1-30 三线连接用于远距控制 RTD

XTR103 集成电流变送器

XTR103 是一个单片 4~20mA、双线电流变送器,用于铂电阻 RTD 温度传感器。

特点:在-40~85℃,总调节误差小于±1%,RTD激励和线性化,两线或三线工作,宽电源电压范围 9~40V,高电源电压抑制比 PSR 为 110dB,高共模抑制比 CMR 为 80dB。

图 1-31 管脚图(顶视)

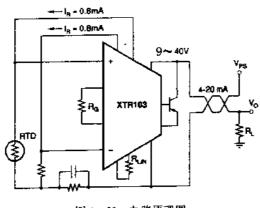


图 1-32 电路原理图

电参数(TA=25℃,V+=24V和外接2N6121晶体管)

参 数	单位		XTR103BP/			XTR103AP/	
		最小	典型	最大	最小	典型	最大
輸出							
输出电流公式	A		$l_o = V_{IN} \cdot (0.$	016 + 40/R _G }	+ 4mA, V _{IN} ii	ı Volts, R _G in	Ω
							}
总调节误差	% of FS	İ]		
心风下医左 输出电流,特定范围	1	4	1	± 1		1	±2
福山屯机,村龙池园 量程上限	mA mA	4	34	20 40	*		
量程下限	mA	-	3.6	3.8		** *	*
满量程输出误差	I		1				
俩属任福马跃左 噪声 : 0.1Hz ~ 1kHz	μA		± 15	± 50		*	± 10
۳۶۶۰;V. Inz ~ Iknz	μ Α _{p-p}		8			*	
	mA		4	<u> </u>		*	-
固有误差	μ A		± 5	± 50		*	± 10
对温度变化	gA/°C		±0.2	±0.5		*	± 1
对电源变化 V+	pA/V		0.5	2	 	*	*
对共模电压	μ Α/V	}	0.1	2		*	*
— — — — — — — — — — — — — — — — — — —				-		 	
刻度公式	A/V	9=	- - 0.016 + 40	$/R_{G}$		 **	}
未调整误差	%	1	±0.1	± 1		*	}
对温度变化	ppm∕°C	İ	± 20	± 50		*	*
非线性:理想输入	%		1 20	0.01			± 100
RTD 输入	%c		0.1	0.01			*
			 -			<u> </u>	*
差动范围	v		1	1 1			*
輸入电压范围	v	2	1	4	*		*
共模抑制比	dB	80	100		-x	*	
型抗:差动	GO	1	3	1		*	
共模型	GΩ	1	0.5			*	
偏置电压	tnV		± 0.5	± 2.5		*	*
对温度变化	μ V /°C	İ	±1	± 2.5		±2	±5
対电源 V+ 变化	ďB	110	130	1 1	*	*	
輸入偏置电流	nA		100	250		¥	*
对温度变化	nA∕°C	1	0.1	2	İ	*	*
渝人失调电流	n.A	1	2	20	ĺ	*	*
对温度变化	nA/°C		0.01	0.25		*	*
电流源				1			
电流	mA		0.8	1		*	-
青度	%]	±0.25	±0.5	İ	*	± 1
对温度变化	ppm∕°C		± 25	± 50		± 50	± 100
对电源变化 V +	ppm/V	[50			*	
顺从电 压	v	$(V - e_N) = 0.2$		(V+)-5	*		*
<u>C</u> C	%	ļ		±0.5		Į	*
对温度变化	ppm∕°C]]	± 10	± 25	İ	*	± 50
对电源变化 V+	ppm/V		10]]		*	
电影							_
电压范围 V+	<u>v</u>	9		40	*		
B度范围 まデエーエ	92	,,)	.		
ŧ定 T _{MIN} ~T _{MAX}		- 40		85	*		*
C作	9C	- 40	02	125	*		**
/A	°C.∕W	(!	80	L L	1	*	

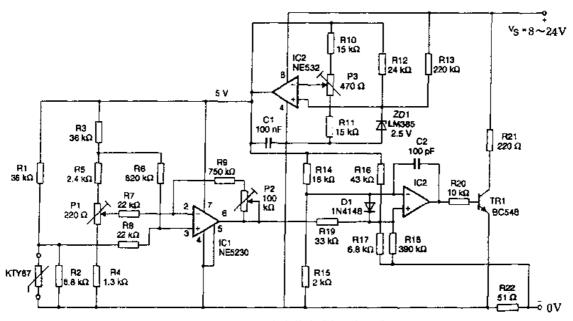
最大绝对额定值

电流极限

电源电压 V_+ (相对 I_o 脚) 40V

输入电压, V_{IN}^+ , V_{IN}^- (相对 I_0 脚) $0 \sim V_+$

存储温度 - 55 ~ 125℃


引线焊接温度(10s) 300℃

结温 165℃

生产厂家:BURR -- BROWN

KTY87型温度传感变送电路

用途:用于工业温度控制、标准输出 4~20mA 电流变送器。

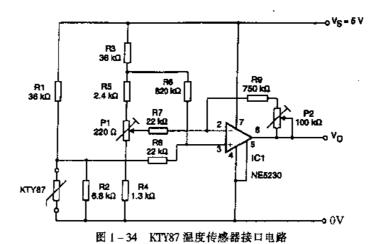
恒流

图 1-33 KIY87 温度传感器电流变送器

电路中的电阻为金属膜电阻,其精度优于 1%,温度系数 TC 小于 $\pm 50 \times 10^{-6}/k$;测量范围: $0 \sim 100\%$,电流 I = 4 + T/6.25,电流单位 mA,温度 T 单位 C 。

电路表示 KTY87 两线电流变送器,由具有前置放大器的惠斯登电桥、电流变送器输出级和稳压电路组成。

校准


设电源电压为 12V

用 P3 电位器调节,使内部工作电压为 5V。用固定电阻 1640Ω(KTY87 在 0℃时标准电阻) 代替温度传感器,调节 P1 电位器,使输出电流为 4mA。用插人式第二个测试电阻 3344Ω(在 100℃时 KTY87 标准电阻)代替测试电阻,用 P2 电位器调节,使输出电流为 20mA。

KTY87 型温度传感器微控制器接口电路

用途:用于 0~100℃AD 变换器和具有 ADC 微控制器前置放大的比率输入电路,也可用于 · 24 ·

硅温度传感器的信号调节电路。

电路中的电阻为金属膜电阻,精度优于 $\pm 1\%$,温度系数 TC 小于 50×10^{-4} /K,测量温度范围 $0 \sim 100\%$,输出电压 $V_0 = 0.5 \sim 4.5$ V,电源电压 $V_S = 5.0$ V, $V_0 = 0.2$ V_S $\times (0.5 + 0.04 \times TC)$ 。

NE5230 为具有低偏置温漂的精密仪器放大器。

电路校准:

用固定电阻 1640 Ω (KTY87 在 0 Ω) 时的标准电阻)代替传感器,调 P1 电位器,使输出电压 $V_0=0.5$ V。

用测试电阻 3344 Ω (在 100 $^{\circ}$ C时的标准电阻)代替传感器,调 P2 电位器,使输出电压 V_0 = 4.5 V_o

电路同样可用 KTY 系列传感器,在 20~100℃时,精度为±1℃。

KTY87 - 205 型硅温度传感器

KTY87 是高精度温度传感器,电阻具有正温度系数。用于温度测量和控制。在 10~110℃ 温度范围测量,精度优于±1℃。

主要技术参数

电阻	在 I _C =0.1mA	
	$T_{\rm A}=25{\rm ^{\circ}C}$	$R_{25} = 2000 \pm 10\Omega$
	$T_{\rm A} = 100$ °C	$R_{100} = 3344 \pm 17\Omega$
工作》	显度范围	- 40 ~ 125℃

温度电阻对应表

温度(℃)	电阻(Ω)
- 40	1154
- 30	. 1265
- 20	1383
- 10	1508
0	1640

温度(℃)	电阻(Ω)
10	1779
20	1924
25	2000
30	2077
40	2237
. 50	2404
60	2578
7 0	2759
80	2947
90	3142
100	3344
£10	3553
120	3769
125	3880

生产厂家: Philips Semiconductors

ISO120/ISO121 传感器变送器电路

用途:用于热电偶、RTD、压力桥传感器、流量传感器、4~20mA 电路隔离、生物医学和数据 采集等领域。

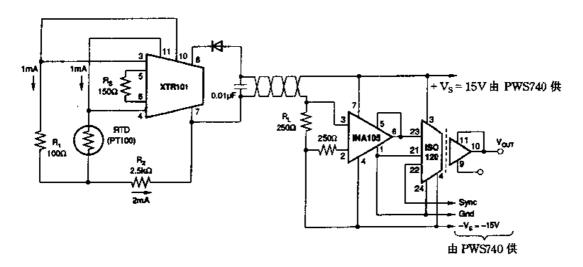
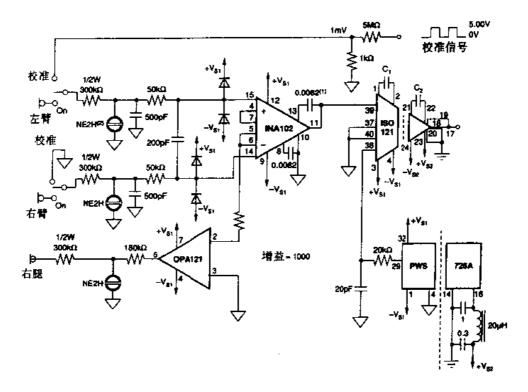



图 1-35 RTD隔离变送器

ISO120, ISO121 型精密隔离放大电路

ISO120 和 ISO121 是隔离放大器,包含有新的频宽比调制和解调技术。二者电参数一致,只是封装尺寸和隔离电压不同。用于工业过程控制。

注:电容数值单位未标注者为 µF, 二极管为 1N4148, NE2H 为氖灯,最大击穿电压 95V_{AC}。图 1-36 人体右腿驱动心电图放大电路

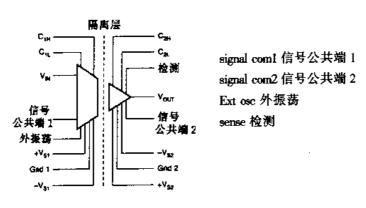


图 1-37 功能決图

管脚说明: 1/1 C_H电容正; 2/2 C_{IL}电容负 1/1⁽¹⁾ 4/4 - V_{SI}电源负 3/3 + V_{SI}电源正 9/17 Com2 公共 2 10/18 Vour輸出电压 12/20 Gnd2 地 2 11/19 SenSe 检测 14/22 CzL电容负 15/23 + Vzz电源正 13/21 C2H电容正 16/24 - Vs2电源负 21/37 Com1 公共 1 23/39 V_{IN}輸入电压 24/40Gnd1 地 1 22/38 Ext OSc 外振荡 10/18 检测 11/19 Gnd 2 12/20

注:(1) 第 1 脚号用于 ISO120 型,第 2 脚用于 ISO121 型。 图 I-38 管脚图

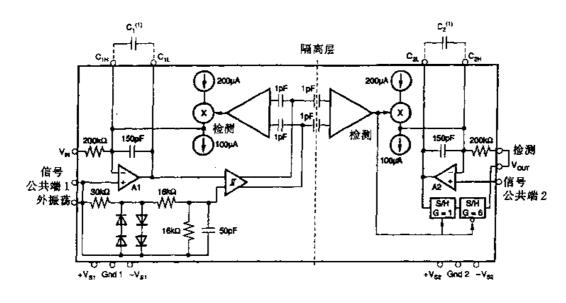


图 1-39 电路原理图

最大	绝	对	额	定	值
/ Y				/-	_

 电源电压
 18V

 V_{IN},敏感电压
 ± 100V

 外振荡输入电压
 ± 25V

 信号 com1 到 Gnd
 ± 1V

 信号 com2 到 Gnd
 ± 1V

连续隔离电压: ISO120 1500V(ms)

ISO121 3500V(rms)

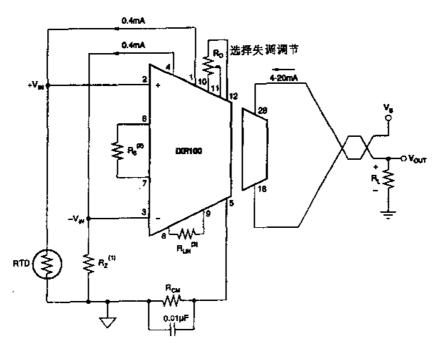
 $V_{\rm ISO}$, ${
m dV/dt}$ 20kV/ $\mu {
m s}$

结温 150℃

存储温度 -65℃~+150℃

引线焊接温度(10s) 300℃

生产厂家:BURR -- BROWN


1.5 温度传感器信号调节应用电路

IXR100 温度传感器调节电路

用途:适用于热电偶、RTD、热敏电阻和应变计传感电路。

图 1-40 是 IXR100 基本连接电路。加至 2 和 3 脚之间的电压将产生 4~20mA 的电流,从两线输出脚 28 和 18 输出。脚 1 和 4 的输出电流激励电阻传感器。6 脚和 7 脚连接外刻度电阻,以提高增益。8 和 9 脚提供线性校准。10,11 和 12 脚调节输出偏置电流。

工作温度范围为 25 °C ~ 150 °C ,用 Pt100RTD 测量温度,从标准 RTD 表中查得 25 °C 时的电阻为 109.73Ω , 150 °C 时的电阻为 157.31Ω 。传送电流在 25 °C 时为 4mA,在 150 °C 时为 20mA。

注: $I_0 = 4$ mA + $(0.016 + \frac{40}{R_{\rm S}})$ $V_{\rm IN}$, $V_{\rm IN} = I_{\rm REF}({\rm RTD} - R_{\rm Z})$

$$R_{\rm Z} = {\rm RTD}$$
 电阻 (在最低温度), $R_{\rm S} = \frac{40}{0.016(\Delta V_{\rm IN}) - 0.016} \Omega$,

R_{LIN} = 500Ω~1500Ω或∞(不要求线性)

图 1-40 RTD 和 DXRIOO 基本连接电路

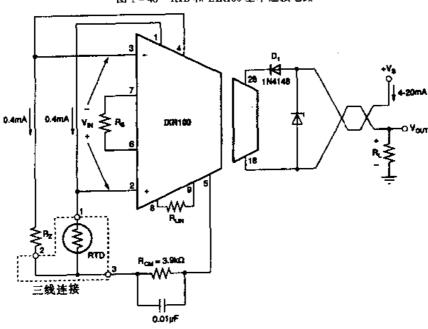


图 1-41 RTD 三线基本连接电路(一)

RTD 电阻的变化是 47.6 Ω 。当激励用 0.4mA 电流源 $\Delta V_{\rm IN}$ 时, $\Delta V_{\rm IN}$ 是 0.4mA × 47.6 Ω = 19mV。

$$R_{\rm S} = \frac{40}{0.016(\triangle V_{\rm IN}) - 0.016} \Omega$$

 $R_{\rm S}$ = 48.5 Ω ,用 $R_{\rm S}$ 进行刻度调节

为了在 25℃时得到 4mA 电流, V_{IN} 在 25℃时必须为 0V, R_Z 选择等于 25℃时的 RTD 电阻或

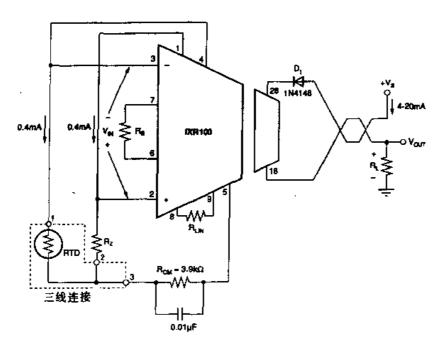


图 1-42 RTD 三线基本连接电路(二)

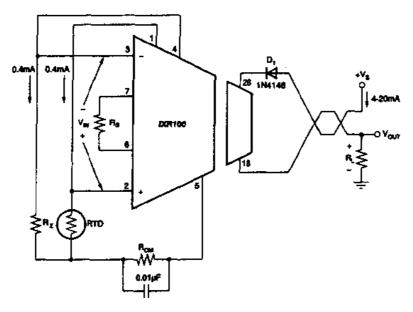


图 t-43 Pt100 RTD 变送器电路

109.73Ω。计算 R_{CM}:

在 25℃, $V_{\rm IN}^+ = 43.9 {\rm mV}$

在 150℃, $V_{\mathrm{IN}}^+ = 62.9 \mathrm{mV}$

因为 V_{IN} ⁺和 V_Z 相对 2V 共模电压很小,可以忽略。

 R_{CM} 按照共模电压计算,得到:

 $R_{\rm CM} = 3V/0.8 {\rm mA} = 3.75 {\rm k}\Omega$

V_{IN}+最小=3V+0.0439V

 V_{IN}^{+} 最大 = 3V + 0.0629V

 $V_{\rm IN}^- = 3V + 0.0439V$

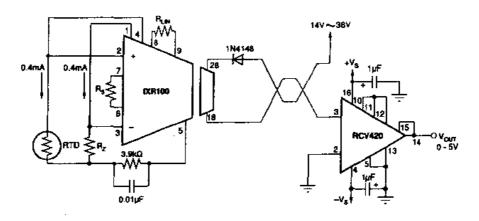


图 1-44 RTD 隔离变送器电路

电路由 RTD 输入至 IXR100 隔离变送器,经 RCV420 变换电压输出。

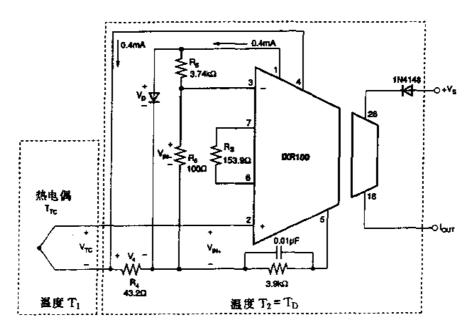


图 1-45 有两个温度区域的热电偶输入电路

电路中的二极管 D(输入回路中的二极管)用于冷端补偿。工作温度范围为 0% ~ 1000%。用 J型热电偶测量温度,1000%电压为 58mV。冷端补偿二极管 D 提供补偿电压等于冷端(T_2)热电偶产生正常电压。在 25%,是 1.28mV(从基准端在 0%的热电偶表中查得),在 25%, $V_D=0.6V$, $\triangle V_D/\Delta T=-2mV/\%$ 。 R_5 和 R_6 对二极管电压 V_D 形成一个分压器,选择分压器值,使 $\triangle V_D/\Delta T$ 梯度等于热电偶相对基准温度梯度。在 25%时,近似值为 $-52\mu V/\%$ (从标准热电偶表中查得)。

$$\Delta V_{\text{TC}}/\Delta T = (\Delta V_{\text{D}}/\Delta T)(R_6/(R_5 + R_6))$$
$$-52\mu\text{V/C} = (-2000\mu\text{V/C})(R_6/R_5 + R_6)$$

 R_5 选 3.74k Ω ,大于二极管电阻, R_6 为 100 Ω

发送电流: $T_1 = 0$ ℃时为 4mA, $T_1 = 1000$ ℃时为 20mA, $V_{IN} = V_{IN+} - V_{IN-}$ 表示 T_1 是相对于 T_2 的温度,输入满量程刻度是 58mV。

 $R_{\rm S} = 153.9\Omega_{\rm o}$

选择 R_4 ,使在 $T_{TC} = 0$ ℃时,输出 $0.4 \text{mA}(V_{TC} = -1.28 \text{mV})$ 和 $T_D = 25$ ℃($V_D = 0.6 \text{V}$)

 V_{TC} 是 – 1.28mV, T_{TC} = 0℃, 热电偶基准结在 25℃, 计算 V_4 。 T_D = 25℃, 使 V_{IN} = 0V。 $V_D(25 \odot)$ = 600mV

 V_{IN} (25°C) = 600mV(100/3740) = 16.0mV

 $V_{IN} = V_{IN_{+}} - V_{IN_{-}} = V_{IN_{-}} - V_{4} - V_{TC}($ 见电路图)

用 $V_{IN} = 0$ 和 $V_{TC} = -1.28 \text{mV}$

$$V_4 = V_{IN-} \sim V_{TC}$$

$$V_4 = 16.0 \text{mV} - (-1.28 \text{mV})$$

$$0.4 \text{mA}(R_4) = 17.28 \text{mV}$$

$$R_4 = 43.2\Omega$$

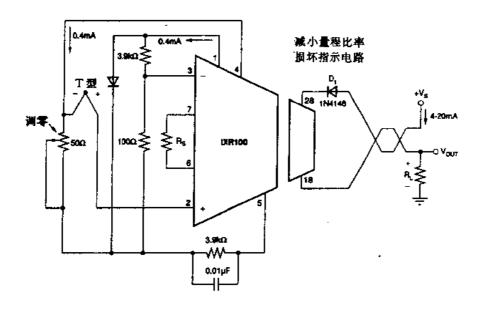


图 1-46 用二极管冷端补偿的热电偶变送器

电路有减小量程比率损坏指示。由热电偶输入 IXR100、隔离输出 4~20mA 电流。

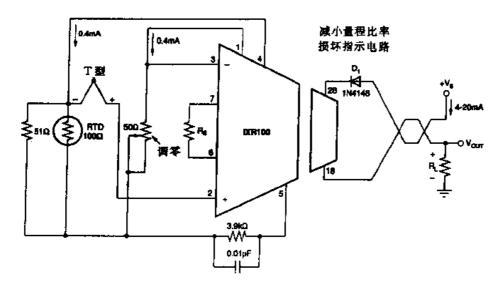


图 1-47 用 RTD 冷端补偿的热电偶变送器

电路有减小量程比率损坏指示,由热电偶输入 IXR100,隔离输出 4~20mA 电流。 电路有上升量程比率损坏指示,热电偶输入至 IXR100,输出 4~20mA 电流。

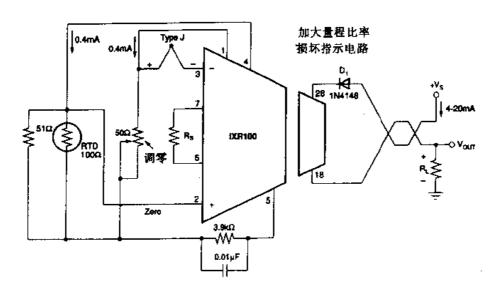


图 1-48 用 RTD 冷端补偿的热电偶变送器

IXR100 型隔离两线 4~20mA 变送器

IXR100是一个隔离两线式变送器,内置电源,电阻温度敏感调节有激励和线性化电路。内有 DC/DC 变换器,有高精度仪器放大器。用于全部隔离变送器、Pt100RTD 和热电偶等。

特点:隔离电压 1500V(ms)

双线工作

电阻和电压输入

两个相等电流源在 7V 时为 400µA

宽电源电压范围 12~36V

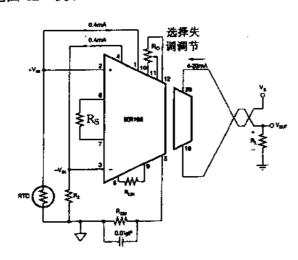


图 1-49 电路原理图

电路基本连接是由 2 和 3 脚差动输入电压,产生 4~20mA 电流至两线输出电路的 28 和 18 脚。1 和 4 脚供给电阻传感器激励电流。6 和 7 脚连接外刻度电阻,用以提高增益。8 和 9 脚为线性校准,10、11 和 12 脚调节输出偏置电流。

IXR100有传感器激励电路、内部稳压源、输入放大器、V/I变换器、线性化电路和 DC/DC 变换器。

传感器激励电路由两个匹配电流源组成。一个用于激励电阻传感器,一个用于激励零平衡电阻 R_z。当使用线性校准功能时,两个电流源同时被调制,因此 Pt100RTD 三线工作是可能的。

内部稳压器供给 DC/DC 变换器、输入放大器、线性放大器和 V/I 变换器等各级电路的电压。输入放大器是一个仪器放大器,通过 R_S 调节增益,它驱动 V/I 变换器,产生 $4\sim 20mA$ 电流输出。输入放大器相对 COM(脚 5)有一个共模电压范围 $2\sim 4V$ 。回路电流从 RTD 和零平衡电阻 R_Z 至 COM 通过共模电阻 R_{CM} 。对大多数应用场合, R_{CM} 可取 $3.9k\Omega$ 。 R_{CM} 用一个 $0.01\mu F$ 旁通电容或大电容进行旁路。

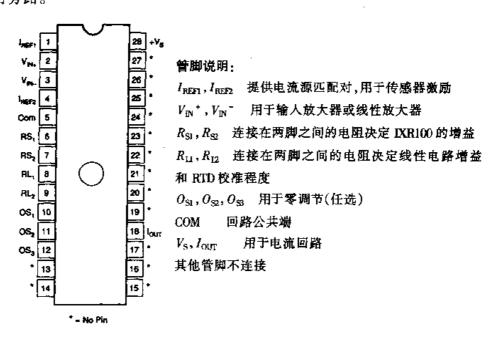
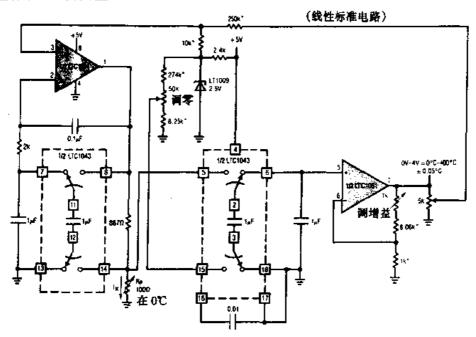


图 1-50 管脚图(顶视)

电参数(V_S = 24V, T_A = 25℃)

参数	単 位	IXR100		
		最小	典型	最大
输出和负载特性			_	
输出电流	mA.	4		20
输出电流限	mA.		32	
回路电源电压	VDC	11.6		36
负载电阻	Ω	$R_{\rm LOAD} = (V_8 - 11.6)/1_{\odot}$		}
				
固有误差	μΑ			300
对温度变化	ppm FSR∕℃			200
				
*************************************		$l_o = 4\text{mA} + [0.016 + (40/R_S)](V_{IN})$		
划度公式	A/V	$S = [0.016 + (40/R_S)]$		
ペススペ 未調节误差	%	-2.5		0
对温度变化	ppm∕°C	i	50	100
非线性;EMF 输入	%FSR		0.01	0.025
Pi100输入	% FSR		0.1	\ \ \
		1	· -	<u> </u>
·····································	v		1	Í
共模范围	v	2		4
扁置电压	mV		0.5	2.5
对温度变化	μV/°C	}	3	5
对电源变化	dB	<u> </u>	100	

				- <u>-></u> 1		
参数	单位		IXR100			
19 XX	单位	最小	典型	最大		
电流 源			•	<u></u>		
幅度	mA		0.4			
精度	%			1		
对温度变化	ppra√°C		50	100		
匹配	%			0.5		
对温度变化	ppm/°C		25	50		
动态响应						
建立时间	ms		500			
温度花围						
工作	℃]	- 20		+ 70		
存储	℃	~ 40		+ 85		
隔离	Vrms	1000JP		_		
隔离电压	Vrms	1500KP				

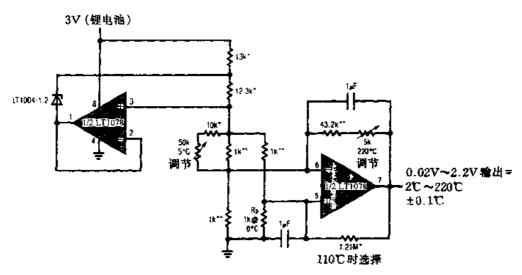

最大绝对额定值

电源电压 $(+V_S,-V_S)$	40 V
输入电压(COM 至 V _{IN})	9V
存储温度	- 40 ~ 85℃
引线焊接温度(10s)	300℃
输出电流持续极限	无限
功耗	500mW

生产厂家:BURR-BROWN

铂电阻温度信号调节电路

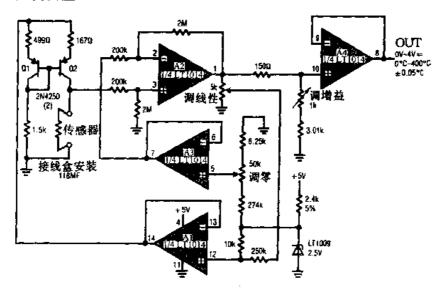
用途:用于温度测量



注: R_P 是铂电阻 118MFRTD, * 1%薄膜电阻。调节步骤:调零,设定传感器在 0℃时的输出为 0V;调增益,设定传感器在 100℃时的输出为 1V;调线性,设定传感器在 400℃时的输出为 4V;按要求重复调节。 图 1-51 线性铂信号调节器

电路中 LTC1043 为双精密仪器开关电容组合件。LTC1051 为双精密零漂运放。

铂电阻温度曲线修正的信号调节电路


用途:用于温度测量。

注:铂电阻 R_P 型号为 178MF, * * 电阻特度 0.1%, * 电阻特度 1%。LT1078 为单电源精密双运放。图 1-52 具有曲线修正的铂电阻 RTD 信号调节器

5V 铂电阻信号调节电路

用途:用于温度测量

注:电阻为金属膜电阻,选匹配比为 200kΩ ~ 2MΩ±0.01% 调节步骤;调传感器为 0℃值, 调零使输出为 0V。 调传感器为 100℃值, 调增益使输出为 1V。 调传感器为 400℃值, 调线性使输出为 4V 按要求再重复调节。

LT1014 为四运放。

图 1-53 线性铂电阻 RTD 信号调书器

1.6 温度传感器信号放大应用电路

RTD ISO 103 型隔离放大电路

用途:用于隔离变送器电路。

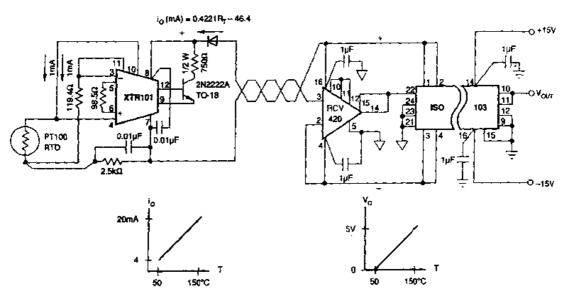


图 1-54 RTD 用 ISO 103 隔离变送器

ISO 103 隔离放大器

ISO 103 隔离放大器可供信号和电源隔离。有变压器耦合 DC/DC 变换器和电容耦合信号通道。

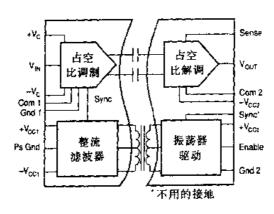
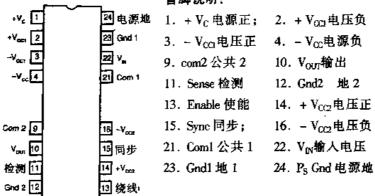


图 1-55 ISO 103 方块图

最大绝对额定值


电源电压

 $\pm 18V$

 $V_{\rm IN}$ 电压

± 50V

管脚说明:

注:* 工作时该引脚接地或用 TTL 电平驱动

图 1-56 管脚结构图

Com1 至 GND1 或 Com2 至 GND2

 $\pm 200 \text{mV}$

使能,同步

 $0 \sim \pm V_{CC2}$

连续隔离电压

1500V(ms)

 $V_{\rm ISO}$, $\mathrm{d}V/\mathrm{d}t$

 $20 \mathrm{kV}/\mu\mathrm{s}$

结温

150℃

存储温度

- 25 ~ 125℃

引线焊接温度(10s)

300℃

电参数(TA = 25℃, V_{0C2} = ±15V, ±15mA 输出)

参数	单位	ISO103			ISO103B			
છ % .	4-17c	最小	典型	最大	最小	典型	最大	
隔离						1		
连续额定电压	1						ĺ	
AC,60Hz	Vrms	1500		i	*		ł	
DC	VDC	2121		[[*			
击穿试验电压 100% AC.60Hz	Vpk	5657			*			
隔离抑制比	dB		130			*		
	dB		160			*		
隔离层阻抗	Ω∥pF		1012 9]		*	ĺ	
漏电流	μA		1	2		*	*	
增益	1 1				·			
标称	V/V		1	i i		*		
固有误差	%FSR		± 0.12	±0.3		±0.08	±0.15	
增益对温度的变化	ppm₂/℃		± 60	± 100		± 20	± 50	
非线性	%FSR		± 0.026	±0.075		±0.018	± 0.050	
	% FSR		± 0.009			*	± 0.025	
输入失调电压								
固有失调	mV		± 20	±60		*	*	
对温度变化	μV/°C		± 300	± 500		± 100	± 250	
对电源变化	mV/V		0.9			*		
对输出负载	mV/mA		± 0.3			*		
信号输入	Ī							
电压范围	v	± 10	± 15	1	*	*		
电阻	kΩ	_	200_			*		
信号输出								
电压范围	v	± 10	± 12.5		*	*		
电流驱动	mA	±5	± 15		*	*		
纹波电压 800kHz	mVp-p		25			*		
	mVp-p		5			*		
电容负载驱动	pF		1000			*		
电压噪声	$\mu V/\sqrt{Hz}$		4			*		

61 W			ISO103			ISO103B	
参 数	単位	最小	典型	最大	最小	典型	最大
頻率响应						1 "	Ī
小信号带宽	kHz		20			*	
转换速率	V/μs		1.5			*	
建立时间	μs		75			*	
电源							
额定电压 V _{cc2}	¥		± 15			/ *	
电压范围	v	± 10		± 18	*		**
輸入电流	mA		+90/-4.5	ļ		* :	
	mA		+60/-4.5	i		*	
纹波电流	ј тАр∽р	1	60	1		*	
	тАр-р		3			*	
额定输出电压	v	± 14.25	± 15	± 15.75	*	* [*
輸出	v	10	ļ.	-		*	*
负载调整率	%/mA	10	0.3			*	
电压调整率	V/V	İ	1.12	-		{ *	
输出电压对温度变化	mV∕°C	i	2.5			1 *	
电压平衡误差 ± V _{cci}	%		0.05			*	
电压纹波 800kHz	mVp-p		50	J		*	
	mVp-p		5			*	
輸出电容负载	μF		l .	1]	*
同步频率	MHz	_	1.6			*	
温度范围			i '	-			
特定	℃	- 25	1	+ 85	*		*
工作	\ °C	- 25	1	+ 85	*		*
存储	ነ "ር	- 25		+ 125	*		*

注:* 表示与 ISO 103 的参数一样。

温度传感器 ISO122 隔离放大电路

用途:用于工业过程自动控制:传感器隔离、热电偶、RTD、压力桥和流量传感器变送隔离电路。

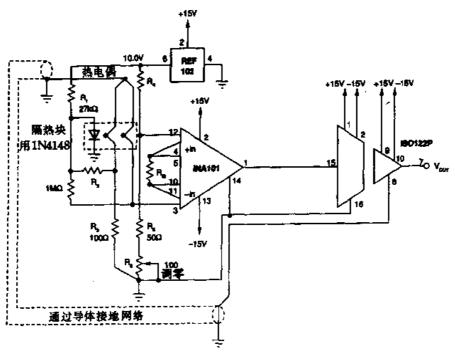


图 1-57 热电偶 ISO122 隔离变送器

电路有接地回路消除干扰,有热电偶冷端补偿,热电偶型号不同,则 R_2 和 R_4 的阻值也不同。

热电偶型号	贝塞克系数(μV/℃)	R_2 ($R_3 = 100\Omega$)	R_4 $(R_5 + R_6 = 100\Omega)$
E	58.5	3.48kΩ	56.2kΩ
J	50.2	4.12kΩ	64.9kΩ
K	39.4	5.23kΩ	80.6kΩ
T	38.0	5.49kΩ	84.5kΩ

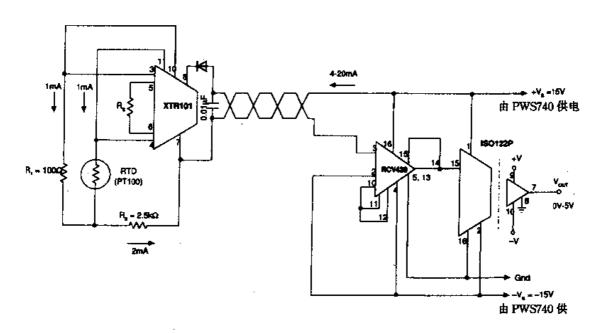


图 1-58 RTD ISO 122 隔离变送器

ISO 122 型隔离放大器

ISO 122 是隔离放大器,包含有新的频宽比调制和解调技术。主要用于工业过程控制。

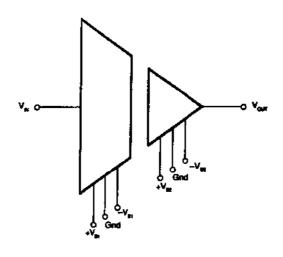


图 1-59 方块图

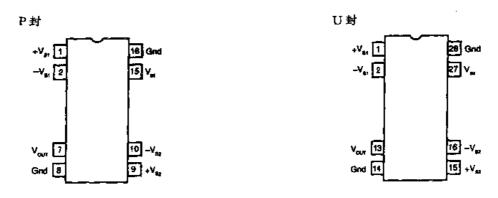


图 1-60 管脚图(顶视)

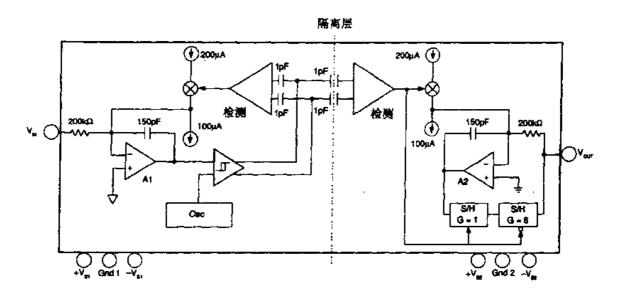


图 1-61 电路原理图

最大绝对额定值

电源电压

± 18V

输入电压 $V_{\rm IN}$

± 15V

连续隔离电压

1500V(ms)

结温

1**50°**C

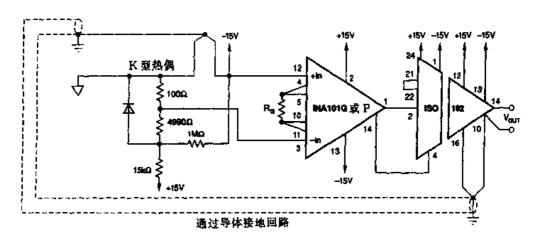
存储温度

85℃

引线焊接温度(10s)

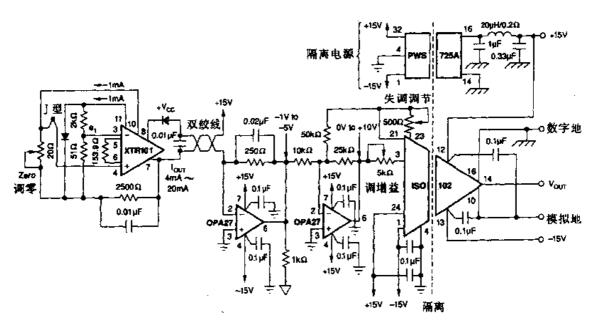
300℃

技术参数($T_{\rm A}=25\%$, $V_{\rm Si}=V_{\rm S2}=\pm15{
m V}$, $R_{\rm L}=2{
m k}\Omega$)


A #	* 12.	ISO122P/U			ISO122JP/JU			
多 数	单位	最小	典型	最大	最小	典型	最大	
<u> </u>	-						-	
电压额定值 AC 60Hz	VAC	1500	,		*	!		
100%测试	VAC	2400			<u></u> *			
隔离抑制比	dB		140		[]	*		
隔离层电阻	$\Omega \parallel { m pF}$		1014 2			*		
漏电流,在 60Hz	emπAμ		0.18	0.5		*	*	

<u>بة</u>	単位		ISO122P/U			ISO122JP/JU			
多数	平江	最小	典型	最大	最小	典型	最大		
增益									
标称增益	V/V		1			*			
增益误差	%FSR	į	± 0.05	±0.50		*	*		
增益对温度变化	ppm∕°C		± 10			*			
非线性	%FSR		± 0.016	± 0.020		± 0.025	±0.05		
输入失调电压									
固有失调	mV		± 20	± 50		*	*		
对温度变化	. μV/℃		± 200			*			
对电源变化	mV/V		±2	!		*			
噪声	$\mu V/\sqrt{Hz}$		4			*			
輸人									
电压范围	v	± 10	± 12.5		*	*			
电阻	kΩ		200			*			
输出									
电压范围	. v	± 10	± 12.5		*	*			
电流驱动	mA.	± 5	± 15		*	*			
电容负载驱动	μF		0.1			*			
纹波电压	mVp-p		20			*			
頻率响应				·					
小信号带宽	kHz		50			. *			
转换速率	V/μs		2			*			
建立时间									
0.1%	μs		50	i		*			
0.01%	μs		350			*			
过载恢复时间	ha		150			*			
电源					·				
额定电压	v		± 15			*			
电压范围	v	±4.5		± 18	*		*		
静态电流:V _{SI}	mA.		±5.0	±7.0		*	*		
V_{s_2}	mA		± 5.5	±7.0		*	*		
特定	°C	- 25		+ 85	*		*		
工作	°c	- 25		+ 85	*		*		
·· 存储	°C	- 40		+ 85	*		*		
$\theta_{\mathbf{JA}}$	°C.∕W		100			*			
9 _K	°C.∕W		65		;	*			

注:* 表示与 ISO122P/U 的参数一样


传感器 ISO102/ISO106 型信号隔离缓冲放大器电路

用途:用于热电偶、RTD、压力桥、流量传感器通道隔离放大变送 4~20mA 电路和数据采集等场合。

注:电路有接地回路和热偶冷端补偿。

图 1-62 热电偶隔离缓冲放大电路

注: $V_{OUT} = \frac{C(\underline{k}\underline{p})}{100C/V}$, 有热偶冷端补偿

图 1-63 選控隔离热电偶电路

ISO 102, ISO 106 型信号隔离缓冲放大器

ISO 102 和 ISO 106 都是隔离缓冲放大器,二者具有同样的电学性能,但有不同的精度。 ISO 102 是 24 引脚封装,1500Vmms 隔离电压。 ISO 106 是 40 引脚封装,3500Vmms 隔离电压。 特点:14 位线性;击穿电压: ISO 102 为 4000Vms/10s, 1500Vmms/1min; ISO 106 为 8000Vpx/10s,

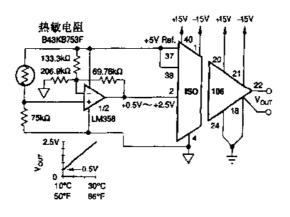
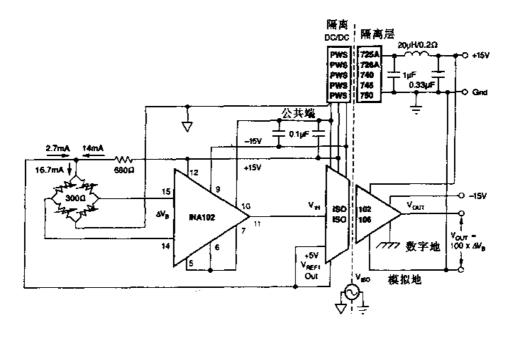



图 1-64 隔离 RTD 温度放大电路

注:隔离放大器基准电压用于传感器激励。INA102 为仪器放大器,增益 1000。

图 1-65 300Ω 传感器桥隔离放大电路

3000Vrms/1min; 宽电源电压范围 - 10V~+10V; 宽频带 70kHz; 基准输出电压为 5VDC。用于工业过程控制和传感器通道隔离等领域。

图 1-66 电路方块图

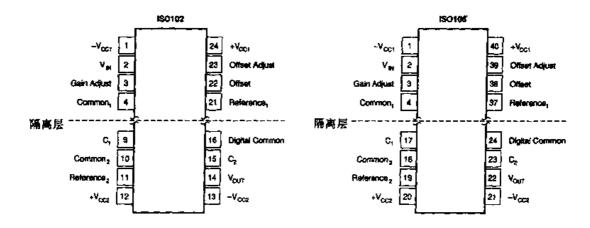


图 1~67 管脚图

管胸说明

管原	却号) W 00				
ISO102	ISO106	- 符 号 -	说 明				
1,24,4	1,40,4	± V _{CCI} Common ₁	正、负电源电压和公共端,用于输入级				
12,13,10	20,21,18	± V _{CC2} Common ₂	正、负电源电压和公共端(或接地),用于输出级				
2	2	V_{tN}	信号输入脚,输入阻抗 100kΩ 输入电压 ± 10V				
3	3	Cain Adjust	选择信号输入脚,这脚和信号之间串接电位器 5kΩ,调节增益				
21	37	Reference	+5V 基准输出,用于输入级,设置双极性偏置点。				
11	19	Reference ₂	+5V 基准输出,用于控制输出级双极性偏置				
22	38	Offset	失调输入				
23	39	Offset Adjust	这脚用于选择失调控制				
16	24	Digital Common	数字公共端或接地				
14	22	Vour	信号輸出				
9,15	17,23	C_1 , C_2	电容,用于小信号控制				

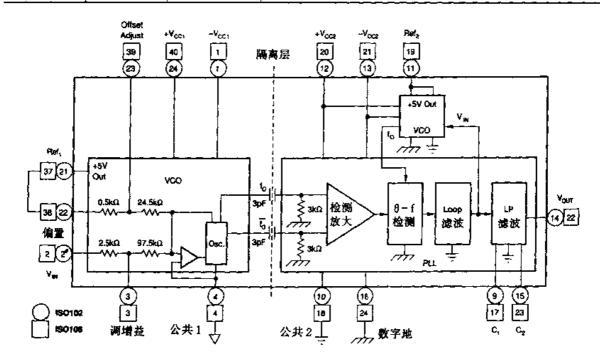


图1-68 电路原理图

参 数	单位	ISO102, ISO106, ISO102B, ISO106B			
3 X	<u>+ Ψ</u>	最小	典型		
隔离					
电压		1		-	
额定连续	ļ				
ISO 102; AC, 60Hz	Vrms	1500	1		
DC	VDC	2121			
ISO 106; AC,60H2	Vrms	3500			
DC	VDC	4950			
击穿试验,AC,60Hz					
ISO102	Vrms	4000			
ISO106	Vpk	8000			
隔离抑制比	, "				
AC: ISO 102	dВ	115	120	İ	
	μVrms/V		1	2	
ISO 106	, dB	125	130	<u> </u>	
	μVrms/V	_	0.3	0.6	
DC	dB	140	160		
	μVDC/V	- 174	0.01	0.10	
隔离层电阻	Ω		1014	0.10	
隔离层电容	pF		6		
編电流	μArms		0.5	1	
输入				 	
电压范围	l v	- 10		+ 10	
电阻	kΩ	75	100	7 10	
电容	pF	75	5		
输 出	Pr		, ,	 -	
电压范围	v	- 10		+ 10	
- CITACID	v	- 10 - 12		1	
电流驱动				+ 12	
短路电流	mA	±5 9		50	
^亚 斯·巴加 纹波电 压	mA	9	20	50	
蚁 仮 电 压 电 阻	mVp-p		3		
	$\tilde{\sigma}$	10.000	0.3	l I	
电容负载驱动能力	pF	10,000			
过载恢复时间 0.1%	l na		. 30		
會出电压噪声 					
电压:f=0.1Hz-10Hz	μVp- <u>p</u>		300		
f = 0.1Hz ~ 70kHz	$\mu V / \sqrt{Hz}$	1	16		
动态范围:f=0.1Hz~70kHz	dB		74		
f = 0.1Hz ~ 280Hz	dB		96		
聚率响应					
小信号带宽	kHz		7 0		
力率带宽,0.1%THD	kHz		5		
专换速率	V/µa		0.5		
建立时间 0.1%	ha	:	100		
1 冲小信号	%		40		
包压基准		i			
包压输出,Ref ₁ ,Ref ₂	VDC	+ 4.975	+ 5	+ 5.025	
B级	VDC	+ 4.995	+ 5	+ 5.005	
对温度变化	ppm∕°C		±5	20	
对电源变化	μV/V		10		
对负载变化	μV/mA	j	400	1000	
主流输出	mA	-0.1		+ 5	
正路电流	mA	6	14	30	

4n #4-	346 234	ISO102,	ISO102, ISO106, ISO102B, ISO106B			
参 数	单 位	最小	歴典	最大		
电源						
黻定电压,±V_{CCI},±V_{CC2}	v [± 15			
电压范围	v	± 10		± 20		
静态电流: + V _{CCI}	mÁ.		+ 11	+ 15		
- V _{CCI}	mA.		-9	- 12		
+ V ₀₀₂	mA.		+ 25	+ 33		
- V _{CC2}	mA.		- 15	- 20		
功耗: ± V _{cci}	mW	,	300	400		
± V ₀₀₂	m₩		600	800		
温度范围						
特定	r	- 25		+ 85		
工作	~ [- 55		+ 125		
存储	°C	- 6 5		+ 150		
热阻,θ _{IA}	%C\W	İ	40			
θ_{IC}	°C/W		12			

技术参数($T_A=25\%$, $V_{CCI}=V_{CC2}=\pm15V$)(续)

电参数

	** **		ISO102			ISO102B	
参 数	单位	最小	典型	最大	最小	典型	最大
増益							
标称增益	V/V		1			*	
固有误差	% FSR		±0.1	± 0.25		0.07	0.13
增益对温度变化	ppmFSR∕°C		± 20	± 50		± 12	± 25
非线性	%FSR		± 0.007	± 0.012		± 0.002	±0.003
输入偏置电压	_						<u></u>
固有偏置	mV		± 25	± 70		± 15	± 25
对温度变化	μ V /℃		± 250	± 500		± 150	± 250
对电源变化	mV/V	0	1.4	4.0	*	, *	*
	mV/V	→4	-1.4	0	*		*

- **·	单位		ISO106			ISO106B	
参 数	单位	最小	典型	最大	最小	典型	最大
増益				1			
标称增益	V/V		1			*]
固有误差	%FSR		±0.1	± 0.25		0.07	*
增益对温度变化	ppmFSR∕℃		± 20	± 50		± 12 ·	± 25
非线性	% FSR		±0.04	± 0.075		± 0.007	± 0.025
输入偏置电压							
固有偏置	mV		± 25	± 70		*	*
对温度变化	μV/°C		± 250	± 500		± 150	± 250
对电源变化	mV/V		3.7	!		*	
	mV/V		-3.7			*	

注:* 表示与 ISO 102 的参数相同

最大绝对额定值

电源电压

 $\pm 20V$

输入电压 ± 50V

抗瞬变干扰,dV/dt 100kV/μs

加至隔离层的连续隔离电压

ISO 102 1500Vrms ISO 106 3500Vrms 结温 160℃

存储温度 - 65 ~ 150℃

引线焊接温度(10s) 300℃

温度传感器 INA120 仪器放大电路

用途:用于桥传感放大、热电偶、RTD 传感器放大、医学仪器和数据采集等领域。

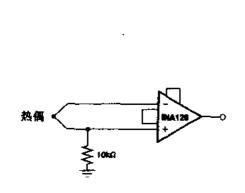


图 1-69 热电偶放大电路

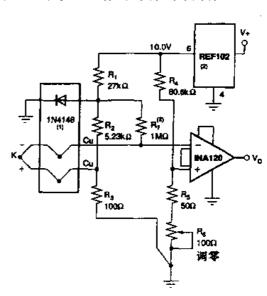


图 1-70 有冷端补偿的热电偶电路

注:(1)在200µA, -2.1mV/℃,(2) R, 提供减小量程比例损坏指示。

热电偶与电阻的关系

热电偶型号	贝塞克系数(μV/℃)	R_2 $(R_3 = 100\Omega)$	R_4 $(R_5 + R_6 = 100\Omega)$
E	58.5	3.48k	56.2k
J	50.2	4. 12k	64.9k
K	39.4	5.23k	80.6k
T	38.0	5.49k	84.5k

INA 120 型仪器放大器

INA 120 是一个通用仪器放大器。偏置失调电压低,最大值仅为 $25\mu V$;失调偏置电压漂移小,最大值为 $0.25\mu V/\mathbb{C}$;管脚选择增益为 1.10.100 和 1000;增益漂移小,在 G=100 时最大值为 $30ppm/\mathbb{C}$;高共模抑制比,在 60Hz 时为 106dB。工作中管脚 15 与 14 相接,并连至 11 脚和 5 脚也需相连。

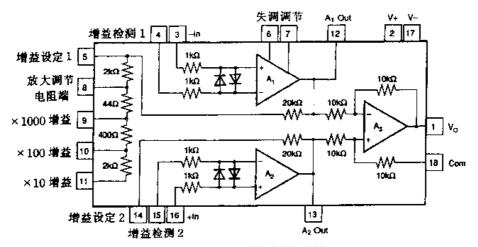


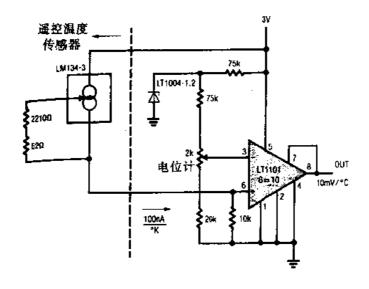
图 1-71 INA 120 电路功能方块图

最大绝对额定值

电源电压 ± 18V

输入电压范围 (V+)+2~(V-)-2V

差动输入电压 总 V_S + 4V 工作温度 - 65 ~ 150℃.


存储温度 - 65~150℃

结温 175℃ 引线焊接温度(10s) 300℃

生产厂家:BURR - BROWN

温度传感器放大电路

用途:用于遥控和接口电路。

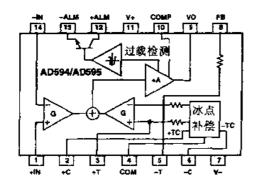

注:在25℃,调输出至250mV,温度范围25℃~150℃,精度±0.5℃。

图 1-72 微功耗电池驱动温度传感电路

生产厂家:LINEAR TECHNOLOGY

AD594/595 型热电偶放大电路

用途:用于热电偶测温和控温电路。

管脚说明:

- 1. + 1N 输入正 2. + C 温补 3. + T 温调
- 4. Com 公共端;5. T 温调
- 6. C 温补 7. V 负电压 8. FB 反馈;
- 9. 0V 输出 10. COMP 补偿;11.V+正电压
- 12. + ALM 报警; 13. ALM 报警; 14. 1N 输入负

图 1-73 电路功能和管脚图

电路是单片仪器放大器和热电偶冷端补偿电路。包括预调放大器的冷端基准,从热电偶直接产生高电平输出。有热偶故障报警指示电路。热电偶信号由管脚 1 和 14 输入;9 和 10 脚输出。

特点:预调 J(AD594)或 K(AD595)热电偶;可用于 T 型热电偶输入;低阻抗输出电压 10mV/C;电源电压范围 5V 或 ± 15V;低功耗典型值小于 1mW;激光晶片修正校准精度达 1C;内装摄氏温度换算;高阻抗差动输入。

技术参数(T_A = 25℃, V_S = 5V)

en stat		A	AD594A	A	AD594C	AD	595A	1	AD595C
参 数	単位	最小	典型 最大	最小	典型 最大	最小典	壁 最大	最小	典型 最大
最大绝对额定值				·					
+ Vs ~ - Vs	v		36		36		36		36
共模輸入电压	v	- V _S - 0.15	5 + V _S	- V _S -0.13	5 + V _s	$-V_5-0.15$	+ V s	- V _S - 0.15	+ V _S
差动输入电压	v	- V _S	+ V _S	- V _S	+ V _S	- V _s	+ V _s	- V _s	+ V _S
警告电压						ı			
+ ALM	v	- V _s	+ V _S + 36	- V ₈	- V _S + 36	- V _S	- V _S +35	- V _s	$-V_{\rm S} + 36$
- ALM	v	- V _s	+ V _S	- V _s	+ V _s	- V _s	+ V _s	- V _s	+ V ₅
工作温度范围	°C	55	+ 125	- 55	+ 125	- 55	+ 125	- 55	+ 125
输出到地短路		不定		不定		不定		不定	
温度測量				!					
(规定温度 0~50℃)			:						
校准误差(25℃)	જ		± 3		±1		±3		± l
稳定性对温度变化	°C ∕ °C		±0.05		± 0.025		± 0.05		± 0.025
增益误差	%		±1.5		± 0.75		±1.5		± 0.75
标称转换功能	ա√℃		10		10		10		10

-60 ##-	单位		AD594	A		AD594	C		AD595	A		AD\$950	۳. د
参 数	1 46.77	最小	典型	最大	最小	典型	最大	最小	典型	最大	最小	典型	最大
放大器特性	 	<u> </u>			,			1					
闭环增益	1		193.4				193.4]		247.3			247.3
输人失调电压	j	1	(TC):	×			(T℃)×	4	(T°C)>	<		x (2°T)	;
	μV	51.70µV/	C		51.70µV/	С		40.44μV/	C		40.44µV/	℃	
输入偏置电流	μA		0.1		Į	0.1			0.1		j	0.1	
差动输入范围	тV	- 10		+ 50	j			- 10		+ 50	- 10		+ 50
共模范围	v	$-V_{5}-0.$	15	- V _S - 4	$-V_{S}-0.1$	5	- V _S - 4	$-V_{\rm S}-0.$	15	- V _S -4	- Vs-0.	15	- V _S -4
共模灵敏度 - RTC	mV/V			10			10	,		10			10
电源灵敏度 - RTC	mV/V			10	Į		10			10]		10
输出电压范围	Į	Į			ļ								
双电源	v	- Vs +2.5		+ V _S - 2	$-V_8 + 2.5$		$+ V_{S} - 2$	$- V_S + 2.5$		+ V _S -2	$-V_{\rm S} + 2.5$		+ V _S - 2
单电源	v	O		+ V _S - 2	0		-	0		+ V _S +2	_		+ V _S -2
可用输出电流	mA .		± 5		ļ	± 5	~		± 5	5]	± 5	
3dB 带宽	kHz		15		Ì	15	!		15			15	
告警特性	 								•	"			
$V_{CE}(SAT), 2mA$	v		0.3			0.3		:	0.3	ļ		0.3	
漏电流	μAmax			± l			±Ι			± 1			± 1
工作电压在 - ALM	v			+ V _S - 4			+ V _S -4			+ V _S -4			+ V _S - 4
短路电流	mА	-	20			20	. 1	l	20			20	
电源要求													-
特定	v	+ V _S :	=5,-	$V_{\rm S} = 0$	+ V _S :	= 5, - 1	$V_{\rm S} = 0$	$+V_{\mathrm{S}}$	=5, — ¹	$V_{\rm S} = 0$	+ V ₅ :	=5, ~ I	$V_S = 0$
工作	v	+ V _s	$\sim -V_{5}$;≤30 [!]	+ V _s	Vs	≤30	+ V _s	~ - Vs	≤30	+ V _s	Vs	≤30
静态电流				. [
+ V _S	μА		160	300	'	160	300		160	300		160	300
$-\mathbf{V}_{\$}$	μА		100			100			100			100	•••
封装型式					•			•					
(D-14)		A	D594A)	D	A	D594CI	,	A	D595AI	o J	A	D595CE)
(Q - 14)	!!	A	D594A0	Q	A	D594C()]	A	D595A()	A	D595CQ)

生产厂家: ANALOG DEVICES

热电偶放大电路

用途:用于接口和温度计量。

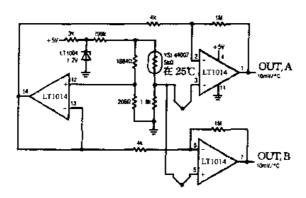
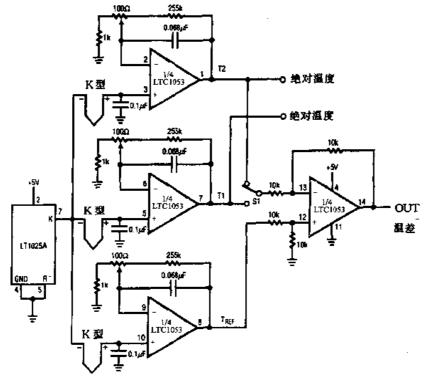

电路中的 LT1025A 为热电偶冷端补偿器,LTC1049 为低功耗运放。

图 1-74 单电源热电偶放大电路

热电偶温度放大电路

用途:用于温度计量。

注:电路用 K 型热偶。全部电阻为 1%薄膜电阻。在 0~60℃范围,冷端补偿精度为±1℃。用另外一个放大器输出温度信号。LTI014 是双四运放。

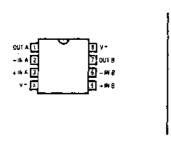

图 1-75 热电偶温度计电路

生产厂家:LINEAR TECHNOLOGY

1.7 温度传感器测控应用电路

温差测量电路

用途:用于绝对和温差温度计量。


注:电阻为 1%金属膜电阻,输出 = T_{RD} – T1 或 T_{RD} – $T2(10 \text{mV/} \, \text{C})$,精度为 ± 0.1%(在 25 C ~ 150 C) 图 1 – 76 多路差动温度计电路

电路中的 LT1025A 为热电偶冷端补偿器,LTC1053 为零漂移运放。

LTC1051/LTC1053型具有内电容双/四精密运算放大器

用途:用于热电偶放大、应变仪放大和医学仪器等领域。

特点:运放不需外部元件,最大失调电压为 $5\mu V$,最大失调电压温漂为 $0.05\mu V/\mathbb{C}$,低噪声电压为 $1.5\mu Vp-p(0.1Hz\sim10Hz)$,最小电压增益为 120dB,最小 PSRR 为 120dB,最小 CMRR 为 114dB,低电源电流为 1mA 运放,单电源 4.75V 至 16V,输入共模范围含地,输出波动含地,典型过载恢复时间 $3ms_0$

LTC1051MJ8 3 LTC1051CJ8 5 LTC1051CN8 7

管脚说明:

- 1. OUTA 输出 A; 2. INA 输入负 A;
- 3. +1NA 输入正 A; 4. V 电源负;
- 5. + 1NB 输入正 B 6. 1NB 输入负 B
- 7. OUTB输出B; 8. V+电源正。

图 1-77 管脚图(顶视)

最大绝对额定值

总电源电压

输入电压

输出短路持续时间

工作温度

 $(V + \sim V -)$ 16.5V

 $(V++0.3V) \sim (V--0.3V)$

无限

LTC1051ACJ8 LTC1051ACN8

LTC1051M, LTC1051AM $-55 \sim 125 \,^{\circ}\text{C}$

LTC1051C, LTC1051AC - 40 ~ 85 ℃

电参数(V_S = ±5V)

参数	SH S-P /Z //-	14 (ii	LTC	051/LT	C1053	L	TC1051	/A
参数	测试条件	単位	最小	典型	最大	最小	典型	最大
输入失调电压	T _A = 25℃	μ	[±0.5	± 5		±0.5	±5
输入平均失调电压温源		μV/°C		±0.0	± 0.05		±0.0	± 0.05
长期失调电压温漂		$nV/\sqrt{M_0}$		50			50	
输入偏置电流	$T_{\Lambda} = 25 ^{\circ}\text{C}$	pA		± 15	± 65		± 15	± 50
	ĺ	pA			± 135			± 100
LTC1051C/LTC1053C/LTC1051M		pA			± 450			± 300
最 1 的 黑中 35	$T_{\rm A} = 25$ °C	pA		± 30	± 125		± 30	± 100
輸入偏置电流		pA			± 175			± 150
◆ Δ : N E ⇒ → T *	$R_{\rm S} = 100\Omega$, DC ~ 10Hz	μVp-p		1.5			1.5	2
输入噪声电压	$R_{\rm S} = 100\Omega$, DC ~ 1Hz	μ۷թ-բ		0.4			0.4	
输入噪声电流	f = 10Hz	fA∕√H₂		2.2			2.2	
######################################	$V_{CM} \approx V - \sim +2.7V, T_A = 25\%$	dB	106	130		114	130	
共模抑制比,CMRR		dВ	100			110		
差模 CMRR,LTC1051,LTC1053	$V_{CM} = V - \sim +2.7V, T_A = 25^{\circ}C$	dB	112			112		
电源抑制比	$V_{\rm S} = \pm 2.375 \text{V} \sim \pm 8 \text{V}$	dB	116	140		120	140	
大信号电压增益	$R_L = 10 \text{k}\Omega$, $V_{OUT} = \pm 4 \text{V}$	dB	116	160		120	160	
	$R_{\rm L} = 10 {\rm k}\Omega$	v	±4.5	± 4.85		±4.7	± 4.85	
最大输出电压波动	$R_{\rm L} = 100 k\Omega$	y ,	±4.5	±4,95			± 4.95	
转换速率	$R_{\rm L} = 10 \text{k}\Omega$, $C_{\rm L} = 50 \text{pF}$	V/µS		4			4	

引线焊接温度(10s)

300℃

生产厂家:LINEAR TECHNOLOGY

KTY81-110型硅温度传感器的温度测量电路

用途:用于温度测量。

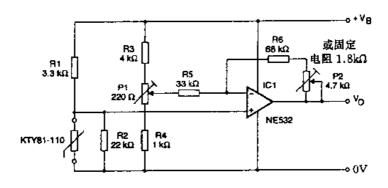


图 1-78 KTY81-110 温度传感器电路

电路中 KTY82 – 110 的适用温度范围为 0~100℃, V_0 = 0.2 V_S ~ 0.6 V_S , V_S = 5V 时, V_0 = 1~3 V_S 。电阻为金属膜电阻,精度为±1%。

放大器型号为 NE532

本电路为硅温度传感器 KTY81 - 110 或 KTY82 - 110 温度测量电路,温度范围为 0 ~ 100℃。用电阻 R1 和 R2,传感器 KTY81 - 110 组成电桥的一个臂;电阻 R3、电位器 P1 和电阻 R4 组成电桥的其他臂。根据供给传感器 ImA 电流来选择 R1 和 R2。

校准:调 P1 电位器,输出电压 $V_0 = 1V$,传感器为 0%。

在 100℃时, 调 P2 电位器, 输出电压 $V_0 = 3V_o$

再调 P2.不影响 0℃调节。

KTY82-1系列硅温度传感器

KTY82-1系列硅温度传感器具有正温度系数,用于温度测量和控制。

主要技术参数

						
参 数	符号	条 件	单 位	最小	最大	
传感器电阻	R ₂₅	$T_{\rm A} = 25$ °C; $I_{\rm C} = 1$ mA				
KTY82 - 110			Ω	990	1010	
KTY82 – 120			Ω	980	1020	
KTY82 - 121			Ω	980	1000	
KTY82 - 122			Ω	1000	1020	
KTY82 - 150			Ω	950	1050	
KTY82 – 151			Ω	950	1000	
KTY82 – 152			Ω	1000	1050	
 工作温度	T _A		℃	- 55	150	

最大额定绝对值

参 数	符号	符号 条件		最小	最大
使感慨味	,	在空气中, T _A = 25℃	mA	-	10
传感器连续电流	,c	在空气中, T _A = 150℃	mA		2
工作温度	T _s		°C	- 55	150

技术参数(T_A=25℃,在液体中)

参数	符号	条件	单位	最小	典型	最大
传感器电阻	R ₂₅	$T_{\rm A} = 25$ °C, $I_{\rm C} = 1$ mA				
KTY82 - 110			Ω	990	_	1010
KTY82 - 120			Ω	980	_	1020
KTY82 – 121			Ω	980	_	1000
KTY82 - 122			Ω	1000	_	1020
KTY82 - 150			Ω	950	_	1050
KTY82 - 151			Ω	950	_	1000
KTY82 - 152			Ω	1000	_	1050
温度系数	TC		%/K	-	0.79	-
电阻比	R_{100}/R_{25}	在 T _A =100℃,25℃		1.676	1.696	1.716
电阻比	R_{-55}/R_{25}	在 T _A = -55℃,25℃		0.480	0.490	0.500
		在静止空气中	8	_	7	-
热时间常数	r	在流动空气中	8		1	
		在流动液体中	9	-	0.5	_
工作温度			°C	- 55		150

KTY82-1系列环境温度与电阻的关系($I_c = 1 mA$)

温度(℃)	电阻 R(Ω)	温度(℃)	电阻 R(Ω)
- 55	490	50	1209
- 50	515	60	1299
- 40	567	70	1392
- 30	624	80	1490
- 20	684	90	1591
- 10	747	100	1696
0	815	110	1805
10	886	120	1915
20	961	125	1969
25	1000	130	2023
30	1040	140	2124
40	1122	150	2211

生产厂家: Philips Semiconductors

TMP01 型设置温度控制的传感器电路

用途:用于上/下限温度传感报警、电路板温度检测、温度控制器、电子恒温、热保护、工业

过程控制和遥控传感器等领域。

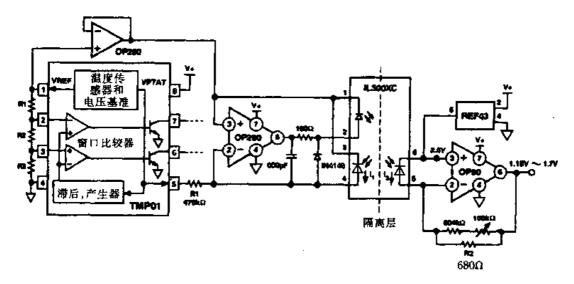
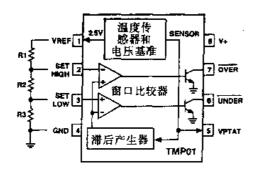



图 1-79 有隔离放大的温度传感器电路

TMP01型小功率可设置温度控制器

TMP01 温度传感器产生的输出电压与绝对温度成比例,在规定温度以上或以下两个输出 中的一个作为控制信号。用户选择外电阻确定高/低温释放点和滞后宽度。基准供给 2.5V 恒 压输出,电压与绝对温度比例系数为 5mV/K,通常电压 1.49V 时,温度为 25℃。

特点:工作温度 - 55 ~ 125 \mathbb{C} (- 67 ~ 275 \mathbb{F});温度全范围精度 ± 1.0 \mathbb{C} ;温度与输出电压成 比例;20mA 集电极开路释放点输出;与 TTL/CMOS 兼容;单电源工作(4.5~13.2V)。

管脚说明:

- 1. VREF 基准电压: 2. SEIHIGH 设定高温:
- 3. SETLOW 设定低温; 4. GND 地;
- 5. VPTAT 电压与绝对温度正比例;
- 6. UNDER 下限脚; 7. OVER 上限脚;
- 8. V+电源。

图 1-80 电路功能块和管脚图

最大绝对额定值

最大电源电压 $-0.3V \sim 15V$ $-0.3V \sim (V_{\perp}) + 0.3V$ 最大输入电压(设定高,设定低) 最大输出电流(VREF, VPTAT) 2mA 最大输出电流(集电极开路) 50mA 最大输出电压(集电极开路) 15V 工作温度 - 55 ~ 150℃ 150℃ 结温 存储温度 - 65 ~ 150℃

300℃ 引线焊接温度(60s)

技术参数 $S(V \approx 5V, GND = 0V, -40\% \leqslant T_A \leqslant 85\%)$

参数	符号	条件	单位	最小	典型	最大
输入设定高,低			T			
失调电压	V_{06}		mV		0.25	
失调电压温漂	TCVos	<i>)</i> 	μV/°C -		3	
輸入偏置电流"E"	I _B		nA	-	25	50
输入偏置电流"F"	I _B		nA		25	100
输出 VPTAT						
输出电压	VPTAT	<i>T_A</i> = + 25℃, 无负载	v		1.49	
比例系数	TC _{VPTAT}		mV/K		5	
温度精度,"E"		<i>T_A</i> = +25℃,无负载	°C	- 1.5	±0.5	1.5
温度精度,"F"		T _A = +25℃,无负载	℃	- 3	±1.0	3
温度精度,"E"	į	10℃ < T _A < 40℃, 无负载	°C		± 0.75	
温度精度,"F"		10℃ < T _A < 40℃, 无负载	℃		±1.5	
温度精度,"E"		-40℃ < T _A < 85℃ , 无负载	°C	- 3.0	± 1	3.0
温度精度,"F"	ļ	-40℃ < T _A < 85℃, 无负载	°C	-5.0	±2	5.0
温度精度,"E"	1	- 55℃ < T _A < 125℃, 无负载	°C		± 1.5	
温度精度,"F"		-55℃ < T _A < 125℃, 无负载	۰c		± 2.5	
重复性误差	△VPTAT	3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	(0)		0.25	
长期温漂误差			(0)	!	0.25	0.5
电源抑制比	PSRR	$T_{\rm A} = +25^{\circ}\text{C}, 4.5\text{V} \le \text{V} + \le 13.2\text{V}$	%/V		± 0.02	±0.1
輸出 VREF					-	
输出电压,"E"	VREF	<i>T_A</i> = +25℃,无负载	v	2.495	2.500	2.505
输出电压,"F"	VREF	T _A = +25℃,无负载	v	2.490	2.500	2.510
输出电压,"E"	VREF	-40℃ < T _A < 85℃ , 无负载	v	2.490	2.500	2.510
输出电压,"F"	VREF	-40℃ < T _A < 85℃, 无负载	v l	2.485	2.500	2.515
输出电压,"E"	VREF	-55℃ < T _A < 125℃, 无负载	$\begin{bmatrix} & \cdot & \cdot \\ \mathbf{v} & \cdot \end{bmatrix}$	2.100	2.5 ± 0.01	2.535
输出电压,"F"	VREF	-55℃ < T _A < 125℃, 无负载	v		2.5 ± 0.015	
课移	TCVREF	-35 C C 1 _A C 125 C 1, 75 Mag.	ppm∕°C	1	- 10	
电压调整率	TREE	4.501719.01	%/V		±0.01	± 0.05
负载调整率]	$4.5V \le V + \le 13.2V$	%/mA		±0.1	± 0.25
輸出电流	$I_{ m VREF}$	$10\mu\text{A} \le I_{\text{VREF}} \le 500\mu\text{A}$	μ A		7	10.20
滞后电流比例系数	SF _{HYS}		μ Α /%		5.0	
接通建立时间	51 1175	到 额定精 度	μs		25	
				<u></u>	 _	 .
// 昭初五二、)* - 輪出低	v_{ol}	$I_{SINK} = 1.6 \text{mA}$	v		0.25	0.4
輸出低	V _{OL}	$I_{\text{SINK}} = 20 \text{mA}$	v }		0.6	V.7
输出 漏电流	ļ				1	100
福田伽电机 下降时间	I _{OH}	V + = 12	μA		1 40	100
 	t _{RL}		ns			
电源						10.0
电源范围	V+	T & # ** #*-	v	4.5	,,,,,	13.2
电源电流	I _{SY}	无负载, + V = 5V	μA		400	500
电源电流	I _{SY}	无负载, + V = 13.2V	μ A		450	800
功耗	P_{DISS}	+ V = 5V	mW		2.0	2.5

AD22105 型内有传感器的低电压、电阻编程恒温开关电路

用途:用于工业过程控制、热控制系统、CPU 监视(用铂电阻)、计算机热管理电路、风扇控

制和手握/便携式电子设备等领域。

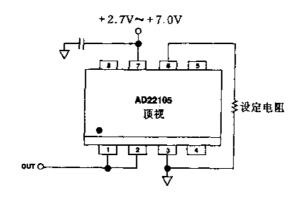


图 1-81 典型应用电路

AD22105 低电压、电阻可编程恒温开关

AD22105 是一个固态恒温开关,只要求外接一个可编程电阻,在 - 40 ~ 150℃范围内的任何温度,AD22105 能精确设定温度开关。当环境温度超过用户设定的温度点时,AD22105 就输出集电极开路电压。AD22105 快速通断,约有 4℃的迟滞。内电阻 200kΩ 拉起电阻包括在驱动轻负载如 CMOS 输入电路。通常低功率指示器可直接驱动。

特点:用户编程设定温度点精度为 2.0%,预设 4.0%迟滞;宽温度范围 $-40 \sim 150\%$;低功耗在 3.3V 时为 230uW。

最大绝对额定值

最大电源电压

11V

结温

160℃

最大输出电压(脚2)

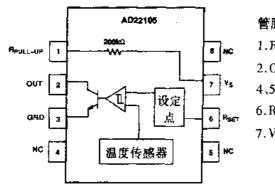
11V

存储温度

-65 ~ 160℃

最大输出电流(脚 2)

10mA


引线焊接温度(10s) 300℃

工作温度

- 50 ~ 150℃

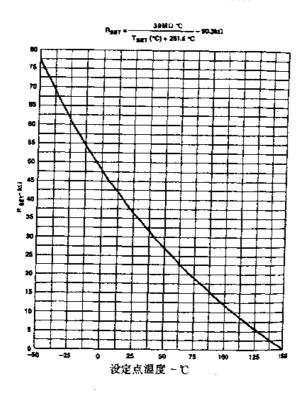
技术参数(V_S = 3.3V,T_A = 25℃,R_L = 200kΩ)

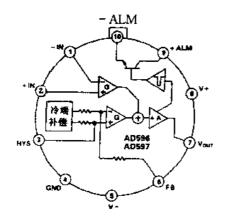
参数	符 号	条件	单位	最小	典型	最大
温度精度			<u>-</u>		<u></u>	
环境温度精度	ACC	İ	°C		± 0.5	± 2.0
温度设定点精度	ACC _T	$-40\% \leqslant T_{\Lambda} \leqslant +125\%$	{ ℃ {			± 3.0
电源抑制比	PSR	$+2.7V < V_8 < +7.0V$	C/V		± 0.05	±0.15
迟滞					<u>-</u>	
迟滞值	HYS		9C		4.1	
开路输出	ĺ		ļ " [
输出低电压	V_{OL}	$I_{SINK} = 5 \text{mA}$			250	400
电源						
电源范围	$V_{\mathbf{S}}$)	v	+2.7		+7.0
电源电流输出低	IS _{ON}		μA			120
电源电流输出高	IS _{OFF}	_	μA			90
内拉起电阻	RPULL-UP		kΩ	140	200	260
接通建立时间	ton		μs		5	

管脚说明

- 1.R_{PULL-UP}拉起电阻;
- 2.OUT 输出;3.GND 地;
- 4、5、8 NC 不连接;
- 6.R_{SEF}设定电阻;
- 7. Vs电源。

图 1-82(a) AD22105 电路功能和管脚图



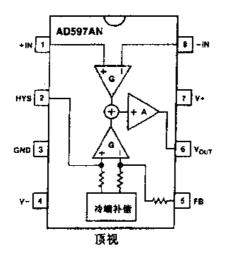

图 1-82(b) 设定点电阻值与温度关系曲线

AD596/597 型热电偶调节器和设定点控制器电路

用途:用于温度测量和控制

AD596/597 是单片温度设定控制器电路。有冷端补偿,放大器对J或K型热电偶输入信号放大与温度成比例。信号与外加设定电压比较,有控制开关电压输出,输出 10mV/℃。工作电压 5V~30V;静态电流 160μA。热电偶 AD596 测量温度范围 100℃~540℃。冷端补偿温度范围 25~100℃。

特点:工作 J型(AD596)或 K型(AD597)热电偶;内设冷端补偿;温度电压比例运算 $-10\text{mV}/\Omega$;温度设点开关工作;高阻抗差动输入;可设置开关滞后。



贊脚说明

- 1. IN 输入负;2+ IN 输入正;
- 3.HYS 迟滞;4.GND 地;

TO-100 封装 5.V-电源负;6.FB反馈;

- 7. VouT输出;8. V₊电源正;
- 9. + ALM 报警; 10. ALM 报警。
- 1.+ IN 输入正; 2. HYS 迟滞; 3. GND 地;
- 4.V-电源负;5.FB反馈;6.Vour输出;
- 7.V, 电源正; 8. IN 输入负。

DIP 封装

图 1-83 电路功能和管脚图

技术参数(T_A = 60℃, V_S = 10V)

≗ 数	单位		AD596AF	1		AD597AI	i	A	D597AN/	AR .
SP ¥X.	747	最小	典型	最大	最小	典型	最大	最小	典型	最大
最大绝对值	"			. =						
+ V _S ~ - V _S	. v			36			36	<u> </u> 		36
共模输入电压	v	$(-V_3-0.15)$		+ V _S	$(-V_{\rm S}-0.15)$		+ $V_{\rm S}$	$(-V_S-0.15)$		+ V _S
差动输入电压	v	- V _S		+ V _S	- V _S		$+ V_S$	- V _S		+ V _S
告警电压	<i>:</i> 			į						
+ ALM	v	- V _S		$(-V_8+36)$	– V S		$(-V_{\rm S} + 36)$	- V _S		$(-V_{\rm S} + 36)$
ALM	v	- V _S		+ V _S	$-V_{\rm S}$		+ $V_{\rm S}$	- V _S		+ V _S
工 作濃度范围	₽C	- 55		+ 125	- 55		+ 125	- 40		+ 125
输出到地短路		不定			不定			不定		
温度测量(規定温度25~100℃	1		•		,					· · · · · ·
标准误差	°C	-4		+4	- 4		+4	- 4		+ 4
稳定性对温度变化	°C/°C		± 0.02	± 0.05		± 0.02	± 0.05		± 0.02	± 0.05
增益误差	%	~1.5		+ 1.5	-1.5		+ 1.5	~ 1.5		+ 1.5
标称转换功能	mV∕°C		10	!		10	i		. 10	

مثم علائب	حد هم		AT29XAH			AD <i>59</i> 7AH		Al	D597AN/	AR.
参数	单位	最小	典型	最大	最小	典型	最大	最小	典型	及大
放大特性					!					
闭环增益	V/V	į	180.6			245.5			245.5	
输入失调电压	μV		°C × 53,21	+ 235		℃×41.27=	37	l vc	×41.27 –	37
輸入偏置电流	μΛ		0.1			0.1		ļ	0.1	
差动输入范围	mV	- 10		+ 50	- 10		+ 50	- 10		+ 50
共模范围	v	$(-V_S - 0.15)$		$(+V_{\rm S}-4)$; (+ V _S = 0.15).		$(+V_{S}-4)$	$(-V_S - 0.15)$		$(+V_{S}-4)$
共模製敏度 – RTO	mV/V			10	 		10	_		10
电源灵敏度 – RTO	mV/V		1	10		1	10		1	10
输出电压范围	v	$(-V_5 + 2.5)$)	$(+V_{5}-2)$	$(-V_8+2.5)$		$(+V_{S}-2)$	$(-V_S + 2.5)$		$(+V_8-2)$
双电源	v	Ô			0			0		$(+V_{S}-2)$
单电源	mA.	±5		(± 5		(3 - /	±5		(
可用输出电流	kHz		15			15			15	
3dB 带宽					: İ					
									打印输品	 Ы
$V_{CE}(SAT)$, 2mA	l v		0.3			0.3		, ,,,	11 1444年 に	п
漏电流	μA			± ì			± l	·		
工作电压在 - ALM	v			$(+V_{S}-4)$			$(+V_{S}-4)$			
短路电流	mA		20			20				
—————————————————————————————————————							- 20		-	
工作	v	(+1	$V_{ m S}$ to – $V_{ m S}$) s	≨30	(+	$V_{\rm Sto} - V_{\rm S}$	≲30	$(+ V_{\rm S})$	$(\omega - V_S)$	≲30
静态电流							ĺ			
+ V _S	μА		160	300		160	300		160	300
$-V_S$	μA		100	200		100	200		100	200

TMP14 型传感器 4 点设置温度监测和控制电路

用途:用于电源监测和控制系统、多路电风扇控制系统和工作站热控制系统等领域。 TMP14 是一个温度传感器和控制器集成电路。产生的输出电压与温度成比例。

特点:4个设置温度点;设置热滞后; $-40 \sim 125 \degree$ 范围内的精度为 $\pm 3 \degree$; 温度输出比例系数为 $5 \text{mV}/ \degree$; 集电极开路设置点输出为5 mA; 内基准2.5 V; +5 V 时的最大静态电流为 $500 \mu \text{A}$ 。

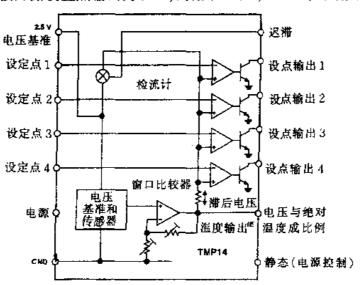
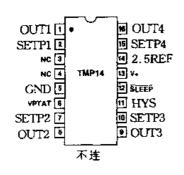



图 1-84 TP14 多点温度监测控制集成电路块

管脚说明:

- 1.OUTI 输出 1;2.SEII 设定点 1;3、4.NC 不连接;5.GND 地;
- 6. VPTAT 电压与绝对温度成比例;7. SET 设定点 2;8. OUT2 输出 2;
- 9.OUT3 输出 3; 10.SET3 设定点 3; 11.HYS 迟滞; 12.SLEEP 静态(电源控制); 13.V+电源正; 14.2.5VREF 2.5 基准; 15.SET4 设定点 4; 16.OUT4 输出 4。

图 1-85 管脚图(顶视)

最大绝对额定值

最大电源电压

 $-0.3 \sim 15$ V

最大设置点输入电压

 $-0.3 \sim (V_+) + 0.3V$

最大基准输出电流 最大集电极开路输出电流

2mA 20mA

最大集电极开路输出电压

15V

工作温度

- 55 ~ 150℃

结温

175℃

存储温度

-65 ~ 160℃

引线焊接温度(60s)

300℃

技术参数($V_S = 5V$, $-40\% \leqslant T_A \leqslant 125\%$)

参 数	符号	条 件	单位	最小	典型	最大
精度						
精度(设点 1)		$T_{\Lambda} = +25\%$	°C		± 2	± 3
精度(设点 1)		$T_{\rm A} = -40^{\circ}{\rm C} - + 125^{\circ}{\rm C}$	°C		± 3	± 5
VPTAT 输出比例		m 2500	mV∕°C	+4.9	+5	+ 5.1
设定滞后 电源抑制比	PSRR	$T_{A} = +25\%$	°C /V		0.6,1.5,5 0.1	0.5
电破抑制 IC 线性度	ronn	$4.5V \leq +V_{S} \leq 5.5V$	%		0.5	0.5
 设点输入						
失调电压	V_{∞}	$T_{\rm A} = +25$ °C	mV		0.25	l
失调电压失配		$T_{\rm A} = +25$ °C	mV		0.1	0.5
輸出电压漂移	. TCVos		μV/°C		3	
输人偏置电流 ————————————————————————————————————	I _B		nA		25	100
V _{REF} 輸出						
输出电压	Vree	<i>T_A</i> = +25℃,无负载	V	2.49	2.50	2.51
输出电压 徐山塞特	VHEN	无负载	V		2.5 ± 0.015	
输出漂移 	TCV _{REF}		ppm/°C		- 10	
集电极开路输出						
输出低电压	$V_{\rm OL}$	$I_{\rm SLNK} = 1.6 \text{mA}$	V		0.25	0.4
输出低电压	V _{OL}	$I_{SINK} = 5 \text{mA}$	v		0.6	
输出漏电流	I_{OH}	$V_{\rm S}=12{ m V}$	μA		1	100
下降时间	t _{HL}	1	ns		40	
电源						
电源电压	+ V _S	1	v	4.5		5.5
电源电流	I_{SY}	无负载(在+5V)	μA		400	500
	I_{SY}	无负载(在 + 12V)	μA		450	

TMP10 型传感器设定温度控制器电路

用途:用于环境控制系统、过热保护、电池充电、电源监视系统和电源 CPU 热控制等领域。

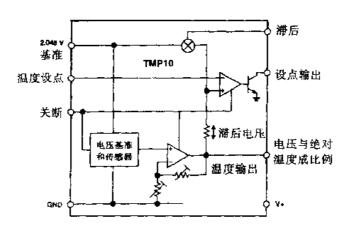


图 1-86 单点温度控制集成电路方块图

TMP10 是一个低电压、精密、摄氏温度传感器和控制器集成电路。其输出电压与摄氏温度 成线性比例。

特点:低电压工作 2.7V ~ 5.5V;校准 $10\text{mV}/\mathbb{C}$ 比例系数;全温度范围内的精度为 \pm 3 \mathbb{C} ;线性度为 \pm 0.5 \mathbb{C} ;精密基准 2.048V;设置比较器滞后 $1\mathbb{C}$,2 \mathbb{C} ,或 3 \mathbb{C} ;额定工作温度 - 40 ~ $125\mathbb{C}$,也可至 $150\mathbb{C}$;最大静态电流为 $100\mu\text{A}$;关断电流最大值为 $1\mu\text{A}$ 。

技术参数(Vg=	2.7~	-5.5V,	- 40°C ≤ T ₄	≤125°C)
----------	------	--------	-------------------------	---------

参 数	符号	单位	最小	典型	最大
VPTAT 精度		1		•	
TMPIOF		° €	ļ	±]	± 2
TMPIOG	i	° C	}	± 1	±3
TMP10F		30	i i	± 2	± 3
TMPIOG		્રે ક્	<u> </u> 	± 2	± 4
VPTAT 输出		}			
比例系数	ļ	mV/°C		+ 10	+9.8/+10.2
标称输出电压	VPTAT	mV		100	
标称输出电压	VPTAT	mV		750	
标称输出电压	VPTAT	mV		1750	
输出电压范围		mV	100		2000
输出负载电流	I_{L}	μ A	0		200
电容负载驱动	C_1	_P F	1000	10,000	
器件接通时间		ms		0.5	1
电源抑制比	PSRR	°C/V		0.5	
非线性	;	ec ,		0.5	
长期稳定性		ზ ზ		0.1	
基准源		†			
輸出电压	$V_{\mathtt{REF}}$	l v	2.040	2.048	2,056
輸出电压	$V_{ m HEF}$	V	2.036	2.048	2.060
温度系数	TC	ppm∕°C		15	
输出电流	I_{REF}	_μ Α]			25

多 数	符号	单位	最小	典型	最大
比较器					
失调电压	V _{os}	mV		1	
输入偏置电流	I_{B}	nA	 :	10	25
集电极开路输出	$V_{ m our}$	v			0.4
集电极开路输出	I_{OUT}	m A	0.5	1	
滞后		℃		1	
		℃		2	
		°C		5	
美斯輸人					
输入高压	V_{BI}	v	1.8		
输入低压	V _L	mV			800
电源			•		
电源范围	+ V _S	v	2.7		5.5
电源电流	I _{SY}	μΑ			100
关断电流	I_{SD}	μΑ		0.1	1

生产厂家: ANALOG DEVICES

1.8 温度传感器模块应用电路

KTY84 型温度传感器 5V 电源电路

用途:用于温度测量电路。

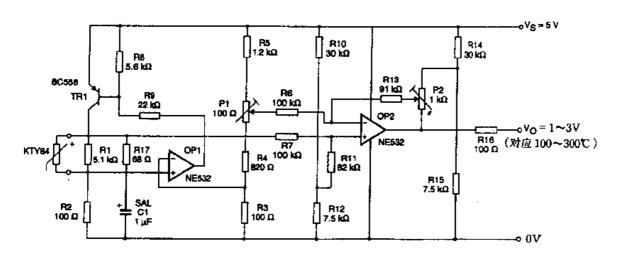


图 1-87 KTY84 传感器 5V 电源测温电路

电路中的低电流源供给温度传感器 KTY84 和线性化电阻 R1 和 R2。电路中的 TR1 晶体管和运算放大器 OP1 组成电流源,运算放大器放大传感器信号,并输出放大电压。300℃时的最大电流是 1.5mA。

KTY84型温度传感器电路

用途:用于温度测量。

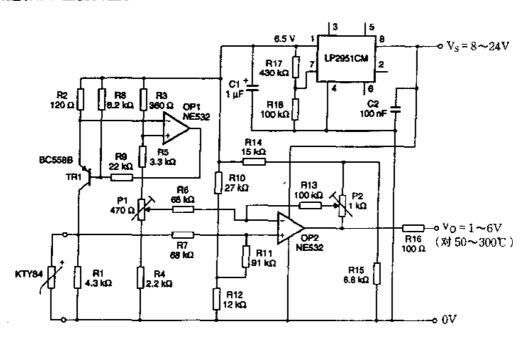


图 1-88 KTY84 温度传感器测量电路

电路内有稳压电路,电源电压为 8~24V;运算放大器 OP1 和晶体管 TR1;温度传感器的电流源;运算放大器 OP2 放大桥的信号,并输出测量电压。电路有零点调节电位器 P1 和满量程调节电位器 P2。电路测温范围为 0~300℃。

KTY84 - 130/150/151/152 型硅温度传感器

KTY84 是一个高精度电阻温度系数传感器,用于 - 40 ~ 300℃温度范围内的温度测量和控制。

主要技术参数

符号	条件	单位	最小	最大
R _{t00}	T _A = 100℃;			
	$I_C = 2mA$	Ω	970	1030
		Ω	950	1050
		Ω	950	1000
		Ω	1000	1050
		R_{100} $T_A = 100$ °C;	R_{KO} $T_A = 100 ^{\circ}C$; $I_C = 2mA$ Ω Ω	R_{t00} $T_A = 100^{\circ}C$; $I_C = 2mA$ Ω 970 Ω 950 Ω 950

最大绝对额定值

参数	· 符号	条件	单位	最小	最大
****************		在空气中 T _A = 25℃	mA		10
连续传感器电流	I _C	在空气中 T _A = 100℃	mA	_	2
	T _A	****	°C	- 40	300
存储温度	$T_{ m STg}$		℃	- 55	300

技术参数(T_A = 100℃,在液体中)

参 数	符号	条件	单位	最小	典型	最大
电阻	R ₁₀₀	$I_C = 2mA$				
KTY84 - 130			Ω	970	_	1030
KTY84 - 150			Ω	950	-	1050
KTY84 - 151		Ì	Ω	950	-	1000
KTY84 - 152			Ω	1000		1050
温度系数	TC		%/K		0.62	_
电阻比	R_{250}/R_{100}			2.140	2.195	2.250
电阻比	R_{25}/R_{100}			0.590	0.598	0.606
热时间常数	τ	在静止空气中	8	-	20	-
		在静止液体中	\$	- i	1	_
		在流动液体中	8	-	0.5	_

生产厂家: Philips Semiconductors

TMP12 型空气温度传感器集成电路

用途:应用于系统空气传感器、温度传感器设备、电源温度传感器、风扇控制器和过温保护 电路等领域。

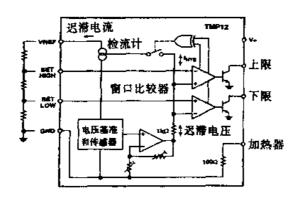


图1-89 电路功能方块图

TMP12 是空气温度传感器。它产生的内部电压与摄氏温度成线性比例。线性输出电压电路由外电阻分压器连至 2.5V 基准构成。分压器设定一个或二个基准电压,根据用户要求设定一个或二个温度点。比较器集电极开路输出电流沉 20mA。低温度系数的 1000 加热电阻可直接连至 5V 电源。滞后内外电阻电路设定,由流过 2.5V 基准源的总电流决定。电源可用单电源 5V,也可用 12V 工作。加热器只能用 5V 工作。工作温度为 – 40 ~ 125℃,上限可扩展至 150℃,但精度要降低。

特点:温度传感器含有 100Ω 加热器;加热器给电源恒温,量程 $0 \sim 100 ^{\circ}$ 、精度典型值为 \pm $3 ^{\circ}$; $5 _{\rm m} V / ^{\circ}$ 内部比例系数;电阻设置设定稳定点;内置 2.5 V 基准源; $400 \mu A$ 静态电流(加热器断开);用最少的外部元件。

管脚说明:

1.VREF 基准; 2.SET HIGH 设定高温; 3.SET LOW 设定低温; 4.GNO 地; 5.HEATER 加热器; 6.UNDER 下限; 7.OVER 上限; 8.V+ 电源正

图 1-90 管脚图(顶视)

最大绝对额定值

电源电压

 $-0.3 \sim 15V$

加热器电压

6V

设定输入电压

 $-0.3 \sim (V_+ + 0.3V)$

基准输出电流 集电极开路输出电流 2mA

集电极开路输出电压

50mA 15V

工作温度

- 55 ~ 150℃

结温

175℃

存储温度

- 65 ~ 160℃

引线焊接温度(60s)

300℃

技术参数 $(V_S = 5V, -40 \% \leqslant T_A \leqslant +125 \%)$

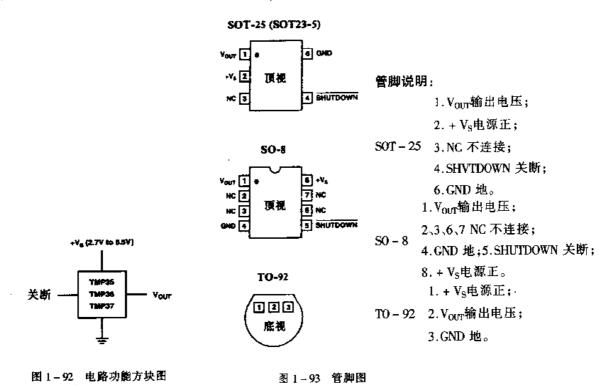
参数	符号	条件	单位	最小	典型	最大 ———
精度			_		_	
精度(高、低设定)		$T_{\Lambda} = +25^{\circ}C$	[°C		± 2	±3
精度(高、低设定)		$T_{\rm A} = -40\% \sim +100\%$	°C		± 3	± 5
内比例系数	PSRR	$T_{\rm A} = -40\% \sim +100\%$	mV/°C	+4.9	+ 5	+ 5,1
电源抑制比	MACA	$4.5V \leq + V_S \leq 5.5V$	¶ °C/V		0.1	0.5
线性度		$T_A = -40\% - +125\%$	የር		0.5	
重复性		$T_{\rm A} = -40^{\circ}{\rm C} \sim +125^{\circ}{\rm C}$! °C		0.3	
长期稳定性		$T_{\rm A} = +125^{\circ} \rm C (1 kHz)$	°C		0.3	
设定输入						
失调电压	V_{08}		mV		0.25	
输出电压温源	TCVos		μV/°C		3	
输人偏置电流	I _B		nA		25	100
基准输出			.			
输出电压	VREF	$T_{\rm A}=+25^{\rm 9C},$	v	2.49	2.50	2.51
輸出电压	VREF	$T_{\rm A} = -40^{\circ}{\rm C} \sim +100^{\circ}{\rm C}$,	v		2.5 ± 0.015	
输出温源	$TC_{ m VREF}$		ppm/°C		- 10	
输出电流	IVREF		μA		7	
滞后电流比例系数	SF _{HYS}		<i>μ</i> Α/°C		5	
集电极开路输出						
输出低电压	$v_{\rm ol}$	$I_{SINK} = 1.6 \text{mA}$	v		0.25	0.4
输出低电压	$\nu_{ m or}$	$I_{SINK} = 20 \text{mA}$	v		0.6	
输出漏电流	I _{OH}	$V_S = 12V$	μA		1	100
下降时间	‡HIL.		ns	<u>. </u>	40	_
加热器					- 22	100
电阻	R_{H}	$T_{\rm A} = +25$ °C	Ω	97	100	103
温度系数		$T_{\rm A} = -40^{\circ}{\rm C} \sim +125^{\circ}{\rm C}$	ppm∕°C		100	
最大连续电流	I _H		mA_		<u>. </u>	60
电源	+ V ₈) v	4.5		5.5
电源电压	I _{SY}	空载(在+5V)	μA		400	600
电源电流	Işy	空载(在 + 12V)	μ A		450	

AD590 型双端温度传感器集成电路

用途:用于温度测量和控制。

图 1-91 管脚图(底视)

AD590 是双端温度传感器电路,输出电流与绝对温度成比例。在 298.2k(25%)时的电流为 298.2μ A。


特点:线性电流输出 1μ A/k;宽温度范围 – 55 ~ 150℃;电压输入/电流输出;激光修正到 ± 0.5℃校准精度(AD590M);优良的线性度 ± 0.3℃/FS(AD590M);宽的电源电压范围 4 ~ 30V;传感器与外壳绝缘。

最大绝对额定值

正向电压(E,或 E_) 44V - 20V 反向电压(E,或 E_) 反向击穿电压(壳体 E₊或 E₋) $\pm 200V$ - 55 ~ 150°C 额定温度范围 - 65 ~ 165℃ 存储温度 300℃ 引线焊接温度 $4 \sim 30V$ 工作电源电压 标称输出电流 $298.2 \mu A$ $1\mu A/K$ 标称温度系数 最大±2.5~±5.0℃ 校准误差(在25℃) $\pm 0.8 \sim \pm 1.5$ °C 输出非线性 ±0.1℃ 重复性 长期温漂 ±0.1℃ 电源抑制比 4V≤V_S≤5V 时 $0.5\mu V/V$ $0.2\mu V/V$ 5V ≤ V_s ≤ 15V 时 $0.1 \mu V/V$ 15V ≤ V_S ≤ 30V 时 $10^{10}\Omega$ 壳体与引脚绝缘电阻 电接通时间 $20\mu s$ 反偏压漏电流 10pA

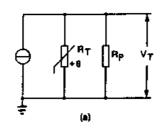
TMP35/TMP36/TMP37 型低压温度传感器集成电路

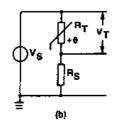
用途:用于环境控制、热保护、工业过程控制、火灾报警、电源监测系统和 CPU 热控制等领 · 68 ·

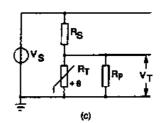
TMP35/36/37 是低电压,精密摄氏温度传感器,其输出电压与摄氏温度成线性比例,不需要校准,25℃时的精度为 \pm 1℃, \pm 40~125℃范围内的精度为 \pm 2℃。传感器输出线性电压接温度控制电路和 A/D 变换器。

特点:低电压工作 $2.7 \sim 5.5V$;用C直接校准;比例系数 10 mV/C (TMP37 为 20 mV/C);全温度范围内的精度为 $\pm 2 C$;线性度为 $\pm 0.5 C$;驱动大容性负载具有稳定性;规定工作温度 – $40 \sim 125 C$,也可工作至 150 C;静态电流小于 $50 \mu A$;关断电流最大为 $0.5 \mu A$ 。

工作温度范围


型 号	精度 25℃(℃)	线性工作范围	封 装
TMP35F19	± 2.0	+ 10℃ ~ + 125℃	TO - 92
TMP35GT9	±3.0	+ 10℃ ~ + 125℃	TO - 92
TMP35FS	±2.0	+ 10℃ ~ + 125℃	SO - 8
TMP35GS	±3.0	+ 10℃ ~ + 125℃	SO - 8
TMP35GRT ²	±3.0	+ 10°C ~ + 125°C	SOT - 25
TMP36FT9	±2.0	40°C ~ + 125°C	TO - 92
TMP36GT9	±3.0	-40°C ~ +125°C	TO - 92
TMP36FS	±2.0	-40℃ ~ +125℃	SO - 8
TMP36CS	±3.0	-40℃ ~ +125℃	SO - 8
TMP36GRT [©]	± 3.0	-40℃ ~ +125℃	SOT - 25
TMP37F19	± 2.0	+5℃ ~ +100℃	TO - 92
TMP37GT9	±3.0	+5℃~+100℃	TO - 92
TMP37FS	± 2.0	+5℃ ~ +100℃	SO - 8
TMP37GS	± 3.0	+5℃ ~ +100℃	SO - 8
TMP37GRT ²	±3.0	+5℃ ~ +100℃	SOT - 25


技术参数(V_S = 2.7V ~ 5.5V, -40℃ ≤ T_A ≤ 125℃)


参 数	符号	条件	单位	最小	典型	最大
 精度						
TMP35/TMP36/TMP37F		$T_{\Delta} = +25\%$	℃		±l	± 2
TMP35/TMP36/TMP37G		$T_{\rm A} = +25{\rm ^{9}C}$	€.		± l	± 3
TMP35/TMP36/TMP37F		- 40℃ ~ 125℃	૧		± 2	± 3
TMP35/TMP36/TMP37G		- 40°C ~ 125°C	ъ		± 2	± 4
比例系数,TMP35		$+10^{\circ}\text{C} \leq T_{\Lambda} \leq +125^{\circ}\text{C}$	mV/℃		+ 10	+9.8/+10.2
比例系数,TMP36		$-40^{\circ}\text{C} \leqslant T_{\Lambda} \leqslant +125^{\circ}\text{C}$	mV/°C	•	+ 10	+9.8/+10.2
比例系数,TMP37		$+5\% \leqslant T_{A} \leqslant +85\%$	mV/℃		+ 20	+ 19.6/ + 20.
比例系数,TMP37		$+5\% \leqslant T_{\Lambda} \leqslant +100\%$	mV/℃		+ 20	+ 19.6/ + 20.
		$3.0V \leq + V_5 \leq 5.5V$				
负载调整率		$0\mu V \leq I_L \leq 50\mu A$	m°C/μA		1	20
电源抑制比	PSRR	T _A = +25℃	m°C/V		30	100
电源抑制比	PSRR	$3.0V \leq + V_S \leq 5.5V$	m°C/V	-	50	
线性度			€C		0.5	
长期稳定性		$T_{\rm A} = +150$ °C, 1kHrs	C		0.4	
 关断						
逻辑高输入	$V_{ m IH}$	$V_{\rm S} = 2.7 \rm V$	V	1.8		
逻辑低输入	V _{IL}	V _S = 5.5V	mV	-	400	
渝出						
TMP35 输出电压		$T_A = +25^{\circ}C$	mV		250	
TMP36 輸出电压		$T_{\rm A} = +25\%$	mV		750	
TMP37 输出电压		$T_A = +25\%$	шV		500	
输出电压范围			mV	100		2,000
输出负载电流	$I_{\rm L}$	-	μΑ	0		50
短路电流	I _{sc}	İ	μ A			250
容性负载驱动能力	C _L		р F	1,000	10,000	
器件接通时间		輸出±1℃	ms		0.5	1
		100kΩ 100pF 负载				
电源		accept the section of				
电源电压	+ Vs		v	2.7		5.5
电源电流	$I_{\mathrm{SY(ON)}}$	无负载	μ A			50
关断电源电流	I _{SY(OFF)}	无负载	μΑ		0.01	0.5

生产厂家: ANALOG DEVICES

温度传感器电阻补偿电路

- 注:(a) 电阻 Rp与传感器并联
 - (b) 电阻 Rs与传感器串联,恒压源供电。
 - (c) 电阻 Rs与传感器串联,电阻 Rp与传感器并联,用恒压源供电

图 1-94 传感器线性化电路

电路中的电源电压用 5V 或 10V,工作电流用 1mA 或 0.1mA, 串联电阻 R_s 和并联电阻 R_p 的 计算公式如下:

$$R_{\rm S} = \frac{V_{\rm S}}{I_{\rm S} \times \left[\frac{R_{\rm T}}{R} + 1\right]}$$
$$R_{\rm P} = \frac{1}{\frac{1}{R} - \frac{1}{R_{\rm S}}}$$

式中: V_s 加至传感器的电压,R 是传感器启动时在基准温度 T 时的电阻值。 电路的线性化利用电阻的串并联来完成,要根据传感器电阻、工作电流和电压具体确定。

温度传感器补偿电路

用途:用于电路中器件温度正、负漂移补偿。

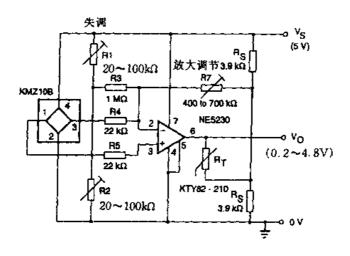


图 1-95 温度补偿电路

电路中的传感器 KTY 系列适用于正和负温度漂移的补偿。许多情况下, KMZ10B 温度漂移是负的, 电路中用一个运放 NE52300, 完成以下功能:

- 1. 平均(传感器至传感器)灵敏度温度漂移。
- 2. 用电位器 R1 和 R2 进行失调调节。
- 3. 用电位器 Rr进行增益调节。

通过放大器反馈回路调节使温度升高放大量增加

放大量
$$A = \frac{R_7}{R_4 + \frac{R_9}{2}} (1 + 2 \frac{R_T}{R_S})$$
 电路中 $A = 50$ (典型)

温度系数
$$TC_A = \frac{R_T \times TC_{ktr}}{R_T + \frac{R_S}{2}}$$
 电路中 $TC_A = 0.004 \text{K}^{-1}$

式中: R_T 是与温度有关的 KTY82 电阻, TC_{KTY} 是基准温度时 KTY82 的温度系数(0.79 × 10^{-2} /K,在 25 ℃), R_R 是磁敏电阻传感器桥电阻(KMZ10B)。

放大器的温度系数必须等于磁场传感器相反的温度系数,Rs由正温度系数决定:

$$R_{\rm S} = 2 \times R_{\rm T} (\frac{TC_{\rm KTY}}{TC_{\rm A}} - 1)$$

反馈电阻 R_7 由下式决定:

$$R_7 = R_4 \times \left(\frac{A}{1 + 2\frac{R_T}{R_S}}\right)$$

KTY82-1系列硅温度传感器

KTY82-1系列温度传感器有正的电阻温度系数,用于测量和控制系统。

主要技术参数

参 数	符号	条 件	单位	最小	最大
传感器电阻	R ₂₅	$T_{\rm A} = 25 ^{\circ}{\rm C} \ {\rm I_{\rm C}} = 1 {\rm mA}$			-
KTY82 - 210		•	Ω	1980	2020
KTY82 - 220			Ω	1960	2040
KTY82 - 221			Ω	1960	2000
KTY82 - 222			Ω	2000	2040
KTY82 - 250			Ω	1900	2100
KTY82 – 251			Ω	1900	2000
KTY82 - 252			Ω	2000	2100
环境工作温度	T_{A}	•	°C	- 55	150
最大绝对额定值					
参数	符号	条件	_单位	最小	最大
连续传感器电流	I_{G}	在空气中 T _A = 25℃	mA	-	10
		在空气中 T _A = 150°C	mА	-	2
	T _A	•	С	- 55	150

技术参数(T_A = 25℃,在液体中)

参 数	符号	条 件	单位	最小	典型	最大
传感器电阻	R ₂₅	$T_{\rm A} = 25{\rm ^{\circ}C}$ $I_{\rm C} = 1{\rm mA}$				
KTY82 - 210		Ì	Ω	1980		2020
КГҮ82 – 220	į.		Ω	1960		2040
KTY82 - 221	1		Ω	1960		2000
KTY82 - 222		<u> </u>	Ω	2000		2040
KTY82 - 250			Ω	1900		2100
KTY82 - 251	Í		Ω	1900		2000
KTY82 - 252			Ω	2000		2100
温度系数	$T_{\rm C}$		10 ⁻² K		0.79	
地阻 比	R_{100}/R_{25}	$T_{\rm A} = 100^{\circ}{\rm C}$, 25°C		1.676	1.696	1.716
电阻比	$R = 55/R_{25}$	$T_{\Lambda} = -55^{\circ}\text{C}, 25^{\circ}\text{C}$		0.480	0.490	0.500
热时间常数	τ	在空气中	s		7	· · ·
		在液体中	s		1	
		在流动液体中	S		0.5	
工作温度			°C	55	-	150

环境温度与传感器对应电阻

$T_{A}(\mathcal{X})$	- 55	- 50	- 40	- 30	- 20	- 10	0	10	20	25
$R(\Omega)$	980	1030	1135	1247	1367	1495	1630	1772	1922	2000
TA(°C)	30	40	50	60	70	80	90	100	110	120
$R(\Omega)$	2080	2245	2417	2597	2785	2980	3182	3392	3607	3817
$T_{A}(^{\mathfrak{C}})$	125	130	140	150						
$R(\Omega)$	3915	4008	4166	4280						

生产厂家: Philips Semiconductors

1.9 温度传感器其他应用电路

热敏电阻过载保护电路

用途:用于电机等电器的过载保护

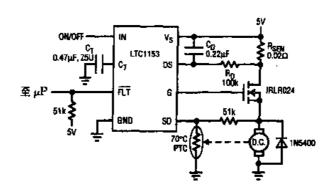


图 1-96 热敏电阻用于电机过载保护电路

电路为 5VDC 电机保护电路。DC 电流通过电机时的电流极限值为 5A,电机温度可连续检测,当超过 70℃时,LTC1153 有故障信号输出至微机,微机能自动关断电机。

热电变换电路

用途:用于热电转换计量电路。

电路为宽带热电(RMS/DC)变换器,它在 DC 至 10MHz 范围内进行 RMS/DC 变换,误差小于 1%,不要求输入信号波形形状,有高的输入阻抗和过载保护电路。电路由三部分组成:宽带 FET 输入放大器;RMS/DC 变换器和过载保护电路。放大器提供高输入阻抗、高增益和宽带,驱动 RMS/DC 变换器的输入加热丝。LT1088 RMS/DC 变换器由匹配的加热丝对、二极管和控制放大器组成。LT1206 驱动 R1,产生的热电变换低于 D1 的电压。经分压器 R2,通过 Q3,到加热二极管 D2,差动连接 A3,形成一个闭环放大器。因为二极管和加热器电阻是匹配的,A3 的 DC 输出相对于输入的 RMS 值,不考虑输入频率和波形。在实际中,LT1088 失匹偏差需要调增益,可在 A4 调节。A4 的输出是电路的输出。

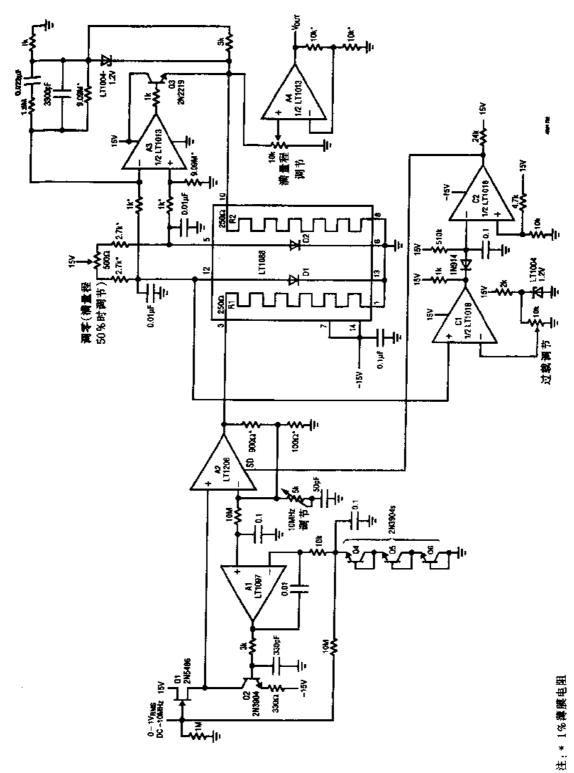


图 1-97 宽带热电 RMS/DC变换电路

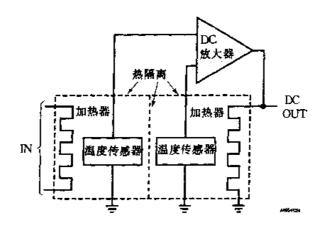
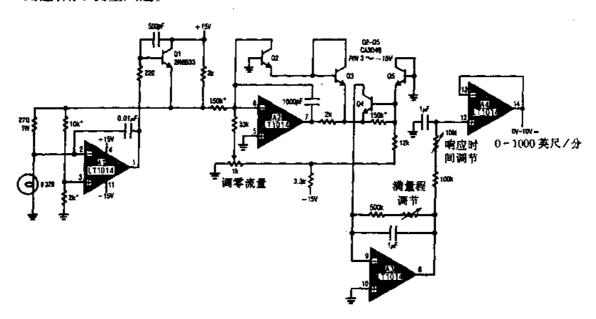
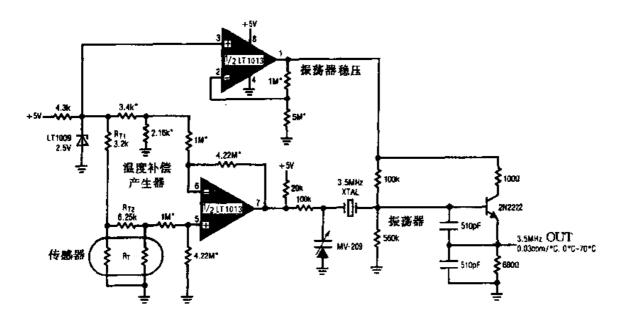



图 I-98 温度传感器热 RMS/DC 变换器原理图

热电阻丝风速测量电路

用途:用于测量风速。

注:电路中当从 328 灯泡去掉灯泡的玻璃封装, AI 使 328 灯泡恒温。A2 和 A3 供给与流速成线性比例的输出。电阻精度为 1%。LT1014 为四运放。


图 1-99 热电阻丝风速计

温度传感器用于晶振补偿电路

用途:用于晶振补偿电路。

数字温度发送器电路

用途:用于温度遥测电路。

注:*1%薄膜电阻。XTAL晶体, AT 切割 - 35°20'。LT1013 为双运放。

图 1-100 低功耗、5V驱动、温度补偿晶体振荡器

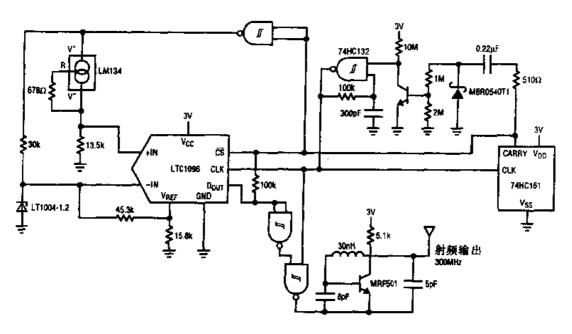
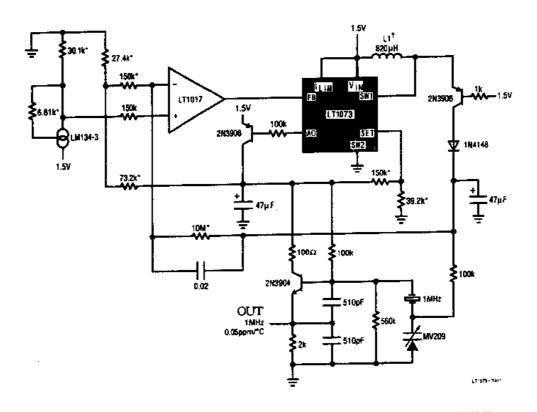



图 1-101 数字温度传感发送器电路

电路为内装电池无线发送数字温度计电路。LTC1096 为小功率采样 8 位串行 L/O 端口 A/D 变换器。LM134 为温度传感器。

温度传感器用于晶体补偿电路

用途:用于测控稳频电路。

注: * 1%金属膜电阻,晶体是 AT 切割 - 35°20'角度,*L1 为 # 100267,LT1073 为 DC/DC 变换器。 图 1 - 102 1.5V 电源温度传感器补偿的晶体振荡器

生产厂家:LINEAR TECHNOLOGY

- 77 •

第二章 传感器放大器应用电路

2.1 传感器运算放大器应用电路

传感器与 OP113/213/413 型运放电路

用途:用于应变传感器、温度传感器、小型仪器和工业控制电路。

图 2-1 电路为精密型工业称重量程放大电路。OP-113 系列的一半用于调节称重传感器桥放大器,放大器的噪声低,能提高信号分辨率,允许称重传感器工作在小的输出范围,因此减小了非线性。图中 OP-113 系列的另一半用于产生非常稳定的 10.000V 桥激励电压。A1 放大器提供差动增益。R4 的中心抽头滑至端头时具有最大的共模抑制比。

图 2-2 电路为单电源低电压应变计放大电路。一个 OP - 213、295 系列放大应变桥信号,另一个 OP - 295 系列产生稳定的 4.000V桥激励电压。放大器输出动态范围为毫伏级。

图 2-3 电路为超高精度线性 RTD 传感器温度计放大电路。电路通过反馈小量输出

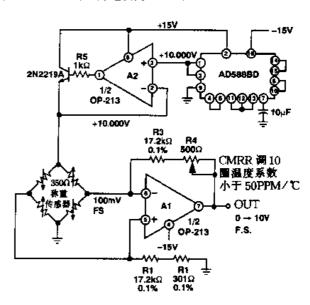


图 2-1 称重传感器放大电路

信号至 RTD,使 RTD 桥线性化。图中桥的左臂驱动放大器 A1,桥的右臂同样驱动 A2 放大器零压,这样就消除了放大器共模电压变化所产生的误差。3 线 RTD 用于平衡桥双臂导线电阻,这样可减小温度失配误差。驱动 5V 激励电压来自非常稳定的 AD588 基准器件,温漂为 1.5ppm/ $\mathbb C$ 。校准时,首先将 RTD 插入 $0\mathbb C$ 的冰中,用 100Ω 电阻代替 RTD,调零电位器,供输出为 0.000V; R9 线性调节电位器放中间位置,用 280.9Ω 电阻(等于 $500\mathbb C$)代替 RTD,调满量程,供电压为 5.000V。非线性输出校准时,用 194.07Ω 电阻(等于 $250\mathbb C$)代替 RTD,调线性电位器供输出为 2.500V。调满量程和半量程再校准,供放大器输出为 $10WV/\mathbb C$,在 RTD $-150\sim500\mathbb C$ 测量范围,精度优于 $\pm0.5\mathbb C$ 。

图 2-4 电路为有冷端补偿的 K 型热电偶放大电路。 + 12V 单电源。OP - 113 系列的噪声低,在 $OC \sim 1000$ ℃范围内的测量精度优于 0.02 ℃。冷端误差用硅二极管修正。

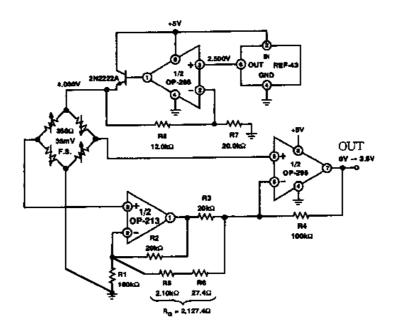


图 2-2 单电源应变计放大电路

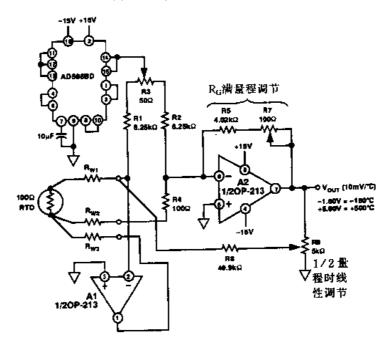


图 2-3 超高精度 RTD 传感放大电路

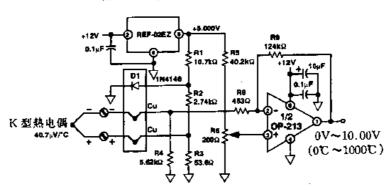


图 2-4 精密 K型热电偶放大电路

OP113/213/413 型低噪声、低漂移、单电源运算放大器

OP113 系列是低噪声、低漂移、单电源双运算放大器。

特点:单电源或双电源工作;低噪声(在 1kHz)为 4.7nV √VHz;宽带 3.4MHz;低失调电压 100μV;低漂移 0.2μV/℃。

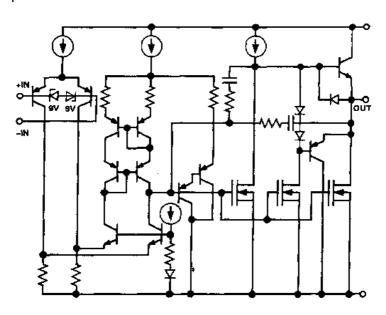
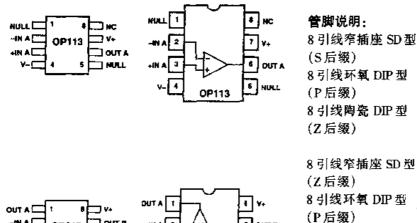



图 2-5 OP-213 电路原理图

OP213

1.5、空;2. - INA 输入 A 负;

3、+1NA 输人 A 正;

4. V-电源负;

6. OUT A 输入 A;

7. V+电源正;

8. NC 不连接。

[1. OUT A 输出 A;

8 引线窄插座 SD型 | 2. - IN A 输入 A 负;

3. + 1N A 输入 A 正;

4. V-电源负;

5. + IN B 输入 B 正;

6. - INB 输入 B 负;

7. OUT B输出 B;

[【]8. V+电源正。

图 2-6 管脚图

8 引线陶瓷 DIP型

(S后级)

最大绝对额定值	
电源电压	± 18V
输人电压	± 18V
差分输入电压	± 10V
输出短路持续时间(至地)	无限
存储温度	- 65 ~ 1 5 0℃

🗆 out e

工作温度

- 40 ~ 85℃

结 温

- 65 ~ 150℃

引线焊接温度(60s)

300℃

电参数(V_S = ±15.0V, T_A = 25℃)

	符号	条件	单位		13 <u>E/O</u> F			13 <u>F/O</u> F	
		 	 '	数小	典型	<u>最大</u>	最小	典型	最大
输入特性									
失调电压	Vos	OP113	μV			75	İ		150
		$-40\% \le T_{\Lambda} \le +85\%$	μV			125			225
		OP213	μV	;		100			250
		$-40\% \le T_{A} \le +85\%$	μV			150			325 275
		OP413	μV			125 175			350
输人偏置电流	,	$-40\% \le T_{\rm A} \le +85\%$	μV nA		240	600	ļ		600
相的人人的相同的。42.40	I_{D}	$V_{\rm CM} = 0 V$,	nA		240	700			700
输人失调电流		$-40\% \le T_{\Lambda} \le +85\%$	i			700			/00
1007 / / / (44 15 7/)	I_{OS}	$V_{CM} = 0$ V	nA	ļ		50			50
		$-40^{\circ}\text{C} \leq T_{\text{A}} \leq +85^{\circ}\text{C}$	14.5			50			50
共模输入电压	$V_{\rm CM}$		l v	- 15		+ 14	- 15		+ 14
共模抑制比	CMR	$-15V \le V_{\rm CM} \le +14V$	dB	100	116		96		
, , , , , , , , , , , , , , , , , , , ,		$-15V \le V_{\rm CM} \le +14V,$							
		$-40\% \le T_{\rm A} \le +85\%$	dB	97	116		94		
大信号电压增益	A _{vo}	OP113, OP213, R _L = 600Ω,		<u> </u>	2.4		1		
> 4 (H)		$-40\% \le T_{\Lambda} \le +85\%$	V/μV	1					
					2.4		1		
		$OP413, R_{L} = 1k\Omega,$	V/µV	1					
		$-40\% \le T_{\Lambda} \le +85\%$							
	İ	$R_{\rm k} = 2k\Omega$,	V/µV	2	8		2		
	1,	$-40^{\circ}\text{C} \le T_{\text{A}} \le +85^{\circ}\text{C}$	μV			150			300
长期失调电压	V _{os}	Notel	μ V /℃	İ	0.2	0.8			1.5
失调电压漂移	$\triangle V_{\rm os}/\triangle T$	Note2							
输出特性									
輸出电压高	$V_{\mathtt{QH}}$	$R_{\rm L} = 2k\Omega$	v	+ 14			+ 14		
		$R_{\rm L}=2{\rm k}\Omega$,] ?						
		$-40^{\circ}\text{C} \leq T_{\text{A}} \leq +85^{\circ}\text{C}$	V	+ 13.9			+ 13.9		
输出电压低	$V_{\rm OL}$	$R_{\rm L} = 2 \mathrm{k} \Omega$	V			-14.5			- 14.5
		$R_L = 2k\Omega$,				!			
		$-40^{\circ}\text{C} \leq T_{\text{A}} \leq +85^{\circ}\text{C}$	V _.			- 14.5			- 14.5
短路电流限	I_{SC}		mA.	<u> </u>	± 40			± 40	

电参数(V₅ = ±15.0V, T_A = 25℃)

参数	符号	条件	单位	OP1	13E/OP			13 F/ OP	
9X	19.75	来 什	十 平 匹	最小	典型	最大	最小	典型	<u>最大</u>
电源 电源抑制比	PSRR	$V_{\rm S} = \pm 2 V_{\rm ox} \pm 18 V$	dВ	103	120		100		
	,	$V_{\rm S} = \pm 2V_{\rm nt} \pm 18V$ - 40°C \le T_{\text{A}} \le + 85°C	dB	100	120		97		
电源电流/放大器	I_{SY}	$V_{\text{OUT}} = 0 V, R_{\text{L}} = \infty,$ $V_{\text{S}} = \pm 18 V$	mA			2 2.5			2 2,5
电源电压	$v_{\rm s}$	$-40^{\circ}\text{C} \le T_{\text{A}} \le +85^{\circ}\text{C}$	mA V	+4		± 18	+ 4		± 18
音頻 .									
THD+噪声		$V_{\rm IN} = 3V_{\rm rms}$, $R_{\rm L} = 2k\Omega$							
		f = 1 kHz	%	ĺ	0.0009			0.0009	
噪声电压密度	$\epsilon_{ m n}$	f = 10kHz	nV √Hz		9			9	
0		f = 1 kHz	nV √Hz		4.7	i		4.7	
噪声电流密度	in	f = ikHz	pA √Hz		0.4			0.4	
噪声电压	en P-P	0.1Hz ~ 10Hz	nV _{P.p}		120			120	
抗态范围				ļ					
转换速率	SR	$R_{\rm L} = 2k\Omega$	V/μs	0.8	1.2		0.8	1.2	
增益带宽乘积	GBP		MHz	•	3.4	ļ		3.4	
P. 322 (1) 323 (1) 0 7		$V_{\text{OLT}} = 10V_{\text{P-P}}$		· .		ŀ			
通道隔离度		$R_1 = 2k\Omega, f = 1kHz$	dB		105	i		105	
建立时间	t,	至 0.01%,0V~10V 阶跃	tra		9			9	

传感器与 OP191/291/491 型运放电路

用途:用于遥控传感器、工业过程控制和内装电池的小型仪器。

电路中的电阻精度为 1%,电路中三个 OP491 对 RTD 桥进行激励和放大。工作电源 5V。OP491 产生 3.9V 的激励电压,实际上 4V 电源也可工作。放大器 A1 驱动桥和 AD589 一起产生恒定激励电流,1.235V 精密基准。运放维持基准电压加至 6.19Ω 和 2.55MΩ 并联电阻上,产生200μA 电流源。这电流通过桥的一半,因此 100μA 通过 RTD,在电阻上产生一个输出电压。3 线 RTD,用于平衡桥的两个臂电阻 100Ω,以改善精度。A2 和 A3 用于放大。通过电阻选择产生增益为 274。温度每增加 1℃,输出电压变化 10mV。0.01μF 和并联 100kΩ 电阻用于滤除噪声。

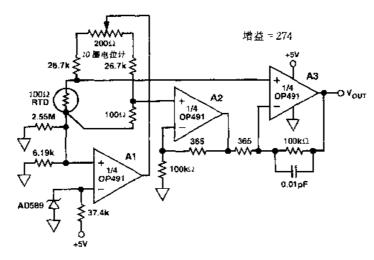


图 2-7 单电源 RTD 放大调节电路

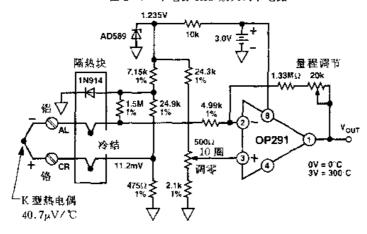


图 2-8 3V 电池冷端补偿热电偶放大电路

K型热偶端放置隔热块中,热电偶结的环境温度由 1N914 二极管连续控制。二极管通过 反馈小电压可修正在结上产生的热电动势。通过 1.5MΩ 和 475Ω 送至运放。校准时将热电偶 结放在零度冰水中。调 500Ω 使输出为零压;然后将热电偶插入 250℃炉中,调量程供输出为 2.50V。在 0~250℃范围内,K型热偶的精度为±3℃。

OP191/291/491 低功耗单电源运算放大器

OP191/291/491 分别是低功耗单电源 3MHz 带宽单、双和四运算放大器

图 2 - 9 0 0 19 1 29 1 40 1 电 游图

特点:单电源 $2.7 \sim 12V$; 宽输入电压范围; 低电源电流 $300\mu A/$ 放大器; 宽的带宽 3MHz; 转换速率 $0.5V/\mu s$; 低失调电压 $700\mu V$ 。

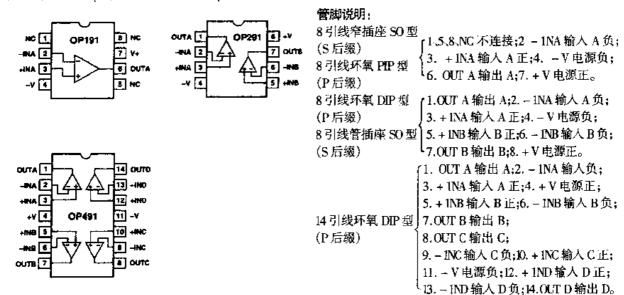


图 2-10 管脚图

最大绝对额定值	
电源电压	16V
输入电压	$\mathrm{GND} \sim \mathrm{V_S} + 10\mathrm{V}$
差分输入电压	7V
输出短路持续时间	无限
存储温度	- 65 ~ 150°C
工作温度	- 40 ~ 125 °C
结温	- 65 ~ 150°C
引线焊接温度(60s)	300℃
电参数($V_{\rm S}$ = 3V, $V_{\rm CM}$ = 0.1V, $V_{\rm O}$ = 1.4V, $T_{\rm A}$ = 25℃)	

参数	符号	条件	单位 	最小	典型	最人
動人特性						
失调电压		i	$\perp = \mu V$		80	500
OP191	$V_{\rm os}$	i L				
		$-40 \le T_{\lambda} \le +125$ °C	mV			1
OP291/491	$V_{\rm os}$		μV	!	80	700
	1,00	$-40 \le T_A \le +125$ °C	mV	:		1.25
輸入偏置电流	I_{B}		nA	!	30	50
	· -B	$-40 \le T_{\lambda} \le +125^{\circ}C$	nA			70
输入失调电流	I _{os}		nA		0.1	8
	, 708	: ! -40≤T,≤+125℃	nA			16
共模输入电压			V	0		3
共模抑制比	CMRR	$V_{CM} = 0V \sim 2.9V$	dB	70	90	
		$-40 \le T_{\star} \le +125^{\circ}\text{C}$	dB	65	87	
大信号电压增益	A_{VO}	$R_1 = 10k\Omega$, $V_0 = 0.3V \sim 2.7V$	V/mV	25	70	
	i		V/mV		50	
失调电压漂移	$\Delta V_{0s}/\Delta T$	$-40 \le T_{\rm A} \le + 125^{\circ}{\rm C}$	μV∕°C		1.1	
偏置电流漂移	$\triangle I_{\rm R} \triangle T$		pA∕°C		100	
失调 电流 漂移	$\triangle I_{08}\triangle T$		pA∕°C		20	

						2-1-2-2
参 数	符号	条件	単位	最小	典型	最大
输出特性					'	
输出电压高电平	V_{OH}	$R_{\rm L} = 100 {\rm k}\Omega \sim {\rm GND}$	v	2.95	2.99	
	İ	-40℃ ~ +125℃	v	2.90	2.98	
		$R_{\rm L} = 2k\Omega \sim { m GND}$	v	2.8	2.9	
		- 40℃ ~ + 125℃	V	2.70	2.8	
输出电压低电平	$V_{\rm OL}$	$R_1 = 100 \text{k}\Omega - \text{V} +$	mV		4.5	10
	į	-40°C ~ +125°C	mV	ļ		35
		$R_{\rm L} = 2k\Omega \sim V +$	mV		40	75
		-40°C ~ + 125°C	mV			130
短路电流限	I_{SC}	近/源	mA	± 8.75	± 13,5	
		- 40°C ~ + 125°C	mA	±6.0	± 10.5	
输出阻抗	Z_{007}	$f = 1 \text{MHz}$, $A_{\text{v}} = 1$	Ω		200	

电参数 $(V_S = 3V, V_{CM} = 0.1V, V_0 = 1.4V, T_A = 25\%)$

参数	符号	条件	单位	最小	典型	最大
电源			-			4
电源抑制比	PSRR	$V_{\rm S} = 2.7 \rm V - 12 \rm V$	ďВ	80	110	
		-40% ≤ $T_{\rm A}$ ≤ $+125\%$	dB	75	110	
电源电流/放大器	I_{SY}	$V_0 = 0$ V	μ A		200	3 5 0
		$-40^{\circ}C \leq T_{\Lambda} \leq +125^{\circ}C$	μΑ		330	480
动态范围						
转换速率	+ SR	$R_L = 10 \mathrm{k}\Omega$	V/µs	}	0.4	
转换速率	- SR	$R_{\rm L}=10{\rm k}\Omega$	V/μs		0.4	
功率带宽	BW _P	1%失真	kHz		1.2	
建立时间	t,	到 0.01%	ha	,	22	
增益带宽积	GBP		MHz		3	
相位	$\theta_{ m e}$		(°)		45	
通道隔离度	cs	$f = 1 \text{kHz}, R_{L} = 10 \text{k}\Omega$	dB		145	
· 噪声						
噪声电压	e _n P-P	0.1Hz ~ 10Hz	$\mu V_{p,p}$		2	
噪声电压密度	e _n	f = 1 kHz	nV∕√Hz		35	
噪声电流密度	i_n		pA√√Hz		0.8	

传感器与 OP292/492 型单电源双/四运算放大电路

用途:用于传感放大调节、电源监视和控制、小型仪器和轻便送受话机等场合。

电路为 5V 送受话传感接口电路,用于调制解调电路。通过变压器耦合 600Ω 差动型式传送全双工调制解调信号。发送放大增益在调制解调器件输出端设定,同样接收放大增益在调制解调器件输入端设定。

用热敏电阻构成温度计放大电路。测量温度范围: $0\sim70$ °、精度为±0.3°°。线性电路只能工作在窄的温度带。如要测量高的温度,则精度要降低。要达到±0.3°°的精度,则热敏电阻非线性必须修正,这可通过热敏电阻与第一级放大器反馈回路的 17.8 kΩ 电阻并联来实现。热敏电阻阻值 10 kΩ 热误差小于 0.1°°。 281 μA 工作恒流电流通过电阻 R1 与 REF – 195 来的

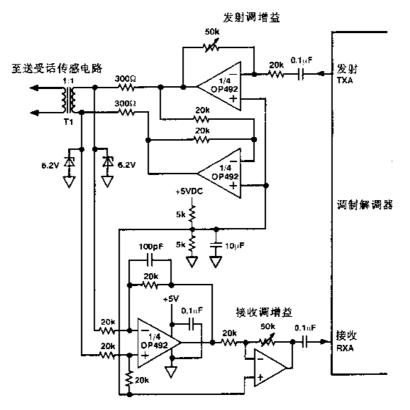


图 2-11 送受話筒(传感)接口电路

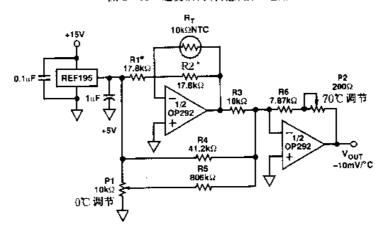


图 2-12 线性热敏电阻放大电路

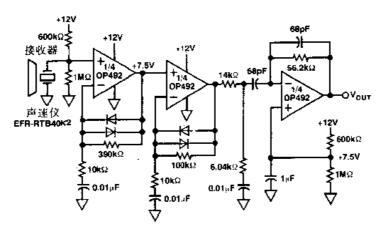


图 2-13 40kHz 超声钳位/限辐接收放大电路

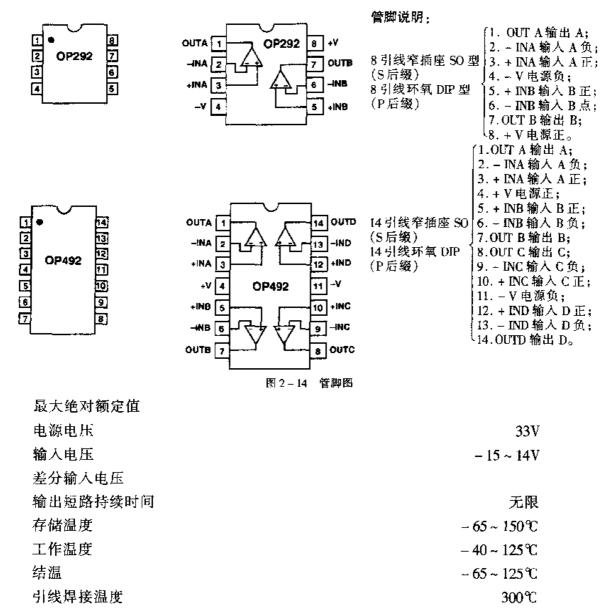

基准 5V。P1 为电位器,用于修正线性电阻网产生的失调电压。温度信号通过第二级转换温度系数 – 10mV/ C 输出。校准;用精密电阻箱代替热敏电阻,将电阻箱放置在 $32.650k\Omega$ 的位置,调 C,P1 电位器调节到电路输出为 OV。在 70 C 满量程调节,电阻箱放置在 $1.752k\Omega$ 的位置,将 P2 电位器调节到电路输出为 -0.70V。

图 2-13 电路中的超声接收放大器利用二极管的非线性阻抗有效地控制宽动态范围增益。电路放大 40kHz 超声信号,在通过旁通滤波器前,通过一对钳位放大器,提取 40kHz 信号。电路放大量为 2~400。工作电压为 12V,也可用 5V 电源工作。

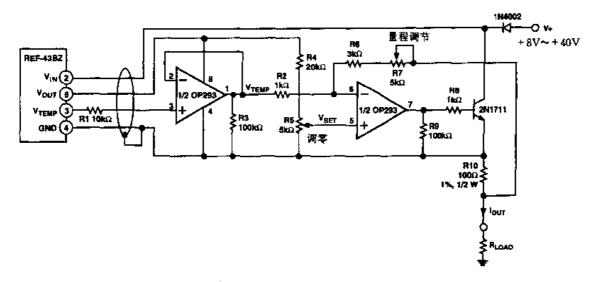
OP292/492 型双/四单电源运算放大器

OP292/492 是通用型双/四运算放大器,适用单电源工作。有一个 PNP 输入级,允许输入范围含地。一个 BiCMOS 输出级,输出摆幅至地。

特点:单电源工作:4.5~33V;输入共模包括地;输出摆幅至地;高的转换速率:3V/μs;高的增益带宽积:4MHz;低输入失调电压;高开环增益。

参数	符号	条件	单位	最小	典型	最大
输入特性						
失调电压	V_{∞}		mV	1	1.0	2.0
OP292		$T_A \leq +85\%$	mV	-	1.2	2.5
		$T_{A} \le +125$ °C	mV	1	1.5	3
			mV	Ì	1.4	2.5
		$-40\% \le T_{\Lambda} \le +85\%$	mV		1.7	2.8
OP492	•	$-40\% \le T_{A} \le +125\%$	mV		2	3
		-0 d S / A S + 120 0	пA		375	700
	$I_{\rm B}$	$-40\% \le T_{\rm A} \le +125\%$	μ A		0.5	1
输入偏置电流	"	-40 C = 1 A S + 120 C	nA	ļ	7	50
	I_{OS}	40.5% 41 0460	nA		20	100
输人失 调 电流	108	$-40^{\circ}\mathrm{C} \leq T_{\mathrm{A}} \leq +85^{\circ}\mathrm{C}$	μA		0.4	1.2
		$-40^{\circ}\text{C} \leq T_{\text{A}} \leq +125^{\circ}\text{C}$	v v	- 11	•	11
	J		1	78	100	
共模输入电压范围	CMRR	$V_{\rm CM} = \pm 11 { m V}$	dB	1	95	
共模抑制 比	V.AIII	$-40\% \leq T_{A} \leq +125\%$	dB	25	120	
	Avo	$R_{\rm L} = 10 \mathrm{k}\Omega$, $V_{\rm O} = \pm 10 \mathrm{V}$	V/mV	10	75	
大信号电压增益	7.40	$-40\% \le T_A \le +85\%$	V/mV		60	
			V/mV	1 -	4	10
		$-40\% \le T_{\Lambda} \le +125\%$	μV/°C		3	Ю
失调电压温源	$\triangle V_{os}/\triangle T$	$-40^{\circ}\text{C} \leq T_{\Lambda} \leq +125^{\circ}\text{C}$	pA/°C	1	3	
阘量电流温 漂	$\Delta I_{\rm B}/\Delta T$	$-40^{\circ}C \leq T_A \leq +125^{\circ}C$	pAV C			
輸出特性			ŀ			
输出电压摆幅	V_{o}	$R_{\rm L} = 2k\Omega \sim {\rm GND}$	V	± 11	±12.2	
	}	$-40^{\circ}\text{C} \leq T_{\text{A}} \leq +125^{\circ}\text{C}$	v	± 10	± 11	
		$R_{\rm L} = 100 \mathrm{k}\Omega \sim \mathrm{GND}$	l v	± 13.8	± 14.3	
		$-40\% \le T_{\rm A} \le +125\%$	mV	± 13.5		
短路电流限	I_{SC}	短路到 GND	mA	8	10.5	
上源						
电源抑制比	PSRR	$V_8 = \pm 2.25 \text{V} \sim \pm 15 \text{V}$	dB		86	
		$-40^{\circ}\text{C} \le T_{\text{A}} \le +125^{\circ}\text{C}$	dB	70	83	
电源电流/放大器	I_{SY}	$V_{\rm O} = 0$ V	ļ			
OP292, OP492			[mA		1	1.4
动态范围						
转换速率	SR	$R_{\rm L} = 10 \text{k}\Omega$	V/us	2.5	4	
1130001	,	$-40^{\circ}\text{C} \leq T_{\text{A}} \leq +125^{\circ}\text{C}$	V/µs		3	
增益带宽积	GBP		MHz	_	4	
相位	φ _n		(°)	l	75	
通道隔离度	cs cs	$f_0 = 1 \text{kHz}$	dВ	l	100	
建	٠,٠	10 - 1KIIZ	· · · · ·		200	
^{報/5}	e _n P-P	0.1Hz ~ 10Hz	μV_{PP}	,	25	
噪声电压密度 噪声电压密度	_	f = 1 kHz	nV/√ Hz		ಬ 15	
	e _n	l = 1 FLIX	· · · · · · · · · · · · · · · · · · ·		3.7	
噪声电流密度			pA/\sqrt{Hz}		J. J	

传感器和 OP193/293/493 型运算放大调节电路


用途:用于应变传感器、温度传感器制成的医用仪器和内装电池的小型仪器。

电路中的电阻为 1/4W,5%。在 $-50 \sim 150$ ℃ 范围内的校准精度可达 ± 0.5 ℃。变送器的抑制比(3ppm/V)较好,电源电压 $8 \sim 40$ V。OP293 一半用于缓冲器(V_{TEMP} 脚),另一半稳定输出电流。在无反相输入时安全电流和为

$$I_{\text{OUT}} + \frac{V_{\text{TEMP}} \times (R6 + RT)}{R2 \times R10} - V_{\text{SET}} \left(\frac{R2 + R6 + R7}{R2 \times R10} \right)$$

输出电流随温度变化的转换公式为

$$\frac{\triangle I_{\text{OLT}}}{\triangle T} = \frac{\frac{\triangle V_{\text{TEMP}}}{\triangle T} (R6 + R7)}{R2 \times R10}$$

N 2-15 4~20mA 的温度变送电路

从公式中可看出,在调零之前调量程二者互相无关。传感变送器标准简单,第一级输出电流与温度的关系由 R7 电阻调节,然后用 R5 电阻调零。使输出公式为

$$I_{\mathrm{OUT}} = \left(\frac{\triangle I_{\mathrm{FS}}}{\triangle T_{\mathrm{T/f}}}\right) \left(T_{\mathrm{FK} - T_{\mathrm{B}} / \mathrm{A}}\right) + 4 \mathrm{mA}$$

对不同温度范围的 R6 值

温度范围	R6
0℃ ~ 70℃	10kΩ
- 40℃ ~ 85℃	6.2kΩ
- 55℃ ~ 150℃	3kΩ

OP193/293/493 型精密低功耗运算放大器

OP193/293/493 是单电源运算放大器。具有高精度,低电源电流,OP193 系列的工作电压可低至 1.7V 或 $\pm 0.85V$ 。

特点:工作电压 + 1.7~ ± 18V;低电源电流 15 μ A/放大器;低失调电压 75 μ A;输出电流沉和源 ± 8mA;单、双电源工作;离开环增益 600V/mV。

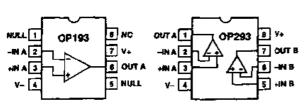


图 2-16 管脚图

管脚说明;

8引线环氧 DIP 型	1、5. NULL空;2. – INA输入 A负;
(P后缀)	J3. + INA 输人 A 正;4. V – 电源负;
	6.0UT A 输出 A;7.V+电源正;
(S后缀)	^L 8.NC不连接。
8引线环氧 DIP型	r1.OUT A 输出 A;2 INA 输入 A 负;
(P后缀)	1.OUT A 输出 A;2. – INA 输人 A 负; 3. + INA 输人 A 正;4.V – 电源负;
8 引线 SO 型	5. + INB 输入 B 正;6 INB 输入 B 负
(S后缀)	[【] 7,0UT B输出 B;8.V+电源正。
•	

最大绝对额定值

电源电压± 18V输入电压± 18V差分输入电压± 18V输出短路持续时间无限

存储温度 工作温度 结温 引线焊接温度(60s) - 65 ~ 150°C - 40 ~ 125°C - 65 ~ 150°C 300°C

参 数		符号	条 件	单	位	最小	"E"级 典型		最小	"F"级 典型	
			OP193	μV	,			75			150
失调电压		$v_{\rm os}$	$OP193$, -40 °C ≤ T_A ≤ + 125°C	μV				175			250
			OP293	μV				100	ļ		250
		ļ	$0P293, -40^{\circ}\text{C} \le T_{\text{A}} \le +125^{\circ}\text{C}$	μV				200			350
			OP493	μV				125			275
	j		$0P493, -40^{\circ}C \le T_{A} \le +125^{\circ}C$	μV				225			375
松:四里由站	.	,		•							
输入偏置电流	·	$I_{\mathbb{B}}$	$V_{\text{CM}} = 0\text{V},$ $-40\% \le T_A \le +125\%$	пA				15			20
4A 1 4L 101 da 39	<u> </u>	r							1		
输入失调电流	ر	I_{08}	$V_{\rm CM} = 0V,$	nA	Ĺ			2	1		4
0.3646.1.45	_	57	$-40^{\circ}\mathbb{C} \leq T_{\Lambda} \leq +125^{\circ}\mathbb{C}$	v		- 14.9		+ 13.5	14.9)	+ 13
共模输入电压	<u> </u>	V _{CM}	$-14.9 \le V_{\text{CM}} \le +14\text{V}$	dB	3	100	116		97	116	
共模抑制比		CMRR	$-14.9 \le V_{\rm OM} \le +14V$								
			$-40\% \le T_{\lambda} \le +125\%$	dE	3	97			94		
				_							
大信号电压增	き 益	A_{V0}	$R_{\rm L} = 100 {\rm k}\Omega$,	V/n	οV	500			500		
			$-10V \le V_{\text{OUT}} \le +10V$	V/n		300			300		
			$-40^{\circ}\text{C} \leq T_{\text{A}} \leq +85^{\circ}\text{C}$	V/n			300			300	
			$-40^{\circ} C \leq T_{\Lambda} \leq +125^{\circ} C$, , ,							
大信号电压堆	曾益	Avo	$R_{\rm L} = 10 {\rm k}\Omega$,	17.6	31	250			350		
			$-10V \le V_{OUT} \le +10V$	V/o		350			200		
			$-40^{\circ}\text{C} \leq T_{\text{A}} \leq +85^{\circ}\text{C}$	V/n		200	150		200	150	
			$-40^{\circ}\text{C} \leq T_{\text{A}} \leq +125^{\circ}\text{C}$	V/n	nγ		150		İ	150	
大信号电压堆	善益	A_{VO}	$R_{\rm L}=2{\rm k}\Omega$,			<u> </u>			200		
7411, 3 622			$-10V \le V_{\text{OUT}} \le +10V$	V/n		200			1		
	l.		$-40\% \le T_{\rm A} \le +85\%$	V/n		125			125	100	
	- 1	!	$-40^{\circ}\text{C} \le T_{\text{A}} \le +125^{\circ}\text{C}$	V/c	nV		100			100	200
长期失调电压	_E	v_{os}	:	μ\				150			300
失调电位源和	多	△ν ₀₈ /△ <i>τ</i>		μŶ/	°C		0.2	1.75	ļ		
 出 特性				ļ		1			۱		
输出电压摆幅	高高	V_{OH}	$I_{\rm L} = 1 {\rm mA}$	V	Г	+ 14.3	14.2		+ 14.1	114.2	
194 CD - CJ ZZ 124 (A	-,-		$I_{\rm L} = 1 { m mA}$				_		١	^	
			$-40^{\circ}\text{C} \leq T_4 \leq +125^{\circ}\text{C}$	V		+ 14.0			+ 14.0		
			$I_{\rm L} = 5 \mathrm{mA}$	V		+ 13.9			+ 13.9	914,1	7 – 14
输出电压摆射	區低	V_{OL}	$I_{\rm L} = -1 \mathrm{mA}$	V	7	1	- J4.	7 – 14.6	7	- 14.	/ - 14
			$I_{\rm L} = -1 \text{mA},$	١.				14			- 14
	,		$-40^{\circ}\text{C} \leq T_{\text{A}} \leq +125^{\circ}\text{C}$	\ \			14.0	14.4 14.1	1	14.2	- 14
	1		$I_{\rm L} = -5 \text{mA}$	\ \ \			14.2 ± 25	- 14,	1	± 25	•
短路电流		I_{SC}		m	A	↓ —	I 4J		 -		
									Ĺ.,	100	
电源抑制比	ŀ	PSRR	$V_{\rm S} = \pm 1.5 \text{V to } \pm 18 \text{V}$	j di	В	100	120		97	120	
- B - B - B - B - B - B - B - B - B - B	1		$V_{\rm S} = \pm 1.5 \rm V \ to \ \pm 18 \rm V,$	١	_				94		
			$-40^{\circ}\mathrm{C} \leq T_{\mathrm{A}} \leq +125^{\circ}\mathrm{C}$	di	В	97			24		
电源电流/放	(大器	I_{SY}	-40° C ≤ I_A ≤ + 125 °C, R_L = ∞					20			30
	·		$V_{\text{OIIT}} = 0\text{V}, V_{\text{S}} = \pm 18\text{V}$	12	A	├ -		30	 - -		
 				l	<i>_</i>					65	
, 噪声电压密度	度	e _n	f = 1 kHz		√Hz		65		1	0.05	
噪声电流密度		i,	f = 1 kHz	pA -			0.05			3	
噪声电压		e _n P-P	0.1Hz ~ 10Hz	μV	P-P	<u> </u>	3	. <u>-</u> .	 -		
			n = 21.0	37 /	·						
心心凹 转换速率		SR	$R_{\rm L} = 2k\Omega$	\ Y'	ms	1	15		•	15	
转 灰 座 平 増 益 帯 宽 积		GBP	101	ļ "	u.	1	35			35	
項益市 见你 通道隔离度		GD1	$V_{\text{OUT}} = 10 V_{\text{P.P.}},$		Hz D	1	120			120	
		ı	$R_{\rm L} = 2k\Omega$, $f = 1$ kHz	1 63	В	1			1		

传感器与 OP295/495 型放大器信号调节电路

用途:用于温度传感器信号调节器和仪器测量控制。

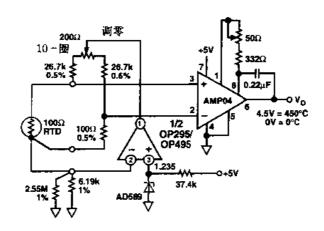


图 2-17 单电源 RTD 温度表放大电路

电路中 RTD 用放大器 OP295/495, 电源电压 5V, 可提供高的桥电压。OP295/495 产生 200μA 恒定电流驱动桥。电流经过并联电阻 6.19kΩ 和 2.55MΩ 形成的回路, 产生伺服驱动电压, 通过 AD589 基准建立 1.235V 电压。3 线 RTD 在 100Ω 桥臂和有相等线电阻上的压降相等, 因此精度准确。AMP04 放大差动桥信号并转换成单端输出。通过串联电阻 332Ω 加上 50Ω 电位器调节增益, 供输出 4.5V 时为满量程。0.22μF 电容用于输出 7Hz 低通滤波器, 使噪声最小。

图 2-18 电路中每个放大器的静态电流为 150μ A,用于装有电池的温度测量仪器。 K 型热偶放人隔热箱中,热偶一端放自然环境中,并通过放大器。校准时,热电偶测量结在 0%冰中,调 500Ω 电阻供输出为 0V。满量程调节,使输出为 2.50V 时,温度为 250%。在温度范围内 K 型热偶很精确,精度为 $\pm 3\%$ 。工作时用 9V 电池,电路驱动电流在 500μ A 以下。

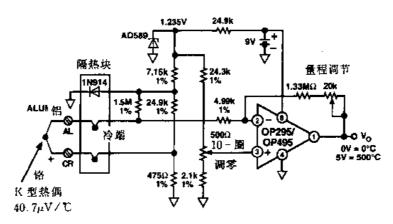
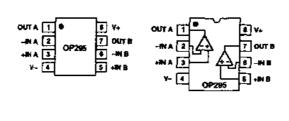



图 2-18 有冷端补偿用电池的热电偶放大电路

OP295/495 型双/四运算放大器

OP295 为 CMOS 双运放, OP495 为四运放。噪声低, 精度高, 可输入和输出正负信号。特点: 单电源工作 $3\sim36V$; 低失调电压 $300\mu V$; 增益带宽积 75kHz; 高开环增益 1000V/mV; 每个放大器的电源电流最大为 $150\mu A$ 。

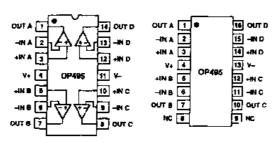


图 2-19 管脚图

管脚说明:

高牌玩物:		· · · · · · · · · · · · · · · · · · ·	
型式	名称	编号	说 明
			+4.11
	OVTA	1	輸出A
	- INA	2	
8 引线窄插座 SO(S 后缀)	+ INA	3 4	
	V -	5	
8引线环氧 DIP(P后缀)	+ INB - INB	6	
	OUIB	7	金数 B を
	V +	8	电源正
	OUTA	1	输出 A
	- INA		
	+ INA	3	————————————————————————————————————
	V +	4	电源正
	+ INB	5	輸入B正
	- INB	- 6	
	OUTB	7	輸出 B
引线环氧 DIP(P 后缀)	OUTC	8	輸出 C
	- INC	9	输入 C负
	+ INC	10	<u>₩</u> 人 C 正
	U -	11	<u> </u>
	+ IND	12	输入 D 正
	- IND	13	輸 人 D 负
	OUTD	14	输出 D
	OUTA	1	输出 A
•	– INA	2	輸入A负
	+ INA	3	输入 A 正
	V +	4	电源正
	+ INB	5	輸入 B 正
	- INB	6	————————————————————————————————————
	OUTB	7	輸出 B
16 引线 SO(S 后缀)	NC	8,9	不连接
10 3/30 30/3 /D 9X /	OUTC	10	金板 C
	- INC	11	輸入 C负
	+ INC	12	十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二
	V-	13	电源负
		13	·
	+ IND		<u>輸入D正</u>
	- IND	15	<u>輸入 D 负</u>
	OUTD	16	輸出 <u>D</u>

最大绝对额定值

电源电压 输入电压 差分输入电压

输出短路持续时间 存储温度

工作温度

结温 引线焊接温度(60s)

电参数(V_S = 3.0V, V_{CM} = 1.5V, T_A = 25℃)

± 18V

 $\pm 18V$

+ 36V

无限

- 65 ~ 150℃

-40 ~ 125℃

- 65 ~ 150℃

300℃

参数	_ 符号	条 件	単位	最小	典型	最大
··· 食人特性						
失调电压	V_{OS}		μV		30	300
744.67		$-40\% \le T_A \le +125\%$	μV			800
输入偏置电流	$I_{\mathbf{B}}$		nΛ		8	20
2.7 - 111-4222		$-40^{\circ}\text{C} \leq T_A \leq +125^{\circ}\text{C}$	nA			30
输入失调电流	I_{06}		nA		±1	±3
		$-40\% \le T_A \le +125\%$	nA			±5
共模输入电压	V_{CM}		V	0		+4.0
共模拟制比	CMRR	$0V \le V_{\text{CM}} \le 4.0V$, $-40\% \le T_{\text{A}} \le +125\%$	dB	90	110	
大信号电压增益	A_{VO}	$R_{\rm L} = 10 \text{k}\Omega, 0.005 \le V_{\rm OUT} \le 4.0 \text{V}$	V/mV	1000	10,000	
		$R_{\rm L} = 10 \text{k}\Omega$, $-40^{\circ}\text{C} \le T_{\rm A} \le +125^{\circ}\text{C}$	V/mV	500		
失调电压漂移	△Y _{os} /△T		μ V /℃		1	5
					·	
输出电压摆幅高	$V_{\mathbf{OH}}$	$R_{\rm L}$ = 100kΩ Ξ CND	v	4.98	5.0	
		$R_{\rm L} = 10 {\rm k}\Omega \stackrel{\frown}{=} {\rm CND}$	V	4.90	4.94	
		$I_{\text{CUT}} = 1\text{mA}, -40^{\circ}\text{C} \le T_{\text{A}} \le +125^{\circ}\text{C}$	V		4.7	
输出电压摆幅低	V_{OL}	$R_{\rm L}$ = 100k Ω 至 GND	mV		0.7	2
		$R_{\rm L} = 10 \text{k}\Omega \cong \text{GND}$	mV		0.7	2
		$I_{\text{OUT}} = 1 \text{mA}, -40^{\circ}\text{C} \le T_{\text{A}} \le +125^{\circ}\text{C}$	mV		90	
输出电流	Iour	·	mA	± 11	± 18	
源					•	
电源抑制比	PSRR	$\pm 1.5 V \leq V_{\rm S} \leq \pm 15 V,$	dB :	90	110	
		$\pm 1.5 \text{V} \leq V_{\text{S}} \leq \pm 15 \text{V},$	_			
		$-40^{\circ}\mathbb{C} \le T_{\mathbb{A}} \le +125^{\circ}\mathbb{C}$	dB	85		
每个放大器电流	ISY	$V_{\text{Out}} = 2.5 \text{V}, R_{\text{L}} = \infty, -40 \text{C} \le T_{\text{A}} \le +125 \text{C}$	μA			150
力态范围						
转换速率	SR	$R_{\rm L} = 10 {\rm k}\Omega$	V/µ8		0.03	
增益带宽积	GBP		kHz		75 °′	
相位	θ,		(°)		<u>86</u>	
			:			
噪声电压	e_nP-P	0.LHz 至 10Hz	$\mu V_{P,P}$		1.5	
噪声电压密度	e _n	f = 1 kHz	nV/√Hz		51	
樂声电流密度	ť,	f = 1 kHz	pA∕ √Hz		< 0.1	

OP-497 桥调节放大电路

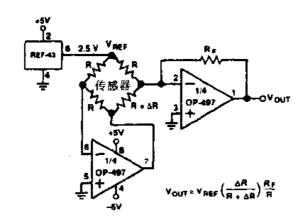


图 2-20 OP-497 桥调节放大电路

生产厂家: ANALOG DEVICES

桥传感器放大电路

用途:用于传感器放大和数据采集等领域。

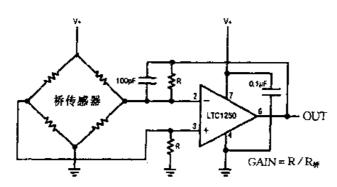


图 2-21 传感器差桥放大电路

LTC1250 型低噪声零漂桥放大器

特点:低噪声,0.1Hz~10Hz 范围内的典型值为 $0.75\mu V_{PP}$;最大失调电压为 $10\mu V$;最大失调电压温漂为 $50nV/\mathbb{C}$;最小 CMRR 为 115dB;最小 PSRR 为 120dB;不要求外接元件。

用途:用于应变计放大、热电偶放大、低噪声传感器和高性能数据采集系统。

最大绝对额定值

总电源电压(V+~V-)

18V

输入电压

 $(V^+ + 0.3V) \sim (V^- - 0.3V)$

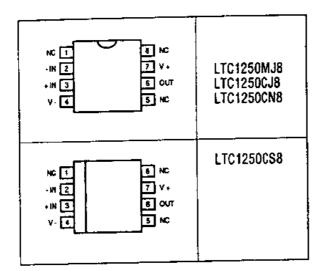
输出短路持续时间

无限

工作温度

LTC1250M

- 55 ~ 125°C


LTC1250C

 $0 \sim 70$ °C

存储温度

- 65 ~ 150℃

• 94 •

管脚说明:

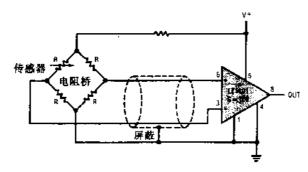
- 1.5.8.NC 不连接;
- 2. IN 输入负;
- 3. + IN 输入正;
- 4.V- 电源负;
- 6.OUT 输出;
- 7.V+ 电源正。

图 2-22 管脚图(顶视)

电参数($V_S = +5V$, -0V, $T_A = 工作温度范围$)

	-				LTC1250M			LTC1250C	
参数	符号	条件	单位	最小	典型	最大	最小	典型	最 大_
输入失调电压	V_{os}	$T_A = 25^{\circ}$ C	μA		± 2	± 5_		±2_	± 5
平均输入失调漂移	ΔV_{0s}		μV/°C		±0.01	±0.05	<u> </u>	±0.01	±0.05
1 -3187 4747 201 2		$T_A = 25^{\circ}\text{C}, 0.1\text{Hz} - 10\text{Hz}$	μV_{P-P}		1.0			1.0	
輸入噪声电压	₽N	$T_{\rm A} = 25$ °C, 0.1Hz ~ 1Hz	μV_{PP}		0.3	_		0.3	<u> </u>
输入偏置电流	$\overline{I_{\mathrm{R}}}$	T _A = 25℃	pA		± 20	± 100		± 20	± 100
<u> </u>	I ₀₈	T _A = 25℃	pA		± 40	± 120		± 40	± 120
IN 7 C Section In Column		$T_A = 25$ °C, $R_L = 1$ k	v	4.0	4.3		4.0	4.3	
最大输出电压摆幅		$T_{\rm A} = 25^{\circ}{\rm C}$, $R_{\rm L} = 100 {\rm k}$	v		4.95			4.95	
 电源电流	$I_{\rm S}$	$T_{\rm A} = 25 ^{\circ}{\rm C}$	mA		1.8	2.5	_	1.8	2.5
平样频率		T _Λ = 25°C	kHz		3		<u> </u>	3	<u></u>

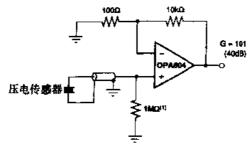
电参数($V_S = \pm 5V$, $T_A = 工作温度范围$)


		.			LTC1250M			LTC1250C	
参数	符号	条 件	单位	最小	典型	最大	最小	典型	- 最大_
	Vas	T _A = 25 ℃	μV		± 5	± 10		± 5	± 10
金 人失调电压		1 A - 20 V	μ V /°C		±0.01	± 0.05		± 0.01	± 0.03
平均输人失调漂移	$\triangle V_{08}$		nV/√Mo		50			50	
长期失调漂移		m 0590 0 1U- 10U-	nV/√ Mo μV _{P.P}	_	0.75	0.9	_	0.75	0.9
輸入噪声电压	e _N	$T_{\rm A} = 25 ^{\circ}\text{C} , 0.1 \text{Hz} \sim 10 \text{Hz}$ $T_{\rm A} = 25 ^{\circ}\text{C} , 0.1 \text{Hz} \sim 1 \text{Hz}$	μν _{Ρ-P}		0.22	0.3		0.22	0.3
	- -		fA/ √Hz		4.0			4.0	
偷人噪声电流	i _N	f = 10Hz			± 50	± 150		± 50	± 200
輸人偏置电流	I_B	$T_{\rm A} = 25{\rm ^{\circ}C}$	pA pA		150	± 950			± 450
<u> </u>			pA		± 100	± 150		± 100	± 200
输入失调电流	108	$T_{\rm A} = 25 ^{\circ}{\rm C}$	pA			± 200			± 300
		$V_{CM} = -4V - +3V, T_A =$	dВ	115	130		115	130	
共模抑制比	CMRR	25℃	dB	110			110		. <u></u> ,
电源抑制比	PSRR	$V_S = \pm 2.375 \text{V} \sim \pm 8 \text{V}$	dВ	120	130		120	130	
电 <u>破抑制比</u> 大信号电压增益	Avol	$R_{\rm L} = 10 \text{k}$, $V_{\rm OUT} = \pm 4 \text{V}$	dB	135	170		140	170	

	A44. 🗆	<i>₽</i> 14.	34 /4	LTC1250M	LTC1250C
参 数	符号	条件	单位	最小 典型 最大	最小 典型 最大
		D 1) B 100	v	+4.0/-4.5+4.3/-4.7	+4.0/-4.5+4.3/-4.7
最大输出电压摆幅		$R_{\rm L}=1{\rm k}, R_{\rm L}=100{\rm k}$	v	±4.95	± 4.95
转换速率	SR	$R_{\rm L} = 10 \mathrm{k}$, $C_{\rm L} = 50 \mathrm{pF}$	V/μs	10	10
增益带宽积	GBW		MHz	1.5	1.5
t 25 t 25		无负载 T _A = 25℃	mA	3.0 4.0	3.0 4.0
电源电流	I_{S}	大山火(株) T _A = 23 G 	mA	5.5	5.0
采样频率	f_{S}	T _A = 25℃	kHz	4.75	4.75

生产厂家:LINEAR TECHNOLOGY

桥传感放大调节电路


用途:用于力和压力的测量,也可用于测量温度传感桥电路。

注:要求桥上最小电压 20mV,最小电源电压 1.8V。图 2-23 压力桥的差动电压放大电路

传感器 OPA604 型低失真 FET 输入运算放大电路

用途:用于传感器放大和数据采集系统。

注:(1) 电路用高阻抗放大,1MC1电阻提供输入偏流回路。 图 2-24 压电传感器检测电路

OPA604 型运算放大器

OPA604 是 FET 输入运算放大器。低失真,在 1kHz 时为 0.0003%,低噪声 10nV/ \sqrt{Hz} ,高 转换速率 25V/ μ s,宽频带 20MHz,宽电源电压范围 ± 4.5 ~ ± 24V。

最大绝对额定值

电源电压

±25V

输人电压

$$(V_{-}) - 1V \sim (V_{+}) + 1V$$

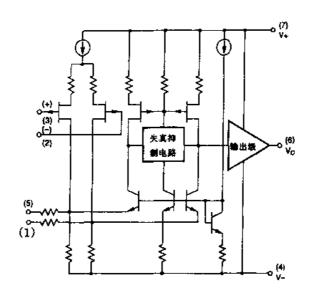


图 2-25 OPA604 电路方块图

输出短路到地

无限

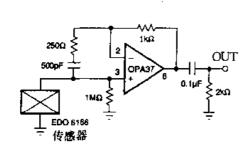
工作温度

- 40 ~ 100℃

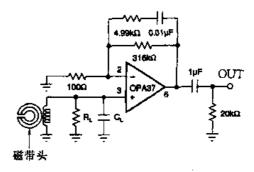
存储温度

-40 ~ 125℃

结温

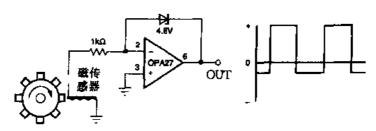

150℃

引线焊接温度(10s)

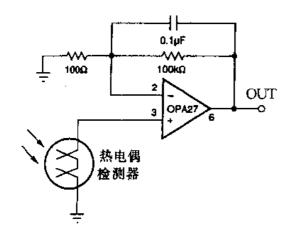

300℃

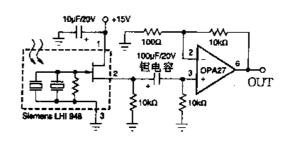
传感器 OPA27/37 型运放电路

用途:用于传感器信号放大检测电路。



注:频率响应 1kHz~50kHz 图 2-26 水声传感检测电路


注:在 $1kH_2$ 时,G = 50dB。电阻为金属膜电阻,电容为薄膜电容, R_L 和 C_L 对不同磁头由工厂推荐。


图 2-27 磁带头检测电路

注:fourappm×N,N=齿轮齿数

图 2-28 磁传感器转速测量电路

注:电路用金属膜电阻,塑封薄膜电容。电路必须屏蔽, 使噪声减至最小。

图 2-30 平衡热电红外检测器

响应性 = 2.5 × 10⁴ V/W

输出噪声电压在 0.1Hz~10Hz 范围内为 30μVms 图 2-29 长波红外检测电路

OPA27/37 运算放大器

OPA27/37 是超低噪声、高精度、单片运算放大器。在 1kHz 时的噪声最大值为 $3.8nV/\sqrt{Hz}$,低失调电压最大为 $25\mu V$,低漂移为 $0.6\mu V/\mathbb{C}$,高开环增益最小为 120dB,高共模抑制比最小为 114dB,高电源抑制比最小为 100dB。用于传感器放大和数据采集系统。

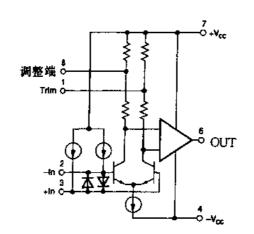


图 2-31 电路功能方块图

最大绝对额定值

 电源电压
 ± 22V

 内部功耗
 500mW

 输入电压
 ± V_{CC}

 输出短路持续时间
 无限

差动输入电压 ±0.7V

差动输入电流 ± 25mA

工作温度 -55℃ ~ + 125℃

存储温度 -65℃~+150℃

引线焊接温度(10s)

300℃

技术参数(T_A = 25℃, V_{CC} = ± 15V)

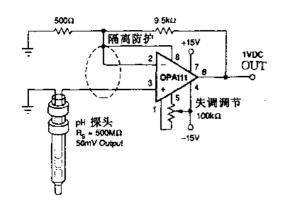
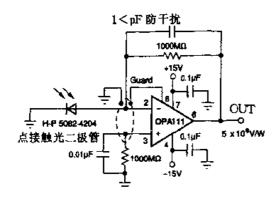
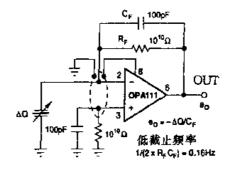
电参数

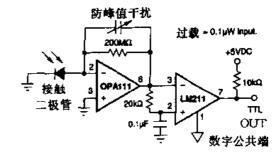
	参	数	单位	OPA2	7/37A, OP.	A27/37E	OPA2	7/37B, OP.	A27/37F	OPA27/37C, OPA27/37C		
		**	7*12	最小	典型	最大	最小	典型	最大	最小	典型	最为
输入						<u>-</u>						
— 噪声											Ī	
电压	$f_0 = 1$	()H2	nV/√Hz	i	3.1	5.5	}	3.5	5.5	1	3.8	8.0
	$f_0 = 3$		nV/√Hz		2.9	4.5		3.1	4.5		3.3	5.6
	$f_0 = 1$	kHz	nV/√Hz		2.7	3.8		3.0	3.8		3.2	4.5
		.1Hz ~ 10Hz	μV_{P-P}		1			1	,			
电流	$f_0 = 10$		pA/√Hz		0.07	0.18	1	0.08	0.18		0.09	0.25
	$f_0 = 30$		pA/ VHz		1.7	4.0	1	1.7	4.0		1.7	
	$f_0 = 1$, -		1.0	2.3		1.0	2.3		1.0	
			pA∕√Hz		0.4	0.6		0.4	0.6		0.4	0.6
사용하다	e tr:		17			. 25	!				200	
失调电	B压 第入失调	# de EE	μV μV/℃		± 6 ± 0.2	± 25 ± 0.6	[± 12 ± 0.3	± 60 ± 1.3	İ	± 25 ± 0.4	± 100 ± 1.6
	ア均深を		μV/m ₀		0.2	1		0.3	1.5	1	0.4	2.0
	期稳 定		dB	100	134	-	100	125	1	94	120	2.0
Ę	想抑制	批	μΥ/Υ		±0.2	± 10		±0.6	± 10		±1	± 20
 偏置电							 -	 -	 	ļ -	<u> </u>	
	obli 食人偏复	t 电流	nA		± 11	±40		± 13	± 55	[± !5	± 80
			 		 			 	1	<u> </u>	 	
失调电	i流 i入失调	einia adar	_,		6	35			50	ļ !	1 10	75
		ッセル 	nA					8	50		10	75
阻抗					l			l	J	ĺ		
# #	模		GΩ ∥ pF		3 2.5			2.5 2.5			2 2.5	
电压表	鯏				1							
	模输入	范围	1 v 1	± 11	± 12.3		±11	± 12.3		±11	± 12.3	
	模抑制		ď₿	114	128		106	125		100	122	
#55	増益		l l		I				L .		l .	
	电压增	*	dB	120	126	 -	120	125		117	124	
71°PP	地匹相	fat.	dB	118	125	1	118	125		117	124	
頻率	वर्ष हों।	_								·	12.	
			Γ -								T	
;	增益带	宽积	MHz	5	8		5	8		5	8	
	****		MHz	45	63		45	63		45	63	
	转换速	* -	V/···	. 7	1.9		1 7	1.9		1.7	1.9	
			V/μs V/μs	1.7 11	11.9	ļ	1.7 11	11.9		11	11.9	
;	建立时	郋	μs	**	25	į	11	25		**	25	
	, , , , , , , , , , , , , , , , , , ,	•	με		25	ı		25			25	
	44 .1.		·									
额定:	输出 							, ,	···		,	
	电压输	æ.	v	± 12	± 13.8		± 12	± 13.8	į	± 12	± 13.8	
	ا تود حصري		v	± 10	± 12.8	1	± 10	± 12.8	ĺ	± 10	± 12.8	
1	输出电	3 11	Ω	_	70	1		70			70	
5	短路电池	流	mA		25	60		25	60		25	60
电源					<u> </u>			<u></u> _	1		L L	
	 獅定电	 Æ	VDC		± 15			± 15			± 15	
	电压范				1	- (
F	降额特	生	VDC	± 4	ł	± 22	± 4		± 22	±4	}	± 22
3	静态电池	- 1	mA		3]	4.7		3	4.7		3.3	5.7

6	<u></u>	34 P4	OPA27/37A, OPA27/37E			OPA27/37B, OPA27/37F			OPA27/37C, OPA27/37G		
参	数	单位	最小	典型	最大	最小	奥型	最大	最小	典型	最大
温度范围			•	-	-	_	_	_	•		
特定											
A, B, C	(J,Z)	°C	- 55		+ 125	55		+ 125	- 55		+ 125
$\mathbf{E},\mathbf{F}(\mathbf{J},$	(2)	_ ° C	- 25		+ 85	- 25		+ 85			
G(P, U	,1,Z)	9℃							- 40		+ 85
工作								:			
J,Z		l ℃	- 55		+ 125	<i>~ 5</i> 5		+ 125	- 55		+ 125
P, U		l °C							- 40		+ 85

传感器 OPA111 型介质隔离 FET 输入运算放大电路

用途:用于传感器放大、检测、医学设备和光电检测等领域。


图 2-32 PH 值检测电路

注:电路必须屏蔽 图 2-34 光检测电路

注:低端截止频率 1/(2R_FC_F)=0.16Hz 图 2-33 压电传感器检测电路

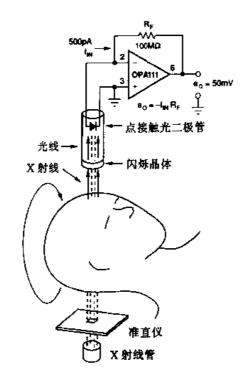

注:检测二极管是硅检测器 SD - 04i - 11 - 21 - 011。 电路是高灵敏(InW 以下)光纤接收 9600 波特曼 彻斯特数据。过载 = 0.1μW 输入

图 2-35 光纤接收电路

OPA111 型运算放大器

OPA111 是一个精密介质隔离 FET 输入单片运算放大器。低噪声最大值为 $8nV/\sqrt{Hz}$,低偏置电流最大为 1PA,低失调电压最大为 $250\mu V$,低漂移最大为 $1\mu V/\mathbb{C}$,高开环增益最小为 \cdot 100 \cdot

120dB, 高共模抑制比最小为 100dB。

注:电路为计算 X 轴 X 射线层析摄影电路 图 2-36 CAT 扫描电路

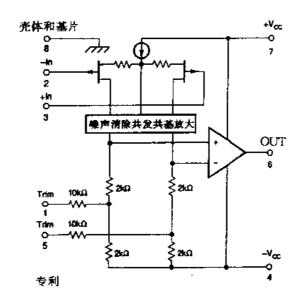


图 2-37 电路功能方块图

=	-	MA	44	额	· •	/#F
蓛	Λ.	711	XII	2HII	Æ'	12

 电源电压
 ± 18V

 内功耗
 750mW

 差动输入电压
 ± 36V

 输入电压
 ± 18V

 存储温度
 - 65 ~

存储温度 - 65 ~ 150℃ 工作温度 - 55 ~ 125℃ 引线焊接温度(10s)

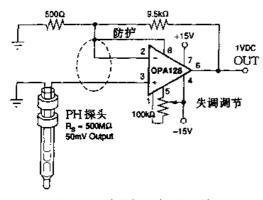
300℃

输出短路持续时间

无限

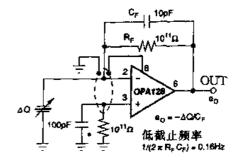
结温

175℃


技术参数($T_A = 25$ °C, $V_{CC} = \pm 15$ V)

电参数

A #	بديدد		OPA111AM	1		OPA111BN	1	OPAILISM			
参 数	単位	最小	典型	最大	最小	典型	最大	最小	典型	最大	
输入			,			<u> </u>			 .		
噪声				-					40	-05	
电压 f ₀ = 10Hz	nV∕√Hz		40	80		30	60		40	80	
$f_0 = 100$ Hz	nV∕√Hz		15	40		11	30		15	40	
$f_0 = 1 \text{kHz}$	nV∕√Hz		8	15		7	12		8	15	
$f_0 = 10 \text{kHz}$	nV/√Hz		6	8	1	6	8		6	8	
$f_{\rm B} = 10 \rm Hz \sim 10 \rm kHz$	μV_{me}		0.7	1.2		0.6	l i		0.7	1.2	
$f_{\rm B}=0.1{\rm Hz}\sim10{\rm Hz}$	μV_{P-P}		1.6	3.3		1.2	2.5		1.6	3.3	
电流 ∫ _B = 0.1Hz ~ 10Hz	fA _{P-P}		9.5	15		7.5	12		9.5	15	
$f_0 = 0.1 \text{Hz} - 20 \text{kHz}$	fA/√Hz		0.5	0.8		0.4	0.6		0.5	0.8	
失调电压	μV		± 100	± 500		± 50	± 250		± 100	± 50	
输入失调电压	μ ν /°C		± 2	±5		±0.5	± 1		±2	± 5	
平均票移	dΒ	90	110	13	100	110	**	90	110		
电源抑制比	μV/V	50	±3	± 31	100	± 3	± 10		± 3	± 3	
偏置电流											
输入偏置电流	pA		±0.8	±2		± 0.5	±1		±0.8	± 2	
失调电流 输入失调电流	pА	_	±0.5	±1.5		±0.25	±0.75		±0.5	±1.	
阻抗	- 11		13 4			ا القامد			10 ¹³ 1		
差动	Ω∥pF Ω∥pF		10 ¹³ 1 10 ¹⁴ 3			10 ¹³ 1 10 ¹⁴ 3			10 ¹⁴ 3		
共 模 —————————	tz∥ pr		10-113	<u>.</u> .		10 3			10 3		
电压范围					10			. 10	± 11		
共模输入范围	V	± 10	± 11		± 10	± 11 110		± 10 90	110		
共模抑制比 —————	dB	90	110		100				110		
开环增益						_	<u> </u>		T 1		
开环电压增益	dB	114	125		120	125		114	125		
頻率响应						1	 -		<u>. </u>		
单位增益,小信号	MHz		2			2			2		
功率响应	kHz	16	32		16	32		16	32		
转换速率	V/μ8	1	2		1	2		1	6		
建立时间 0.1%	με		6			6			10		
0.01%	μв		10			10			"		
过载恢复 50%过载驱动	træ ent		5			5			5		
额定输出											
电压输出	v	± 11	± 12	•	± 11	± 12		± 11	± 12		
电流输出	mA	±5.5	± 10		±5.5	± 10		± 5.5	± 10		
輸出电阻	Ω		100			100			100		
容性负载稳定性	рF		1000			1000			1000		
短路电流	mA	10	40		10	40		10	40		


传感器 OPA128 型介质隔离 FET 输入运算放大电路

用途:用于离子计、光电检测器和传感检测电路。

注:电路用高阻抗(104Ω)放大器

图 2-38 pH值检测电路

注: e_o = - ΔQ/C_F 低截止频率 1/(2πR_FC_F) = 0.16Hz

图 2-39 压电传感器检测电路

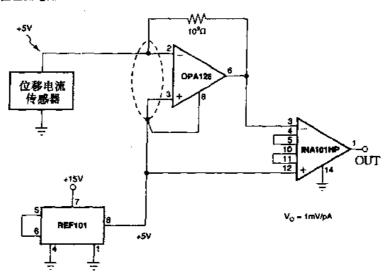


图 2-40 传感器位移电流电压变换器

OPA128 型运算放大器

OPA128 是超低失调电流介质隔离 FET 输入单片运算放大器。低失调电流最大为 $75f_A$,低失调电压最大为 500μ V,低漂移最大为 5μ V/℃,高开环增益最小为 110dB,高共模抑制比最小 90dB。用于离子检测、光电检测器和传感器检测。

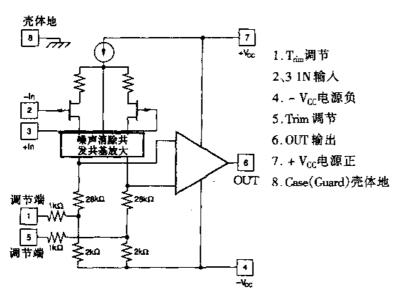


图 2-41 电路功能方块图

最大绝对额定值

电源电压 ± 18V

内功耗 500mW

差动输入电压 ±36V

输入电压 ± 18V

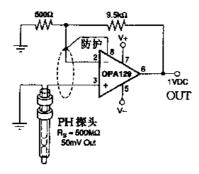
存储温度 -65~150℃

工作温度 - 55 ~ 125℃

结温 175℃

引线焊接温度(10s) 300℃

技术参数(T_A = 25℃, V_{CC} = ± 15V)


电参数

		36 12.	OPA128JM			0	PA1281	M	(OPA128LM		OPA128SM		M
参	数	单位	最小	典型	最大	最小	奥型	最大	最小	典型	最大	最小	典型	最大
输人	•							·		·				
偏置电流				[[
输入偏置电流	充				ļ [ļ		1			ļ	!
		fA		± 150	± 300		± 75	± 150	ı	±40	± 75	!	± 75	± 150
失调电流				-										
输入失调电流	ñ													
		£A		65	. '	 	30			30			30	

参 数	单位	1						Ţ			Γ.	——————————————————————————————————————		
		OPA128JM			OPA128KM			OPA128LM			OPA128SM			
		最小	奥型	最大	最小	典型	最大	最小	典型	最大	最小	典型	最大	
失调电压	μ٧		± 260	± 1000		± 140	± 500		± 140	± 500		± 140	± 500	
输入失调电压	μV/℃			± 20		11.0	± 10		- 1.0	±5		- 1 13	± 10	
平均漂移	dB	80	120		90	120	[90	120		90	120		
电源抑制比	μV/V		± 1	± 100		±ì	± 32		± 1	± 32		±1	= 32	
噪 声									1					
电压 f ₀ = 10Hz	nV/√Hz		92			92			92			92		
$f_0 = 100 \text{Hz}$	nV/√Hz		78			78	1		78			78	İ	
$f_0 = 1 \text{kHz}$	nV∕√Hz		27			27			27			27		
$f_0 = 10$ kHz	nV/ √Hz	ĺ	15			15			15	ĺ		15		
$f_{\rm B} = 10 \text{Hz} \sim 10 \text{kHz}$	μV _{mae}		2.4			2.4			2.4			2.4		
$f_{\rm B} = 0.1 \text{Hz} \sim 10 \text{Hz}$	μV_{P-P}		4			4			4			4		
电流 f _B = 0.1Hz ~ 10Hz	fA, p-p		4.2	[3		,	2.3			3		
$f_0 = 0.1 \text{Hz} \sim 20 \text{kHz}$	fA/√Hz		0.22			0.16			0.12			0.16		
— 阻抗												-		
差功	Ω∥pF		10 ¹³ 1			10 ¹³ 1		 	10*3 1			10 ¹³ 1		
共模	$\Omega \parallel \mathrm{pF}$		10 ¹³ 2			10 ¹⁵ ∥ 2			1015 2			10 ¹⁵ 2		
电压范围					•						• •			
共模输人范围	V	± 10	± 12	1	± 10	± 12	!	± 10	± 12	' '	± 10	± 12		
共模抑制比	dB	80	118	1	90	118_		90	118		90	118		
开环增益												,		
开环电压增益	dB	94	128	[110	128		110	128		110	128		
频率响应														
单位增益,小信号	MHz	0.5	1		0.5	1		0.5	1		0.5	1		
功率响应	kHz		47			47			47		.	47		
转换速率	V/μs	0.5	3		1	3		1	3		1	3		
建立时间 0.1% 0.01% (μs		5 10		į	5 10			5 10	J		5 10		
过载恢复时间	hta		10			10			10			10		
50%过载驱动	μв		5			5			5			5		
额定输出			····	•		'				•				
电压输出	v	± 10	± 13		± 10	± 13		± 10	± 13		± 10	± 13		
电流输出	mA	± 5	± 10		±5	± 10		± 5	± 10	1	± 5	± 10		
輸出电阻	Ω	-	100	- 1		100	l		100	İ	- 1	100		
容性负载稳定性	pF		1000		10	1000			1000	٠.		1000		
短路电流	mA	10	34	55	10	34	55	10	34	55	10	34	55	
电源 ————————————————————————————————————								 _			· 	 1		
额定电压	VDC		± 15			± 15			± 15			± 15		
电压范围]													
降额特性	VDC	±5	- 1	± 18	±5	i	± 18	±5		1	±5	1	± 18	
静态电流	mA		0.9	1.5		0.9	1.5		0.9	1.5		0.9	1.5	
温度范围			<u></u> -											
特定	°C	0		+ 70	0		+ 70	0		+ 70	- 55			
工作	€	- 55	[+ 125	- 55	İ	+ 125	- 55	-	+ 125	- 55		+ 125	
存储	ř l	- 65		+ 150	-65		+150	-65		+ 150	~65		+ 125	
9结——环境	%C∑W	~	200	. 200	~ [200	, 150	~~	200		~	200	+ 150	
	"			- 1				- 1)	ì				

传感器 OPA129 型超低失调电压隔离运算放大电路

用途:用于 PH 探头检测、离子测量和光电检测等领域。

注:电路中放大器为高阻抗(10¹⁵Ω) 图 2-42 pH 探头检测电路

OPA129 型运算放大器

OPA129 是单片超低失调电流运算放大器。8 脚封装。低偏流最大为 100fA,低失调电压最大为 2mV,低漂移最大为 10 μ V/ $^{\circ}$,高开环增益最小为 94dB,低噪声电压在 10kHz 时为 15nV/ \sqrt{Hz} 。

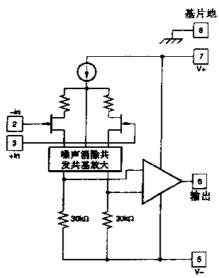


图 2-43 OPA129 电路方块图(脚 1.4 不连)

最大绝对额定值

电源电压 ± 18V 差动输入电压 $V_- \sim V_+$ 输入电压范围 $V_- \sim V_+$ 存储温度 — 40 ~ 125℃ 工作温度 — 40 ~ 125℃

引线焊接温度(10s) 300℃ 输出短路持续时间 连续 结温 150℃

2.2 传感器仪器放大器应用电路

传感器与 AD524 型精密仪器放大电路

用途:用于高精度数据采集系统、桥传感电路和温度测量电路。

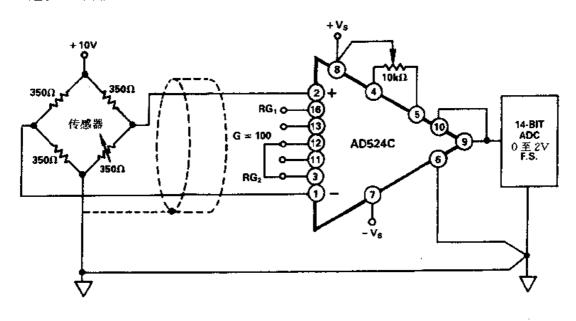


图 2-44 典型传感桥 A/D 变换电路

图中 AD524C 能放大不平衡传感器桥的输出信号。传感器输出差动信号经 AD524C 放大后送至 14 位 A/D 变换器。输入电压范围为 0~2V。工作温度为 - 25~85℃。

图 2-45 电路用半导体温度传感器 AD590,其温度敏感输出电流串联产生电压,补偿 J型 热偶铁(+)—康铜(-)冷端电压的变化。在已知基准温度和电路环境 25℃时,调节 RT,输出

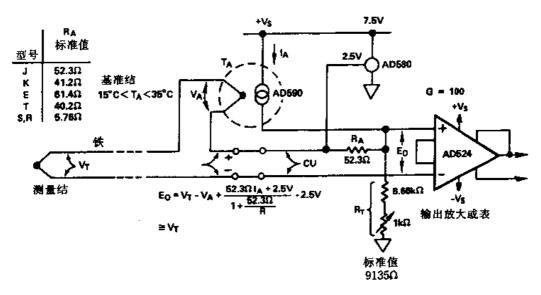


图 2-45 冷端补偿热电偶电路

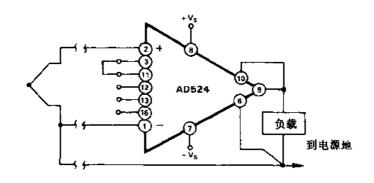
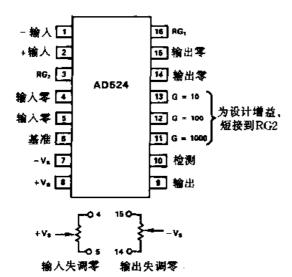


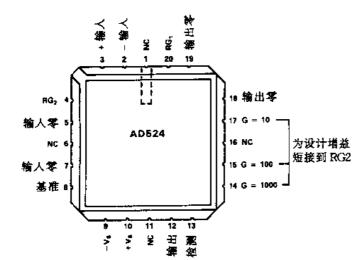
图 2-46 AD524 简单热偶放大电路

电压与测量结对应校准电路。

AD524 型精密仪器放大器

AD524 是单片精密仪器放大器,用于要求高精度、工作环境最恶劣的多种数据采集系统。特点:低噪声: $0.1Hz \sim 10Hz$ 时为 $0.3\mu V_{P-P}$;低非线性:0.003%(G=1);高共模抑制比: 120dB(G=1000);低失调电压: $50\mu V$;低失调电压温漂: $0.5\mu V/\mathbb{C}$;增益带宽乘积:25MHz;管脚可编程增益 1,10,100,1000;输入保护,电源通到电源断,不要求外部元件;内有补偿。


图 2-47 AD524 功能方块图

管脚说明:

1.-IN 输入负;2 + IN 输入正;3 RG2 栅极电阻 4、5 INPUT NULL 输入零;6. REF 基准;7.-VS 电源负;8.+V₅ 电源正;9. OUT 输出10. SENSE 检测;11、12、13. G 为设计增益短接到 RG₂;14、15. OUT PUT NULL 输出零;16. RG₁ 栅极电阻

图 2-48 16 引脚管脚图(顶视)

管脚说明:

1、6、11、16. 不连接; 2. - IN 输入负; 3. + IN 输入正; 4. RG₂ 栅极电阻 5、7. INPUT NULL 输入零; 8. REF 基准; 9. - V₈ 电源负; 10. + V₈ 电源正; 12. OUT 输出; 13. SENSE 检测; 14、15、17. G 为设计增益短接到 RG₂; 18、19. OUTPUT NULL 输出零; 20. RG₁ 栅极电阻

图 2-49 20 引脚管脚图(顶视)

技术参数($V_S = \pm 15$ V, $R_L = 2$ k Ω , $T_A = 25$ °C)

	# O.		AD524A	L	AI)524B	3		AD5240	3		AD5248	,
参 数	単位	最小	典型	最大	最小	型	最大	最小	典型	最大	最小	典型	最大
増益						_			.				
增益公式		$\left \left[\frac{40.00}{R_{c}}\right]\right $	<u>00</u> + 1]	± 20%	$\left[\frac{40,000}{R_G}\right]$	+1]	± 20%	[40,0 R ₀	<u>00</u> + 1]	± 20%	40,0 R _c	1 + 1	± 20%
增益范围		1 ~ 10	000		1 ~ 1000)		1 ~ 1	000		1 ~ 1	000	
G = 1	%			±0.05			±0.03			±0.02			± 0.05
G = 10	%			±0.25			±0.15			±0.1			± 0.25
G = 100	%			±0.5			±0.35			±0.25			±0.5
G = 1000	%			±2.0	1		±1.0			±0.5			±2.0
非线性													
G = 1	%			± 0.01			± 0.005			± 0.003			± 0.01
G = 10,100	%			±0.01			± 0.005			± 0.003			± 0.01
G = 1000	%			±0.01			±0.01			± 0.01			±0.0i
增益温漂													
<i>G</i> = 1	ppm/°C			5			5			5			5
G = 10	ppm∕°C			15			10			10			10
G = 100	ppm/°C			35			25			25			25
G = 1000	ppm/℃			100			50			50			50
失调电压													
输人失调电压	μV			250			100			50			100
输入失调电压温源	μV/℃			2			0.75			0.5			2.0
输出失调电压	mV			5			3			2.0			3.0
输出失调电压温源	μV/°C			100			50			25			50
失调表示输人和电源比	-												
G = 1	dB	70			75			80			75		
G = 10	dB	85			95			100			95		
G = 100	dB	95			105			110			105		
G = 1000	dB	100			110			115			110		

	ak iz		AD524A	ı		AD524B			AD5240	:	AD524S		
参 数	单位	最小	典型	最大	最小	典型	最大	最小	典型	最大	最小	典型	最大
输入电流					ľ								
輸入偏置电流	пА		±	50		± S	50		±	15			50
输入偏置电流温源	pA∕°C	±	100		±	100		±	100		±	100	
输入失调电流	nА		±	35		±	15			10			35
輸入失调电流温源	pA∕°C	±	100		±	100		±	100		±	100	
输入													
輸入阻抗		١.						109			10 ⁹		
差动电阻	Ω	109			109			109					
差动电容	рF	10			10			10			10		
共模电阻	Ω	102			109			109			109		
共模电容	рF	10			10			10			10		
输人电压								٠					
最大差动,线性($V_{ m D}$)	v	± 10			± 10			± 10		,	± 10		
最大共模,线性(V_{CM})	v	1 2V –	$\left(\frac{G}{2} \times V\right)$	(_D)	12V –	$\left(\frac{G}{2} \times V\right)$	_D)	12 V – ($\left(\frac{G}{2}\times\right)$	v _D)	12V - 1	$\left(\frac{G}{2}\times\right)$	V _D)
共模抑制比		_			-				•				
G = 1	dB		70			75			80			70	
G = 10	dB		90			95			100			90	
G = 100	dВ		100			105			110			100	
G = 1000	dB		110			115			120		 	110	
输出额定值, V_{OUT} , $R_{\text{L}} = 2k\Omega$	v _		± 10		ļ <u>-</u>	± 10			± 10			± 10	_
动态范围	ļ												
小信号 – 3dB													
<i>G</i> = 1	MHz		1			1			1			1	
G = 10	kliz		400			400			400			400	
G = 100	kHz		150			150			150			150	
G = 1000	kHz		25			25			25			25	
转换速率	V/μs		5			5			5.0			5.0	
建立时间 0.01%,20V 阶跃													
$G = 1 \sim 100$	με		15			15			15		İ	15	
G = 1000	μs	_	75		_	75			75		<u> </u>	75	
噪声													
噪声电压,1kHz											1		
R.T.1.	nV/√Hz		7			7			7			7	
R.T.O.	nV/√Hz		90			90			90			90	
R.T.1.0.1 ~ 10Hz													
G = 1	μV_{P-P}		15			15			15			15	
G = 10	μV _{P-P}	1	2			2			2			2	
G = 100,1000	μV _{P-P}		0.3			0.3			0.3			0.3	
噪声电流													
0.1Hz ~ 10Hz	pA _{P-P}		60			60			60			60	

												头	4 <u>e</u>
多 · 数	单位	最小	AD524A 典型	最大	最小	AD524B 典型		最小	AD524C 典型		最小	AD524S 典型	最大
敏感输入													
$R_{ m IN}$	kΩ ± 20%		20			20			20			20	
$I_{ m IN}$	ρA		15		1	15			15			15	
电压范围	· v	± 10			± 10			± 10			± 10		
(输入对输出)	%		1			I			1			1	
$R_{\rm IN}$	kΩ ± 20%		40			40			40			40	
In	μΑ	į	15			15			15		!	15	
电压范围	v v	± 10			± 10			10			10		
(輸入对輸出)	%		1			1			1			1	
温度范围													
工作	l ℃	- 25		+ 85	- 25		+ 85	- 25		+ 85	55		+ 125
存储	°C _	- 65		+ 150	- 65		+ 150	- 65		+ 150	65		+ 150
电源	v												
电源电压范围	mA.	±6	± 15	± 18	±6	± 15	± 18	± 6	± 15	± 18	±6	± 15	± 18
静态电流	mr		3.5	5.0		3.5	5.0		3.5	5.0		3.5	5.0
封装	1						i						
16 脚陶瓷封装			AD524AD			AD524BD		•	AD524CD			AD524SD	
20 端无引线芯片载	体		AD524AE			AD524BE	;		AD524CE			AD524SE	

生产厂家: ANALOG DEVICES

传感器 INA102 型低功耗仪器放大电路

用途:用于应变计、热电偶、桥传感器、医疗仪器和遥控传感器放大等领域。

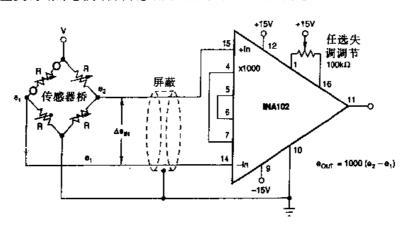


图 2-50 传感器桥差动电压输入放大电路

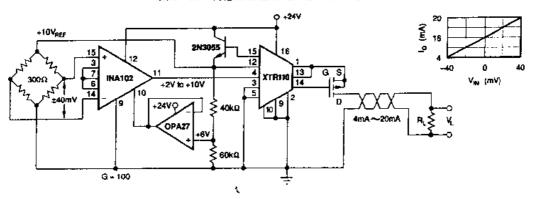
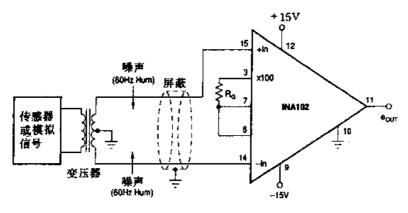
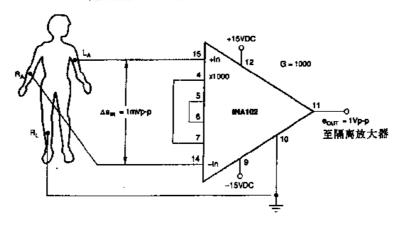




图 2-51 单电源桥传感器变送器电路

注: $e_{\text{OUT}} = G(\Delta e_{\text{IN}})$, $G = 1 + (40\text{K/}|R_{\text{G}} + R_{\text{c}}|)$, $R_{\text{G}} = (40\text{K} - R_{\text{c}}|G - 1|)/(G - 1)$ $R_{\text{c}} = 4.4\text{k}\Omega$, 404Ω 或 40Ω 对应增益分别为 10,100 或 1000。图 2 - 52 传感器用变压器耦合放大电路

注:L_A 左臂,R_A 右臂,R_L 右腿人体传感信号图 2-53 心电图检测、记录生物学信号电路

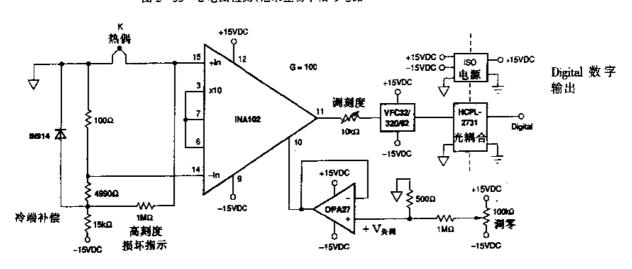


图 2-54 具有冷端补偿的隔离热电偶电路

INA102 型仪器放大器

INA102 是一个高精度单片仪器放大器,用于信号调节。低静态电流最大为 750μ A,内增益为 1、10、100、1000,低增益漂移最大为 5ppm/ %,高共模抑制比最小为 90dB,低失调电压漂移最

大为 $2\mu V$ /℃, 低失调电压最大为 $100\mu V$, 低非线性最大为 0.01%, 高输入阻抗为 $10^{10}\Omega$ 。

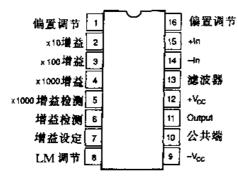



图 2-55 INA102 电路功能方块图

管脚说明:

1.失调调节,2.增益×10,3.增益×100,4.增益×100,5.增益×1000检测,6.增益检测,7.增益设定,8.CMR调节,9.- V_{CC} 负电源,10.公共端,11.输出,12.+ V_{CC} 正电源,13.滤波器,14.负输入,15.正输入,16.失调调节

图 2-56 管脚图(顶视)

最大绝对额定值

电源电压

± 18V

输入电压

 $\pm V_{\rm CC}$

工作温度

- 25 ~ 85°C

存储温度

- 55 ~ 125℃

引线焊接温度(10s)

- 33 ~ 123 C

71线冲接弧及(108)

300℃

技术参数(T_A = 25℃, V_S = ±15V)

电参数

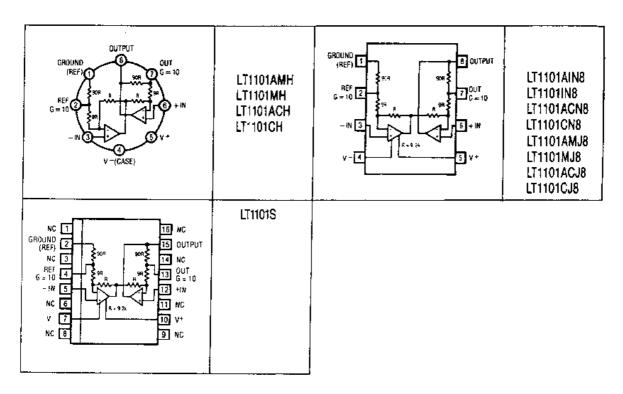
	- A- A-		INA102AG		INA102C0	;	INA10)2KP/INA	102AU
多 数	单位	最小	典型 最大	最小	典型	最大	最小	典型	最大
	T								
增益范围	V/V	1	1000	+ -		*	*		*
增益公式	V/V	G=	$1 + (40k/R_G)$		*			*	
误差,DC;G=1	%		0.1		l	0.05			0.15
G = 10	%		0.1		}	0.05	•		0.35
G = 100	%		0.25			0.15			0.4
G = 1000	%		0.75			0.5			0.9
G = 1	%	i	0.16	•	•	0.08			0.21
G = 10	%		0.19		İ	0.11			0.44
G = 100	%		0.37			0.21		' !	0.52
G = 1000	%		0.93		1	0.62			1.08

	36 (1).]	NA102AG			INA102CG			2KP/INA	
参 数	单位	最小	典型	最大	最小	典型	最大	最小	典型	最大
	- -		·	_						
G=1	ppm/°C			10			5			*
G = 10	ppm/℃			15			10			*
G = 100	ppm/°C			20			15			*
G = 1000	ppm/°C			30			20			*
非线性,DC										
G = 1	% FS		į	0.03			0.01			*
G = 10	% FS			0.03			0.01			*
G = 100	% FS			0.05		<u>l</u>	0.02			*
G = 1000	% FS			0.1			0.05			*
G = 1	% FS			0.045			0.015	:	1	*
G = 10	% FS			0.045			0.015			*
G = 100	% FS			0.075			0.03			*
G = 1000	% FS			0.15			0.1			*
 额定输出				 		_	_		- -	. _T
 电压	v	(V _{CC} 1 - 2.5)			*		i	*		
电流	mA	± 1]	*			* .		
短路电流	mA		2			* *			*	i
输出阻抗,G=1900	Ω		0.1						 _	
输人	<u> </u>					-	т			
失调电压				±300±300/G			± 100 ± 200/G			*
固有失调	μV			1.001.000			1 100 2 200			± 500 ± 300/0
INA102AU	μV			±5±10/G			±2±5/G			*
对温度变化	μV/°C μV/V	•		±40±50/C			± 10 ± 20/G			*
对电源变化 对时间变化	μV/m _o		± (20 + 30/G)			*			*	•
	F			· -		 	 			
偏置电流 固有偏置电流										1
(每个输入)	nA	ļ	25	50		6	30		*	*
对温度变化	nA/°C		±0.1			*			*	
对电源变化	nA/V		±0.1			*	± 10		*	*
固有失调电流	nA		±2.5 ±0.1	± 15		±2.5	± 10		*	
	nA/°C	 	±0,1	 		-	<u> </u>			
阻抗	$ _{\Omega \parallel pF}$	10 ¹⁰ 2]		*			*	1	
差 动	$\Omega \parallel pF$	10 2			*			*		
共模 ————————————————————————————————————		10 112	<u> </u>	 - 	· 	<u> </u>	 		 	
电压范围		(17)			v			*		
线性响应 	V	$(V_{\rm CC} - 4.5)$			*	[, ,	ì	
共模抑制比	dB	80	94		90	*		75	*	
G = 1 $G = 10$	₫B	80	100		90	*]	*	*	
G = 10 to 1000	qв	80	100		90	*		*	*	
	 -	<u> </u>								
噪声										
输入噪声电压 f _B =0.01Hz~10Hz	μV_{P-P}		1			*			*	
密度,G=1000:f ₀ =10Hz	nV/\sqrt{H}	-	30			*			*	
$f_0 = 100 \text{Hz}$	nV/√H	1	25			*			*	
$f_0 = 1 \text{kHz}$	nV/√H	1	25			*			*	
输入噪声电流]
$f_B = 0.01 Hz \sim 10 Hz$	pA _{P-P}		25		Ì	*			*	
密度:f ₀ = 10Hz	pA/√H	-	0.3			*			*	
$f_0 = 100$ Hz	pA∕√H		0.2			*		!	*	
$f_0 = 1 \text{kHz}$	pA/ √H	z	0.15			*			*	,
		<u> </u>	1		Щ.			l	<u>+</u>	ــــــــــــــــــــــــــــــــــــــ

<u> </u>	979 649		INA102A	<u> </u>		INA102CO	}	INA10	NA102KP/INA102AU		
参 数	単位	最小	典型	最大	最小	典型	最大	最小	典型	最大	
动态响应											
小倌号		1								1	
± 3dB 平坦度											
G = 1	kH≉]	300			*			*	İ	
G = 10	kHz		30			*			*		
G = 100	kHz	1	3			*			*		
C = 1000	kHz	<u> </u>	0.3			*		<u> </u>	*	<u> </u>	
小倍号											
±1%平坦度				ļ			,			Ì	
G = 1	kHz		30	1		*		*			
G = 10	kHz	}	3	}		*		*			
G = 100	kHz		0.3			*		*		İ	
G = 1000	kHz		0.03			*		*			
功率,G= l to 100	kHz	1.7	2.5		*	*	*	×			
转换速率 G=1 to 100	V/μs	0.1	0.15		*	*	*	*			
建立时间	-	1 0.1		(*		*	i i			
0.01%: G = 1	με		50			*		*			
G = 100	119	1 .	360			*		*			
G = 1000	μ s		3300			*		*			
0.1%: G = 1	μ s		60			*		*			
G = 100	μ s		500			*	'	* [
G = 1000	μs		4500			*		*			
电源										. <u> </u>	
额定电压	v	-	± 15			*			*		
电压范围	V	± 13.5		± 18	*		*	*		*	
静态电流	μA		± 500	± 750		*	*		*	*	
温度范围						.				-	
特定	°C	- 25		+ 85	*	-	*	0		+ 70	
INA102AU	℃							- 25		+ 85	
工作・	℃	- 25		+ 85	*	Ì	*	- 25	ļ	+ 85	
存储	C	- 65		+ 150	*		*	- 55		+ 125	

注:*表示与 [NA102AG 的参数相同。

生产厂家:BURR - BROWN


LTI101 型精密型微功耗单电源仪器放大器

用途:微功耗桥传感器放大、热电偶、应变计、热敏电阻、4~20mA 桥变送器和差动信号放大等领域。

特点:增益误差最大为 0.04%,增益非线性为 0.0008%(最大),增益温漂最大为 $4ppm/\mathbb{C}$,电源电流最大为 105μ A,失调电压最大为 160μ V,失调电压温漂典型值为 0.4μ V/ \mathbb{C} ,失调电流最大为 600pA, CMRR(G=100)最小为 100dB, 0.1Hz 至 10Hz 范围内的噪声电压和电流典型值为 0.9μ V_{P-P}或 2.3pA_{P-P},增益带宽乘积最小为 250kHz,单电源或双电源工作。

最大绝对额定值

电源电压		± 22V
差动输入电	压	± 36V
输人电压		正电源电压 10V 以下负电源电压
输出短路持	续时间	无限
引线焊接温	度(10s)	300℃
工作温度	LT1101AM/LT1101M	-55 ~ 125°C
	LT1101AL/LT1101I	– 40 ~ 85℃

管脚说明:

1.GNO 地(基准);2.REF 基准;3. - IN 输入负;4.V - 电源负(壳体);5.V*电源正;6.*IN 输入正;7.OUT 输出;8.OUT 输出。

1、3、6、8、9、11、14、16NC 不连接;2.GND 地(基准);4.REF 基准;5、- IN 输入负;7.V-电源负;10.V+电源正;12.+ IN 输入正;13.OUT 输出;15.OUT 输出。

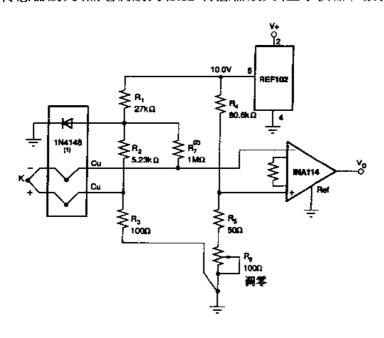
图 2-57 管脚图(顶视)

LT1101AC/LT1101C/LT1101S

0 ~ 70℃

存储温度

-65 ~ 150℃


电参数 $(V_S = 5V, 0V, V_{CM} = 0.1V, V_{REF}(PIN 1) = 0.1V, G = 10 或 100, T_A = 25\%)$

	1			I T11	01AM/	II/AC	T Tri	101M/L	/C/S
符号	参数	测试条件	単位	最小	典型	最大	最小	典型	最大
G _E	增益误差	$G = 100, V_0 = 0.1 \text{V} \sim 3.5 \text{V}, R_L = 50 \text{k}$ $G = 10, V_0 = 0.1 \text{V} \sim 3.5 \text{V}, R_L = 50 \text{k}$	% %		0.010	0.050 0.040			0.075 0.060
G _{NZ}	增益非线性	$G = 100, R_{L} = 50k$ $G = 10, R_{L} = 50k$	ppm ppm		20	60 7		20	75 8
V _{os}	输入失调电压	LT1101S	μV μV		50	160		60 250	220 600
l _{os} .	输入失调电流		nA		0.13	0.60		0.15	0.90
l_B	輸入偏置电流		nA		6	8		6	10
$\mathbf{l_{\$}}$	电源电流		μ A		75	105	·	78	120
CMRR	共模抑制比	1k 源不平衡 G = 100, V _{CM} = 0.07V ~ 3.4V G = 10, V _{CM} = 0.07V ~ 3.1V	dB dB	95 84	106 100		92 82	105 99	
	最小电源电压		V		1.8	2.3		1.8	2.3
Vo	最大输出电压摆幅	高电平 50k 至地 高电平 2k 至地 低电平 V _{REF} = 0, 尤负载 低电平, V _{REF} = 0, 2k 负载 低电平, V _{REF} = 0, l _{SINK} = 100μA	V V mV mV	4.1	4.3 3.9 3.3 0.5 90	6 1 130	4.1 3.5	4.3 3.9 3.3 0.5 90	6 1 130
BW	带宽	G = 100 G = 10	kHz kHz	2.0 22	3.0 33		2.0 22	3.0 33	
SR	转换速率		V/µs	0.04	0.07		0.04	0.07	

生产厂家:LINEAR TECHNOLOGY

传感器 INA114 型仪器放大电路

用途:用于桥传感器放大、热电偶放大、RTD 传感器放大、医学仪器和数据采集等领域。

注:(1)在200µA,-2.1mV/℃。(2) R₂提供减小量程比率报坏指示。

图 2-58 热电偶传感器放大调节电路

电路中热电偶有冷端补偿

热电偶型号与电阻的关系

热电偶型号	贝塞克效应 (μV/℃)	R_2 ($R_3 = 100\Omega$)	R_4 $(R_5 + R_6 = 100\Omega)$
E	58.5	3.48kΩ	56.2kΩ
J	50.2	4.12kΩ	64.9kΩ
K	39.4	5.23kΩ	80.6kΩ
T	38.0	5.49kΩ	84.5kΩ

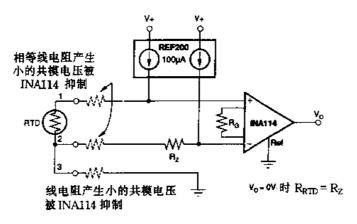


图 2-59 RTD 温度测量电路

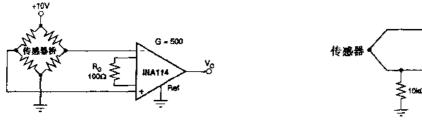


图 2-60 桥传感电路

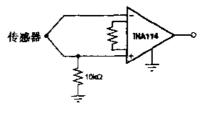


图 2-61 热电偶放大电路

注:L_x是左臂,R_x为右臂,RL为右腿。 图 2 - 62 有右腿驱动的心电图放大电路

INA114型仪器放大器

INA114 是一个通用型仪器放大器,内有通用的三个运放,输入端有过压保护。低失调电压最大为 50μ V,低漂移最大为 0.25μ V/℃,低输入偏置电流最大为 2nA,共模抑制比最小为 115dB,输入过压保护 ± 40V,宽电源范围 ± 2.25V ~ ± 18V,低静态电流最大为 3mA。

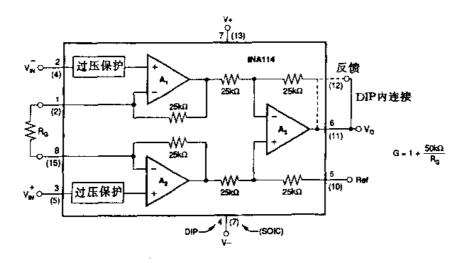


图 2-63 INAI 14 电路功能方块图

最大绝对额定值

电源电压

± 18V

输入电压范围

± 40V

工作温度 -40~125℃ 存储温度 -40~125℃ 结 温 150℃ 引线焊接温度(10s) 300℃ 输出短路(到地) 连续

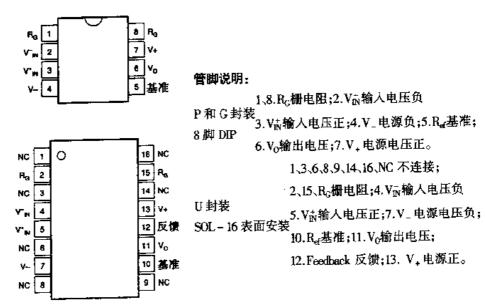


图 2-64 管脚图(顶视)

技术参数

电参数 $(T_A = 25\%, V_S = \pm 15 \text{V}, R_L = 2\text{k}\Omega)$

			INA114BP, BG, B	U		INA114AP, AG, A	AU
参 数	单位	最小	典型	最大	最小	典型	最大
·····································							
失调电压	1						105 . 500 /6
固有	μV		± 10 + 20/G	± 50 + 100/G			± 125 + 500/0
对温度变化	μV/°C		$\pm 0.1 + 0.5/G$			± 0.25 + 5/G	1
对电原变化	$\mu V/V$		0.5 + 2/G	3 + 10/G		*	*
长期稳定性	μV/mo		± 0.2 + 0.5/G			*	
阻抗;差动	$\Omega \parallel p\Gamma$		1010 6			*	
共模	Ω∥թΓ		1010 6			*	
输人共模范围	V	± 11	± 13.5		*	*	_
安全输入电压	V			± 40			*
共模抑制比			•		26		1
	dB	80	96		75	90	
	dB]	96	115		90	106	
	dB	110	120		106	110	
	dB	115	120		106	110	. <u></u>
偏置电流	nA.		± 0.5	± 2		*	±5
对温度变化	pA/°C		± 8			*	
失调电流	nA	_	±0.5	±2		*	± 5
对温度变化	pA/°C		± 8			*	

	I	I	AN114BP, BG, BU	J	IN	A114AP, AG,	
参 数	单位	最小	 典型	最大	最小	典型	最大
 噪声电压		_					
f = 10Hz	ηV∕√Hz		15			*	1
f = 100Hz	nV/\sqrt{Hz}		11			*	
f = 1kHz	nV/√Hz		11			*	
$f_{\rm B} = 0.1 \rm Hz \sim 10 \rm Hz$	μV_{PP}		0.4			*	
 県声电流				İ			
f = 10Hz	pA∕√Hz		0.4			*	
f = 1 kHz	pA/\sqrt{Hz}		0.2			*	
$f_{\rm B} = 0.1 \rm Hz \sim 10 \rm Hz$	pA _{p p}		18			*	<u> </u>
· · · · · · · · · · · · · · · · · · ·							
增益公式	V/V		$1 + (50 \text{k}\Omega/R_{G})$	Į		*	
増益范围	V/V	1		10000	*		*
増益误差	%		± 0.01	±0.05		*	*
	%		± 0.02	±0.4		*	±0.5
	%		± 0.05	±0.5		*	± 0.7
	%		± 0.5	± 1		*	± 2
增益对温度变化	ppm∕°C		± 2	± 10		*	± 10
50kΩ 电阻	ppm/°C		± 25	± 100		*	* ± 0.002
非线性	% FSR		± 0.0001	± 0.001		*	± 0.002
	% FSR		± 0.0005	± 0.002		*	±0.004 ±0.004
	% FSR		± 0.0005	± 0.002		*	1
	% FSR		± 0.002	± 0.01		*	± 0.02
				ļ			
电压	v	± 13.5	± 13.7		*	*	
	v	± 10	± 10.5		*	*	
	v	± 1	±1.5		*	*	
容性负载稳定性	pF		1000			*	
短路电路	mA		+ 20/ - 15			*	
——————— 频率响应	<u> </u>						
带宽, - 3dB	MHz		l l			*	İ
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	kHz		100	ļ		*	
	kHz		10			*	
	kHz		1			*	
转换速率	V/μs	0.3	0.6		*	*	
建立时间,0.01%	µB		18			*	
A	μs		20				1
	μs		120			*	
	μs		1100			*	
过载恢复	με		20			*	
电源					1		
电压范围	v	± 2.25	± 15	± 18	*	*	*
电流	mA_		± 2.2	±3		 -*	<u> </u>
温度范围					<u>.</u>		*
特定	°C	-40		85	*		*
工作	°C	-40		125	*	*	,
θ_{JA}	%C/W		80			·	

注:表示与 INA114BP/BU 的参数相同。

传感器 INA115 型精密仪器放大电路

用途:用于开关增益放大、桥传感放大、热电偶放大、RTD 传感器放大、医学仪器和数据采·120·

集等领域。

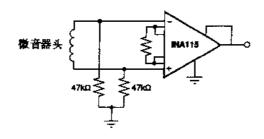


图 2-65 水声探测电路

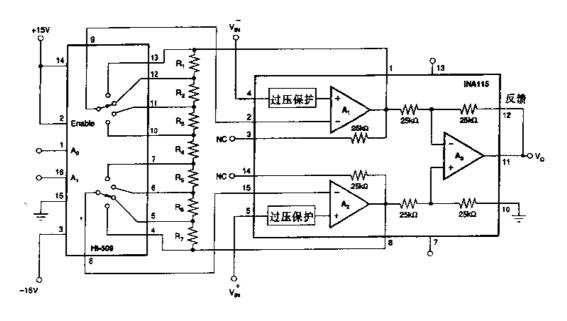


图 2-66 传感器用开关增益放大电路

传感器信号由 4、5 脚输入、通过可控开关改变增益。

増益控制表

.A ₀	A ₁	増 益
L	L	1
Н	L	:
L	Н	:
Н	н	最高

注:L是低电平

H是高电平

增益与电阻的关系

- A 1-D N.O.							
增 益	$R_{l}(\Omega)$	$R_2(\Omega)$	$R_3(\Omega)$	$R_4(\Omega)$	$R_{\delta}(\Omega)$	$R_6(\Omega)$	$R_7(\Omega)$
1,10,100,1000V/V	18k	1.8k	180	40	180	1.8k	18k
1,2,4,8V/V	18k	9k	4.5k	9k	4.5k	9k	18k
1,2,5,10V/V	18k	10.8k	3.6k	7.2k	3.6k	10.8k	18k
0, +3, +6, +9dB	18k	12.74k	9.02k	43.7k	9.02k	12.74k	18k

INA115 型仪器放大器

INA115 是一个通用仪器放大器,内有三个运放和输入保护电路。低失调电压最大为 $50\mu\text{A}$,低漂移最大为 $0.25\mu\text{V}/\Omega$,低输入偏置电流最大为 2nA,高共模抑制比最小为 115dB,输 人过载保护电压 $\pm 40\text{V}$,宽电源范围 $\pm 2.25 \sim \pm 18\text{V}$,低静态电流最大为 3mA。

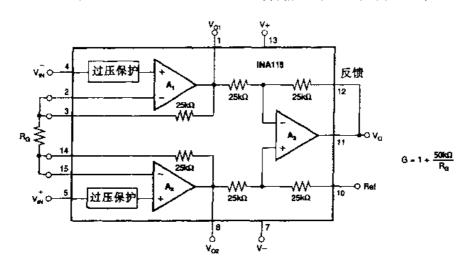
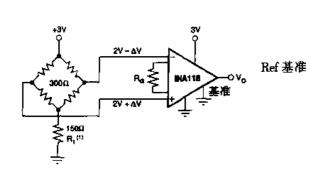
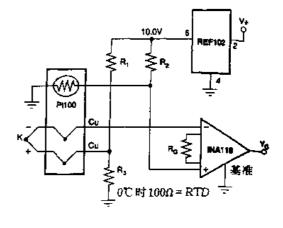


图 2-67 INAI 15 电路功能方块图


昆	*	46	44	粫	宁	估
ĦΨ	<i>_</i> /\		ויית	#PW	₹ 1	18

电源电压	± 18V
输入电压范围	± 40V
工作温度	- 40 ~ 125 ℃
存储温度	-40 ~ 125℃
结 温	150℃
引线焊接温度(10s)	300℃
输出短路(到地)	连续


传感器 INA118 型仪器放大电路

用途:用于桥传感电路、热电偶、RTD 传感器放大电路、医学仪器和数据采集等领域。 热电偶型号与电阻的关系

热电偶型号	贝塞克系数(μV/℃)	R ₁ , R ₂
E	58.5	66.5kΩ
J	50.2	76.8kΩ
К	39.4	97.6kΩ
T	38.0	102kΩ

注:(1) Ri在低电压工作时,要求建立完全的共

14在18年12年15日,安水建立九里的大

模电压

图 2-68 单电源桥传感电路

图 2-69 有冷端补偿的热电偶电路

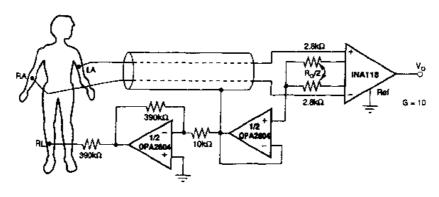


图 2~70 具有右腿驱动的心电图电路

INA118 仪器放大器

INA118 是通用仪器放大器。有三个运放和输入保护电路。低失调电压最大为 50μ V,低漂移最大为 0.5μ V/℃,低输入偏置电流最大为 5nA,高共模抑制比最小为 110dB,输入保护电压 ± 40 V,宽电源范围 $\pm 1.35 \sim \pm 18$ V,低静态电流为 350μ A。

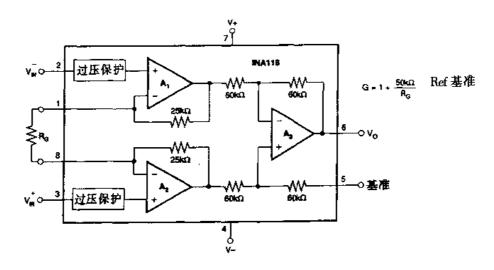


图 2-71 INAl18 电路功能方块图

最大绝对额定值

 电源电压
 ± 18V

 模拟输入电压范围
 ± 40V

工作温度 - 40 ~ 125℃ 存储温度 - 40 ~ 125℃

结 温 150℃ 引线焊接温度 300℃ 输出短路(到地) 无限

传感器 INA131 型 G = 100 仪器放大电路

用途:用于桥传感器、热电偶、RTD 传感器放大、医学仪器和数据采集等领域。

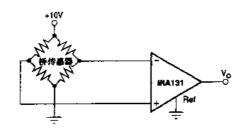


图 2-72 桥传感电路

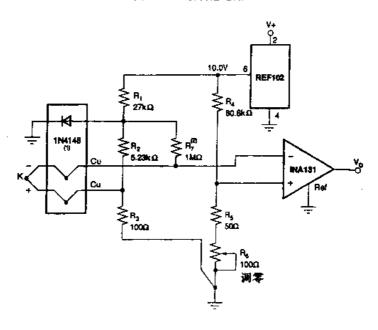


图 2-73 有冷端补偿的热电偶电路

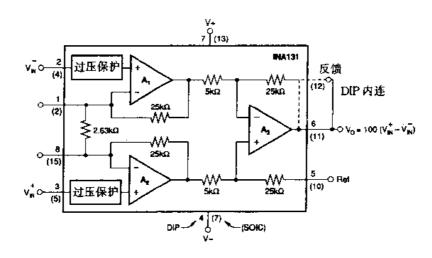
注;(1)在 200µA 时, -2.1mV/℃,(2) R₇提供减小量程比率损坏指示。

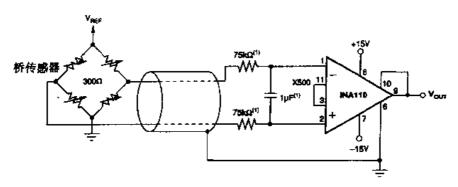
热电偶型号与电阻的关系

热电偶型号	贝塞克系数(μV/℃)	$R_2(R_3 = 100\Omega)$	$R_4(R_5 + R_6 = 100\Omega)$
E	58.5	3.48kΩ	56.2kΩ
J	50.2	$4.12 \mathrm{k}\Omega$	64.9kΩ
K	39.4	$5.23 \mathrm{k}\Omega$	80.6kΩ
T	38.0	$5.49 \mathrm{k}\Omega$	84.5kΩ

INA131 型 G = 100 仪器放大器

INA131 是通用 G = 100 仪器放大器。低失调电压最大为 50μ V,低漂移最大为 0.25μ V/℃,低输入偏置电流最大为 2nA,高共模抑制比最小为 110dB,输入过载保护 ± 40 V,宽电源范围 $\pm 2.25 \sim \pm 18$ V,低静态电流为 3mA。




图 2-74 INAI31 电路功能方块图

= . +	112 7	1 4 /5 .	┷
最大	细水	1 谷贝:	死111

电源电压	± 18V
输入电压范围	± 40V
输出短路(到地)	连续
工作温度	- 40 ~ 125℃
存储温度	- 40 ~ 125℃
结 温	150℃
引线焊接温度(10s)	300℃

传感器快速响应 FET 输入仪器放大电路

用途:用于传感器放大调节电路和多路输入数据采集系统。

注:(1)FET 输入具有对 DC 精度影响最小的低通滤波器,可用大电阻和小电容构成。 图 2-75 桥传感器放大调节电路

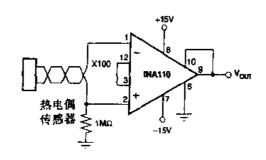


图 2-76 热电偶传感器放大调节电路

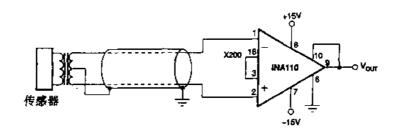


图 2-77 传感器变压器耦合放大调节电路

INA110 型仪器放大器

INA110 是一个多用途 FET 输入的单片仪器放大器。低偏置电流最大为 50PA,快速响应 $4\mu s$ 可达 0.01%,高共模抑制比最小为 106dB、在 10kHz 时为 90dB,内增益为 1、 $10、100、200、500,低增益漂移为 <math>10\sim50$ ppm/ $10\sim50$ 0,低失调漂移为 $10\sim50$ 0。

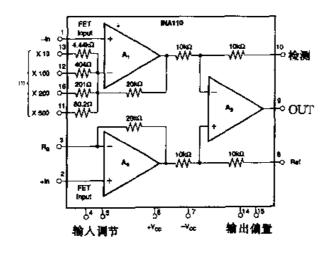
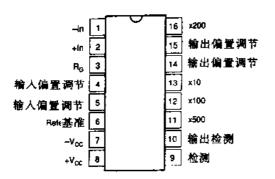


图 2-78 INAI10 电路功能方块图

最大绝对额定值


 电源电压
 ± 18V

 输入电压范围
 ± V_{cc}

工作温度 - 55 ~ 125℃

存储温度 - 65 ~ 150℃

引线焊接温度(10s) 300℃

管脚说明:

1.1n 输入负;2. + 1n 输入正;3.R_C栅电阻;4、5.mput offset Adj 输入失调调节;6.Ref 基准;7. - V_{CC}电源负;8. + V_{CC}电源正;9.Out 输出;10.Out put Sense 输出检测;11.(×500)、12(×100)、13(×10)、16(×200)放大;14、15.Out put offset Adj 输出失调调节。

图 2-79 管脚图(顶视)

技术参数($T_A = 25$ °C, $V_{CC} = \pm 15$ V, $R_L = 2$ k Ω)

电参数

		INA110AG			INAI 10BG, SG			INA110KP, KU		
参 数	单位	最小	典型	最大	最小	典型	最大	最小	典型	最大
		••••	 	1						
增益范围	V/V	ı		800	*		*	*		*
增益公式	V/V		*		G=1+	[40k/(R _C	+ 50Ω)]		*	
增益误差,DC:G=1	%		0.002	0.04		*	0.02		*	*
G = 10	%		0.01	0.1		0.005	0.05		*	*
G = 100	%		0.02	0.2		0.01	0.1		*	*
G = 200	%	:	0.04	0.4		0.02	0.2		*	#
G = 500	%		0.1	1		0.05	0.5		+	*
增益温度系数: $G=1$	ppm∕°C		± 3	± 20		*	± 10		*	
G=10	ppm/℃		± 4	± 20		±2	± 10		*	
G = 100	ppm∕°C		± 6	± 40		± 3	± 20		*	
G = 200	ppm∕°C		± 10	± 60		± 5	± 30		*	
G = 500	ppm∕°C		± 25	± 100		± 10	± 50		*	*
非线性,DG:G=1	% FS		± 0.001	± 0.01		± 0.0005			*	*
G = 10	% FS		± 0.002	± 0.01		± 0.001			*	*
G = 100	% FS		± 0.004	± 0.02		± 0.002	±0.01		*	*
G = 200	% FS 1		± 0.006	± 0.02		± 0.003	±0.01		*	*
G = 500	% FS		±0.01	±0.04		± 0.005	±0.02		*	*
輸出										
电压, $R_L = 2k\Omega$	v	± 10	± 12.7		*	*		*	¥	
电流	mA	± 5	± 25		*	*		*	*	
短路电流	mA.		± 25			*			*	
容性负载	рF		5000			*			¥	
输入失调电压										
和八矢胸屯広 固有失调:G,P	μV		± (100±	± (500+		± (50+	± (250 +			*
四有大概;6,1	μν			5000/G)		600/G)	3000/G)			
11			1000/ 6/	,,000/ G/		000/07	3007 07		± (200+	± (1000 +
U	μV		İ			1			2000/G)	5000/G
对温度变化	μV/°C		± (2+	± (5+		±(1+	± (2+		*	July G
对值及变化	py/ c		20/G)	100/G)		10/G)	50/G)			
对电源变化	μV/V		± (4+	± (30 +		± (2+	±(10+		#	*
刈毛研文化	μνν		60/G)	300/G)		30/G)	180/G)			
					 .					··
偏置电流										
固有偏置电流	pΑ		20	100		10	50		¥	*
固有失调电流	pA		2	I		1	25		*	#
阻抗;差动	Ω∦pF		$5 \times 10^{12} \parallel 6$	50		*			*	
共模	$\Omega \parallel pF$		$2 \times 10^{12} \ 1$			*			*	

. خور	34 13		INA110A0	3	II	NA110BG,	SG	INA110KP,KU		
多数	单位	最小	典型	最大	最小	典型	最大	最小	典型	最大
电压范围										
线性响应	v	± 10	± 12			ı		*	*	
共模抑制比						ŀ			1	
G = 1	dB	70	90		80	100		*	*	
G = 10	dB	87	104	ĺ	96	112		#	*	
G = 100	dВ	100	110		106	116	i	*	*	
G = 200	dB	100	110		106	116		*	*	1
G = 500	dB	100	110		106	116		*	*	
输入噪声										
电压,f ₀ = 10kHz	nV/√Hz		10			*			*	
$f_{\rm B}=0.1{\rm Hz}\sim10{\rm Hz}$	μV_{pp}		1	i		*			*	
电流,f ₀ = 10kHz	fA∕√Hz		1.8			*			*	
輸出噪声								-		
电压, $f_0 = 10 \text{kHz}$	nV/√Hz		65			*			*	ļ
$f_{\rm B} = 0.1 \mathrm{Hz} \sim 10 \mathrm{Hz}$	μV_{p-p}		8.			*			*	
动态响应										
小信号: G = 1	MHz		2.5			¥			ĸ	
G = 10	MHz	i	2.5			*			*	
G = 100	kHz		470			*			*	
G = 200	kHz		240			*			. *	
G = 500	kHz		100			*		•	*	
功率响应	kHz	190	270		*	*			*	
转换速率	V/µs	12	17		*	*	-		*	
建立时间:								i		
0.1% , $G = 1$	μв		4			¥		İ	*	
G = 10	μв		2			¥			*	
C = 100	hæ		3			*			. *	
G = 200	ha		5			*			#	
G = 500	μs		11			*		!	*	
动态响应			-							
建立时间:										
0.01% , $G = 1$	μs		5	12.5	1	*	* .		*	
G = 10	μв		3	7.5		*	*		*	
G = 100	μв		4	7.5		.*	*		*	
G = 200	μв	-	7	12.5		*	*		*	
G = 500	μ8	- 1	16	25		*	*		¥	
恢复	μ8		1			_ *			*	
电源				·						
额定电压	v		± 15			*			*	
电压范围	v	±6		± 18	*		*	*		*
静态电流	mA		± 3	±4.5	ļ	*	*		*	*
温度范围										
特定:A,B,K	°C .	- 25		+ 85	*		*	0		+ 70
\$	°C				- 55		+ 125			
工作	νc	- 55	[+ 125	#		*	- 25		+ 85
一, 存储	ر م	- 65	ľ	+ 150	*		*	- 40		+ 85
$ heta_{\mathtt{JA}}$	°C/W		100			*	1		*	

注:*表示与 INA110AG 的参数相同

生产厂家:BURR-BROWN

传感器与 AD624 型仪器放大器调节电路

用途:用于对传感器低电压输出进行缓冲和放大调节,传感器包括称重、应变和压力传感器。 · 128 ·

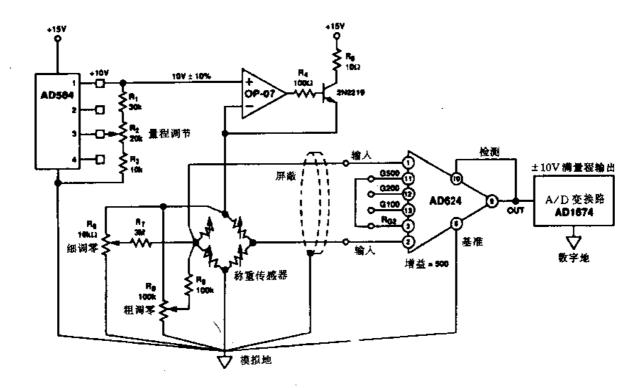


图 2-80 传感器放大调节电路

电路中的 AD584 为基准电压,输入电压为 $4.5\sim30V$;输出电压选择范围有: 10.000V、 7.500V、5.000V 和 2.500V。OP-07 为运算放大器,输入范围为 \pm 14V,用于激励传感桥电路。 AD624 为精密仪器放大器,主要用于放大低电平传感器信号。

AD624 特点:低噪声: $0.1 Hz \sim 10 Hz$ 范围内为 $0.2 \mu V_{pp}$;非线性最大为 0.001%;高共模抑制比最小为 $130 dB(G=500\sim1000)$;低输入失调电压最大为 $25 \mu V$;低输入失调电压温漂最大为 $0.25 \mu V/\%$ 。

增益带宽积为25MHz;增益可设置为1、100、200、500、1000;不要求外接元件。

AD1674 为 12 位 A/D 变换器,它是 12 位 10μ s 采样单位电路 ADC,内置采样保持放大器。8 位和 16 位微机接口,单极性和双极性输入: $\pm 5V$, $\pm 10V$, $0 \sim 10V$, $0 \sim 20V$ 。

AMP04 型精密单电源仪器放大器

AMPO4 是单电源仪器放大器,电源电压为 5~15V。主要特点:低电源电流最大为 700µA;

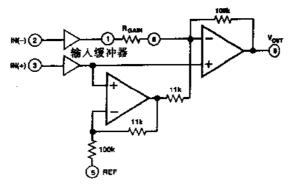
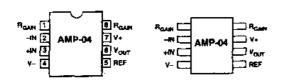



图 2-81 AMPO4 电路功能方块图

宽增益范围为 1~1000;低失调电压最大为 150µV;零输入/零输出,单电阻设定增益。用于应 变计、热电偶、RTD、医学仪器和数据采集等领域。

管脚说明:

1、8 R_{GAIN}增益电路; 2. - IN 输人负; 8 引线环氧 DIP 3. + IN 输入正;4.V- 电源负;5.REF 基准; (P后缀) 6.V_{OUT}输出电压;7.V+电源正。
8. 引线窄插座 SO 型封装(S 后缀)

图 2-82 管脚图

技术参数($V_S = 5V$, $V_{CM} = 2.5V$, $T_A = 25$ °C)

45 #F	// □	No. 14.	-43 44		AMP04	E	AMP04F		
参 数	符号	条 件	单位	最小	典型	最大	最小	典型	最大
失调电压									
输入失调电压	V_{108}		μV		30	150			300
输人失调电压温漂	TCV _{ics}		μV/°C			3			6
输出失调电压	V_{008}		mV		0.5	1.5			3
输出失调电压温源	TCVoos		μV/°C			30			50
輸入电流	_						 		
输入偏置电流	$I_{\rm B}$		nA		22	30	}		40
输入偏置电流温漂	TCI _B		pA∕%		65			65	
输出失调电流	I_{OS}		nA		1	5			10
输出失调电流温源	TCI_B		pA∕°C		8			8	
输人		-	-						
共模输入电阻			GΩ		4			4	
差动输入电阻			GΩ		4			4	
输入电压	V _{IN}		v	0	-	3.0	0	•	3.0
共模抑制比	C MR	0V ≤ V _{OM} ≤ 3.0V	'			\$.0	*		5.0
715ttr #770		G=1	dB	60	80		55		
		$G \approx 10$	dB	80	100		75		
		G = 100, 1000	dB	90	105		80		
共模抑制比	C MR	0V ≤ V _{OM} ≤ 2.5V			142	:			
× 100011 1111 110	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	-40°C ≤ T _A ≤ +85°C							
		G=1	dB	55			50		
		G ≈ 10	dВ	75			70		
		G = 100,1000	dB	85			75		
电源抑制比	PSRR	4.0V ≤ V _S ≤ 12V							
		-40°C ≤ T _A ≤ +85°C							
		G=1	dВ	95			85		
		$G \approx 10,100,1000$	dB	105			95		
增益(G=100k/R _{GAIN})			1						
增益公式精度		G ≈ 1 ~ 100	%		0.2	0.5			0.75
		$G \approx 1000$	%		0.4			0.75	
增益范围	G		V/V	1		1000	1		1000
非线性		$G=1$, $R_{\rm L}=5{\rm k}\Omega$	%		0.005				
		$G=10$, $R_{\rm L}=5{\rm k}\Omega$	%		0.015				
		$G \approx 100$, $R_{\rm L} = 5 \text{k}\Omega$	%		0.025				
增益温度系数	$\Delta G/\Delta T$		ppm/℃		30			50	

4\ ##-	M -	Ar 14-	Δ4 Δ2-	AMP04E	Ç	AMP04F		
参 数	符号	条件	単 位	最小 典型	最大	最小	典型	最大
输出电压								
输出高电平	Von	$R_{\rm L} = 2k\Omega$	V	4.0 4.2		4.0		
输出低电平	V_{OL}	$R_{\rm L} = 2k\Omega$						
	•	$-40^{\circ}\text{C} \leqslant \text{T}_{\Lambda} \leqslant +85^{\circ}\text{C}$	mV		2.0			2.
输出电流限		电流沉	mA	30			30	
		电流源	mA	15			15	
噪声						T		
噪声电压密度	e _N	f = 1 kHz, $G = 1$	nV/√Hz	270			270	
		f = 1 kHz, G = 10	nV/√Hz	45			45	
		f = 100 Hz, G = 100	nV/√ Hz	30			30	
		f = 100Hz, $G = 1000$	nV/√Hz	25		•	25	
噪声电流密度	i_N	f = 100Hz, $G = 100$	pA∕√Hz	4			4	
输入噪声电压	e _N p-p	0.1 to 10 Hz, G = 1	μA_{p-p}	7			7	
		0.1 to 10 Hz, G = 10	μA_{p-p}	1.5			1.5	
		0.1 to 10 Hz, G = 100	$\mu A_{p \cdot p}$	0.7			0.7	
动态响应								
小信号带宽	BW	G=1, -3 dB	kHz	300			300	
电源			μΑ	550	700			700
电源电流	I _{SY}							-
		$-40\% \leqslant T_{\text{T}} \leqslant +85\%$	μA		850			850

2.3 传感器隔离放大器应用电路

传感器与 AD208 高精度、低失调、mV 级输入隔离放大电路

用途:用于隔离 RTD 和热电偶放大电路、mV 级信号放大和隔离、过程测量和控制以及多通道数据采集等领域。

AD208 用于隔离 RTD 信号处理。RTD 应用时要求三个主要元件,一是稳定的电流激励源,二是负载补偿网络,三是消零网络。电路为用于对 RTD 调节、放大和隔离的电路。电路为 100Ω 铂 RTD 提供一个 $10\text{mV}/\Omega$ 的非线性输出。允许最大测温范围为 500Ω 。初始输入失调电压最大为 $\pm 1.3\text{mV}$,失调调节电路有 $\pm 1.5\text{mV}$ (RTI)的调节范围,很容易调节初始失调电压。RTD 失调电压温漂最大为 $\pm 4\mu\text{V}/\Omega$ 或 $0.016\Omega/\Omega$ 。

AD208 管脚说明

管脚编号	名 称	说 明
1	1N+	同相輸入
2	INCOM	输入公共端
3	. IN –	反相輸入
4	FB	输入运算放大器;输出/反馈端
5	V _{ISO-}	隔离电源: - DC 输出
6	V _{ISO+}	隔离电源:+DC输出
32	CLK COM	时钟公共端
33	CLK IN	时钟输入
37	. OUT LO	输出低
38	OUT HI	输出高

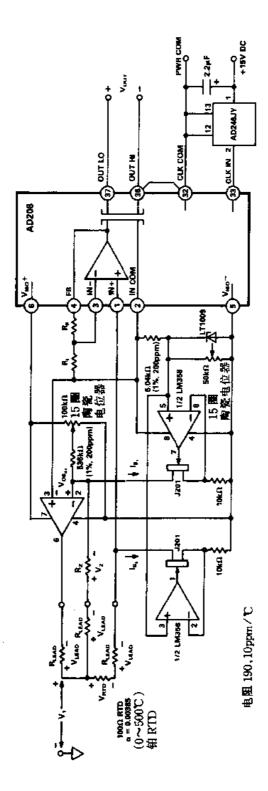
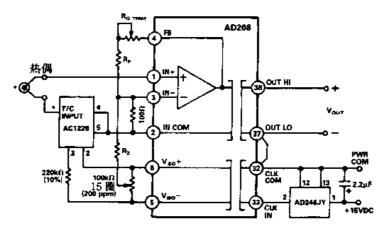



图 2-83 RTD 与 AD208 隔离放大电路

AD246 管脚说明

管脚编号	名 称	说明
1	PWRIN	直流电源输入
2	CLKIN	时钟输入
12	PWR COM	电源公共端
13	PWR COM	电源公共端

注: *AC1226 热电偶(T/C)输入脚的选择根据热电偶型号按下表进行。

输入脚	型号
1	E
6	R,S
7	K, T
8	j l

除另有说明外,全部电阻的精度均为1%,10ppm/%

图 2-84 热电偶隔离放大电路

热电偶应用要求高增益,在某些情况下还要求有冷端补偿。电路中的 AD208 具有稳定的高增益,对从热电偶来的低电平信号电压进行放大和隔离。AC1226 是热电偶冷端补偿器, AC1226 的作用是消除热电偶导线和实际测量电路之间形成的误差电压。在 0℃时, AC1226 的输出为 0V。

电路的增益失调调节:首先短路 AD208 输入至地(IN COM),然后调节失调电位器在输出端测量为 OV。失调输出为零时,调增益,根据输入端所用热电偶的型号开始加满量程电压进行失调和增益调节,使彼此之间相互作用减小。下表为大多数通用热电偶的典型温度范围、AD208 增益设定后推荐的反馈电阻(R_F)。增益调节电阻(R_{CTRIM})和失调调节电阻(R_Z)。

热电偶 型号	最大温度范围 5V 输出(℃)	最大输入 V _{IN} (mV)	AD208 増益 (V/V)	R _F (kΩ)	R _{GTRUM} (kΩ)	R _Z (MΩ)
Е	900	68.783	72.69	6.98	0.5	2.0
J	750	42.283	118.25	11.5	1.0	2.0
K	1250	5 0.633	98.75	9.53	1.0	2.0
R	1450	16.741	298.6	28.7	2.0	2.0
s	1450	14.973	333.9	32.4	2.0	2.0
T	350	17.816	280.6	27.4	2.0	2.0

AD208 为高精度、双端口、变压器耦合的隔离放大器,用于对低电平信号进行隔离放大。

特点:宽增益范围:1~1000V/V;低非线性:±0.0125%;低输入失调电压:±0.27mV(最大)(G=1000V/V);低失调温漂:最大±1.5 μ V/ Υ (G=1000V/V);高隔离电压:1.5 μ V/ Π (B级);隔离电源:±8.0V直流,电流可达±5mA;工作温度范围:-40~85 Π 。

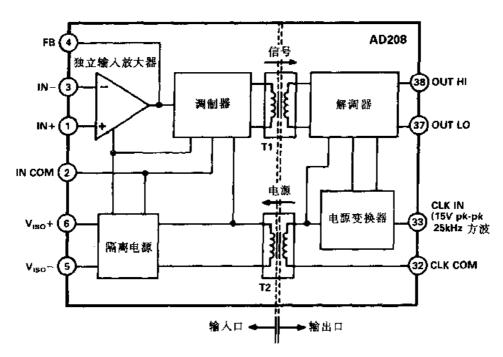


图 2-85 AD208 电路功能方块图 技术参数($T_A=25$ ℃,输出负载 $R_L=1$ MΩ, $V_S=15V_{p-p}$,25kHz 方波)

参数	AD208AY	AD208BY
增益		
范围	I - I000V/V	*
误差(G = 1V/V)	$-1.0\%(\pm 2.5\%, \max)$	*
温度漂移		i .
- 40 ~ 0 °C	± 60 ppm / ℃, max	*
0°C ~ 85°C	±20 ppm/°C, max	*
电压漂移	± 100 ppm/V	¥
非线性, ± 5V 输出波动, G = 1 ~ 1000V/V	± 0.0125%	*
G = 1V/V	±0.03%, max	± 0.015%, max
輸入电压		
线性差分范围	± 5V, min	*
最大安全差分电压	±6V	*
最大隔离电压		
AC,60Hz,连续	750V rms	1500V rms
连续(AC 或 DC)	± 10000 V peak	± 2000 V peak
共模抑制比		
R _s ≤100Ω(HI和 LO 输入)		
G = 1V/V	100 dB	*
G = 1000 V/V	120 dB	#
共模抑制比		
R _{s≤1kΩ} (输人,HI,LO或二者)		}
G = 1V/V	100 dB	*
G = 1000 V/V	100 dB	*
漏电流,输入至输出	2μA mns, max	*

参数	AD208AY	AD208BY
输入阻抗		·
差分(G=1V/V)	15 ΜΩ	*
- 共模加隔离层	2 GΩ 5 pF	*
相对输入失调电压		
在 25℃, 初始	$\pm (0.25 + 15/G) \text{mV}, \text{max}$	*
温漂	$\pm (1.5 + 20/G)\mu V/^{\circ}C$, max	*
电压源移	$\pm (50 + 150/G) \mu V/V$	ļ *
0.1Hz ~ 100Hz(噪声电压)	1.0 μV pk-pk	*
输入偏置电流		
在 25℃, 初始	± IOnA, max	*
温漂	± 100 pA/°C, max	*
电压漂移	± 1 nA/Volt	*
0.1Hz~100Hz 噪声电流	50 pA pk-pk	*
输 入差劲电流		
在 25℃, 初始	±6nA	*
温漂(-40~85℃)	± 60 pA/℃	*
頻率响应		
帯宽 G=1V/V	4.0kHz	*
G = 1000 V/V	0.4kHz	#
转换速率	0.1 V/µs	#
建立时间	2 ms	*
_ 过载恢复时间	5 ms	*
额定输出		
电压(OUTHI 至 OUTLO)	±5 V	*
最大差分电压	± 6.5 V	*
输出电阻	3 kΩ	*
输出纹波 190kHz 带宽	10 mV pk-pk	*
5kH₂ 带宽。	0.8 mV pk-pk	*
隔离电源输出		
电压无负载	±8.0V	*
温漂(-40~85℃)	± 0.025%/°C	*
精度	± 10%	*
额定负载电流	± 2.0 mA, min	*
调整率	10%	*
电压调整率	= 10%/V	*
纹波,额定负载,100kHz带宽	100 mV pk-pk	*
AD208 时钟驱动输入		
输人电压	15 V pk-pk ± 5%,方波	*
輸入电流	± 10 mA pk	*
频率	25 kHz ± 5%	* .
占空比	47.5% ~ 52.5%	*
对装尺寸		
SIP封装	$2.08'' \times 0.260'' \times 0.625''$, max	*
- • •	$52.8 \text{ rum} \times 6.6 \text{ rum} \times 15.9 \text{ rum}$, rnax	*
温度花图		
工作	-40℃ to +85℃	*
	-40°C to +85°C	. *

注:* 表示与 AD208AY 的参数相同

生产厂家: ANALOG DEVICES

医疗传感 ISO107 型隔离放大电路

用途:用于人体心电图检测电路和生物医学仪器等场合。

电路中有电震器防护和静电消除电路。 IC_2 为 OPA2111, Q_1 , Q_2 , Q_4 为 2N3904, Q_3 为 2N7000, D_1 为 1N4148, R_1 , R_2 , R_3 为 1%,1/2W, R_4 , R_5 为 1%,1/2W, IC_1 、 IC_3 的旁通电容为 1.0 μ F, IC_2 的旁通电容为 0.1 μ F。

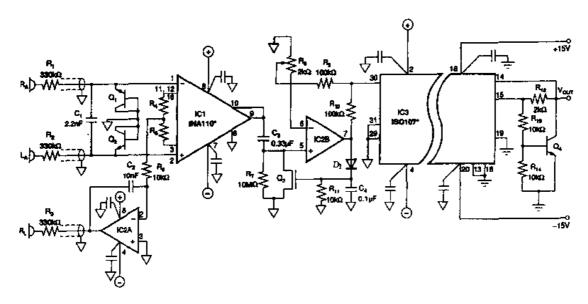


图 2-86 用右腿驱动的心电图放大电路

ISO107 高压隔离放大器

ISO107 隔离放大器提供信号和跨接隔离层电源,有变压器耦合的 DC/DC 变换器和电容耦合的信号通道,用于多通道数据采集系统和生物医学仪器等场合。

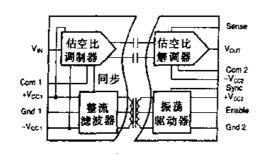


图 2-87 ISO107 方块图

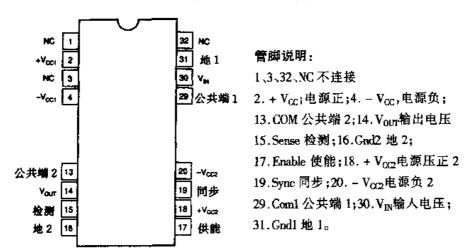


图 2-88 管脚图(顶视)

最大绝对额定值 电源电压

± 18V

 V_{IN},敏感电压
 ± 50V

 Com1 到 Gnd1 或 Com2 到 Gnd2
 ± 200mV

 使能,同步
 0 ~ + V_{CC2}

 连续隔离电压
 2500Vrms

 V_{ISO}, dv/dt
 20kV/µs

结温 150℃

存储温度 - 25 ~ + 125℃

引线焊接温度(10s) 300℃

传感器 ISO212P 型隔离放大电路

用途:用于工业过程控制,如传感器隔离、热电偶、RTD、压力桥及流量等传感器隔离变送器。

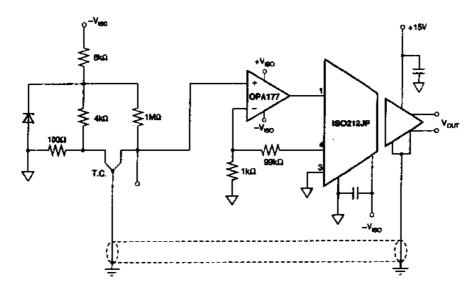


图 2-89 热电偶 ISO212P 隔离变送器

电路有消除干扰接地回路及冷端补偿。

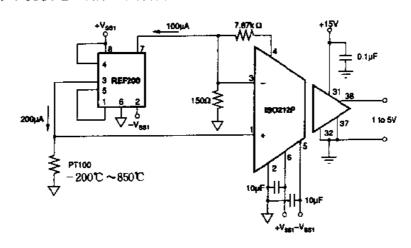


图 2-90 隔离温度传感电路

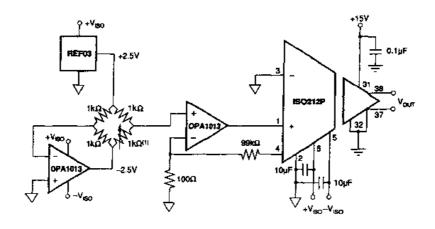


图 2-91 传感器 ISO212P 隔离变送器

图 2~91 中注(1)可以是应变计、压力传感器、RTD、气体检测和分析仪器。

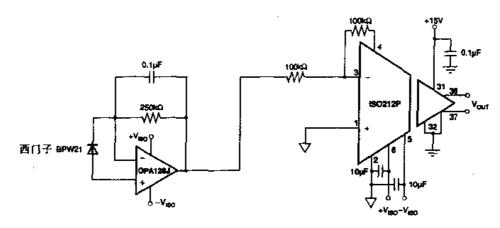


图 2-92 光检测隔离放大电路

ISO212P 型隔离放大器

ISO212P是信号隔离放大器,精度为12位,有输入失调调节,低功耗,单电源10~15V。用于工业过程控制。

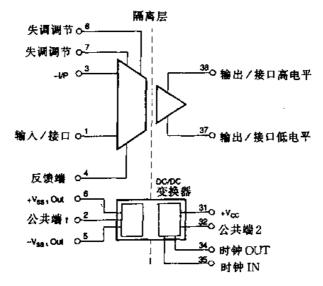


图 2-93 功能方块图

最大绝对额定值

电源电压

18V

连续隔离电压(隔离层)

 $750V_{\rm rms}$

存储温度

- 25℃ ~ 100℃

引线焊接温度(10s)

300℃

输出电压高或低到 Com2

 $\pm~V_{\rm cc}/2$

技术参数(TA = 25℃, V_∞ = + 15V)

单位	最小	典型	最大	最小	典型	最大
			1			
						1
ļ						
l v_ l	750	1		*		
		1		*		
1 120						
1 v 1	1200		Ì	*	Į.	
Y THEN			•		1	1
151		115			*	
1					*	
					*	
			ļ		*	
		1	,		*	*
μA _{me}		1 1				*
μA_{mo}			1.0	_		<u> </u>
% FSR(2)		±1	± 2			*
rom of FSR/9C		20	50			*
% FSR		0.04	0.05		0.015	0.025
- 		-				
mV .			$\pm 10 \pm 10/G$		1	±7.5 ±7.5/
I I		+30 + 30/G			*	
					*	
	+ 20			*		
 - "" - 					_	
4			50		1	*
						*
na +		 				
	_	1		¥		
V	±5		i	*		
Ω		1012			- 	
					1	
kΩ		3			*	
v	± 5	1		*		
mV _{nep}		8	l i			
		0.4			*	
v		7.5				
 						
լ եր		1	j l		*	
]		*	
		 	 			
		_		*	74	
	± 7.5			*		
mV/°C			[
mV/mA		90	 		*	
]			
mÅ					1	
			8			*
	% FSR ⁽²⁾ ppm of FSR/°C % FSR mV μV/°C mV/V mV nA nA V Ω kΩ V mV pp mV ms V kHz kHz kHz kHz kHz mV/°C mV/°C mV/mA	V _{mm} 750 VDC 1060 V _{mm} 1200 dB dB dB Ω pF μA _{max} μA _{max} μA _{max} μV V V V V V V V V V V V V V V V V V V	V _{mm} 750 VDC 1060 V _{mo} 1200 dB 160 ΩΩ 10 ¹⁰ pF 12 µA _{ms} 1 µA _{ms} 1 % FSR ⁽²⁾ ppm of FSR/°C 2 % FSR 20 0.04 mV µV/°C 150 mV/V 250 nA nA nA 250 N	V _{ma} 750 VDC 1060 V _{mb} 1200 dB dB 115 dB 160 Ω pF 12 µA _{ma} 1 2 1 1 2 1 1 2 1 60 % FSR ⁽²⁾ 20 50 0.04 0.05 mV μV/°C mV/V mV ± 20 ± 30 ± 30/G ± 10 ± 10/G 4 1.5 ± 5 0 4 4 5 0 4 4 5 0 4 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	V _{ms} VDC 1060 V _{ms} 1200 dB dB 115 160 10 ¹⁰ pF 12 1 2 1.6 % FSR(2) ppm of FSR/C 20 50 0.04 0.05 mV μV/C mV/V ± 20 nA nA 1 50 4 V Ω ± 5 10 ¹² kΩ V ± 5 3 4	V _{ma} 750 VDC 1060

	-
~~	
	~

	36 21	1SO212JP			ISO212KP		
参数 	单位	最小	典型	最大	最小	典型	最大
电源 额定电压	v		15			*	
电压花图 静态电流	V mA	11.4	4.3	16 7	*	*	*
遺 度 花 图特 定工 作	°C	0 - 25		± 70 ± 85	*		*

注:*表示与 ISO212JP 的参数相同

ISC300 型用于传感器隔离测量电路

用途:用于热电偶、RTD 和电压传感器的隔离测量以及 4~20mA 隔离接收器的测量。

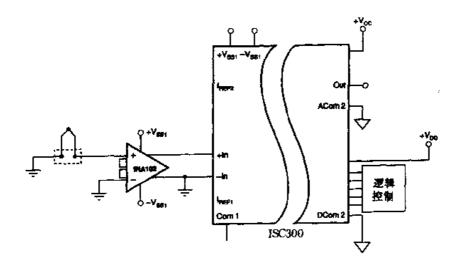


图 2-94 具有小刻度的热电偶温度测量

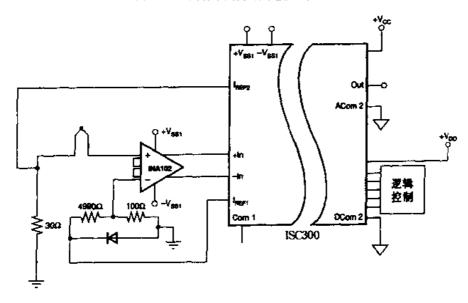


图 2-95 具有冷端补偿的热电偶温度测量

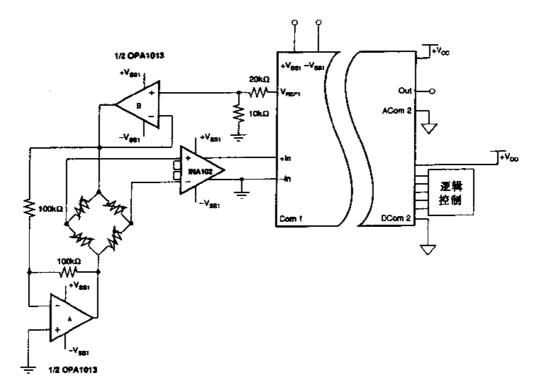


图 2-96 隔离传感器桥系统测量电路

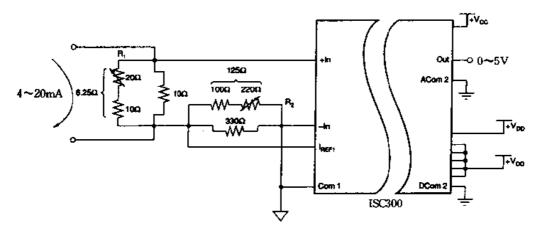


图 2-97 隔离 4~20mA 接收器电路

ISC300 型通用精密隔离测量通道电路

ISC300 是一个隔离测量通道,具有开路传感器检测功能,如 RTD 和热电偶。在温度测量时 ISC300 能接收±100mV,±10V满量程输入电压。允许用压力、湿度、流量等其他传感器的输入进行测量。也可进行低电平测量和应变计测量。测量通道有高稳定的内基准,可从输出端选择。

ISC300 在输入和输出部分之间无电连接,通过可编程增益放大器接收多路差动输入信号, 精确地传送至隔离层输出,输出部分解调从输入部分来的传送信号。

特点:有校准功能,集成传感器激励,开路传感器检测,低功耗 80mW,仪器放大器输入,可编程增益,12 位线性,两个隔离电源±13V/5mA,低漂移 10V 基准源。

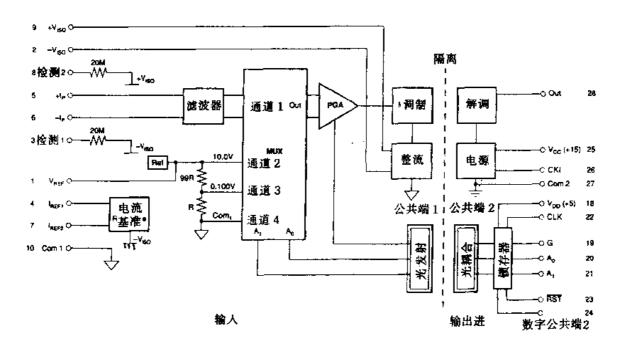


图 2-98 ISC300 功能方块图

功能选择表

输人选择	A ₁	Ao
公共	0	0
+ 0.1V	0	1
+ 10V	I	0
信号	1	ı

增益选择	G
0.5	0
50	1

选择和增益	RST	CLK
不变	1	0
不变	1	1
锁定	1	^
复位	0	X

ISC300 组成部分:

高阻抗差动输入滤波器,精密匹配电流源,故障检测偏压电阻,数字选择内校准基准源,数字选择增益,全部数字和模拟输入隔离,隔离式 DC/DC 变换器,可同步的内振荡器,用外电路的两个隔离电源和外电路可用的 10V 基准源。

输入部分

滤波器: ISC300 用于慢变化过程的信号,输入截止频率 2Hz 对 50Hz~60Hz 的电源有好的 抑制功能。

检测线:两条检测线在传感器损坏时构成短路或开路检测电路,并有输出指示。

多路开关:多路开关通向测量通道和精密基准电压源,到达可编程增益放大器

隔离层:隔离层由两个变压器和三个光耦合器组成。一个变压器将信号从输入边传送至输出边,另一个变压器将信号从输出边传送至输入边电源。光耦合器用于隔离逻辑信号,用于多路开关选择以及增益和基准电压的控制。

电压基准:基准电压有 0V,0.1V 和 10V,用于通道校准。10V 基准也可用于外电路。

电流基准: 两个匹配的 200μA 电流基准用于 RTD 校准或用于外部信号调节电路 可编程增益放大器:

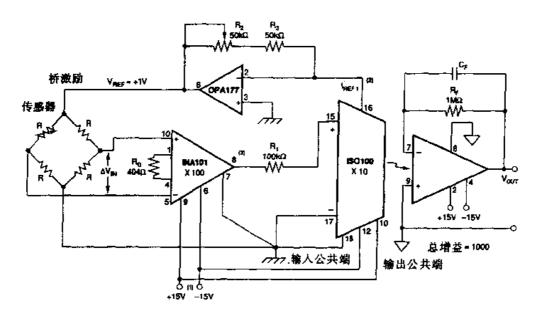
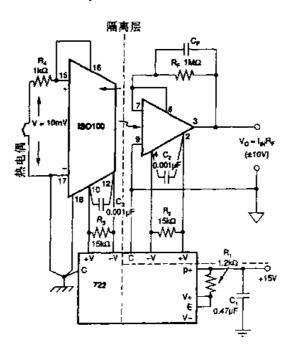
可编程增益放大器可用于数字选择器件,增益为 0.5 和 50,允许输入满量程为 0.1V、10V 和共模基准。能完成通道校准。

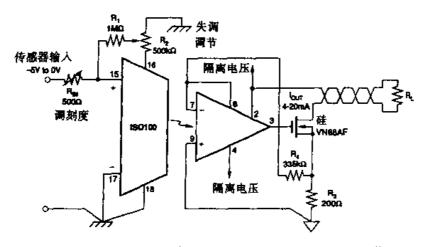
隔离电源:有两个 13V 隔离电源,每个可供 5mA 电流。可用于电源信号调节电路

输出部分:输出部分通过电源隔离层供给隔离电源。解调信号返回通过隔离层。

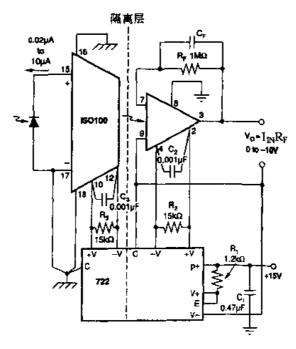
传感器 ISO100 型隔离放大电路

用途:用于热电偶、RTD、压力桥传感变送 4~20mA、工业过程控制和数据采集等领域。


图 2-99 精密传感器桥隔离变送器

电路中的隔离电源未表示出来。内部精密电流基准 I_{REF} 用于桥激励。INA101 的 8 脚必须比 – 2mV 更负。ISO100 线性工作时, R_1 选用 $100k\Omega$ 。



注:图中热电偶冷端补偿未表示出来。对 722 隔离电源, R_3 和 R_2 的阻值要保证最小负载电流为 3mA, C_F 用于改善频率特性; $f_0=1/2\pi$ R_FC_F 。

图 2-100 热电偶隔离放大电路

注:校准步骤:1. 调 $V_{1N}=0V$,2. 调 R_2 使 $I_{00T}=20$ mA3. 调 $V_{1N}=-5V$,4. 调 R_{1N} 使 $I_{00T}=4$ mA 图 2-101 传感器隔离放大电路

注:对 722 隔离电源, R_3 和 R_2 的阻值要保证最小负载电流为 3mA。 C_F 用于改善频率特性。 $f_o = \frac{1}{2\pi}R_FC_F$ 图 2-102 隔离光二极管放大电路

ISO100 型光耦合线性隔离放大器

ISO100 是一个光耦合隔离放大器,其精度高、线性好,时间—温度稳定性好。特点: $V_{\rm OUT}/I_{\rm IN}=R_{\rm F}($ 电流输入), $V_{\rm OUT}/V_{\rm IN}=R_{\rm F}/R_{\rm IN}($ 电压输入),750V 隔离电压;最低漏电流为 $0.3\mu{\rm A}$,带 宽为 $60{\rm kHz}$,18 引脚封装。

最大绝对额定值

电源电压

 $\pm 18V$

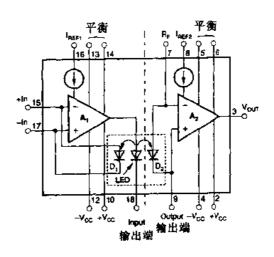
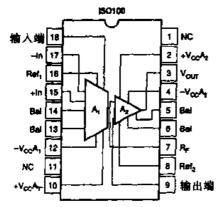
隔离电压, AC 峰值或 DC

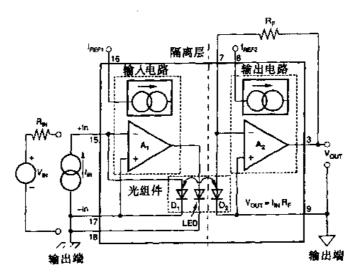
750V

输入电流

 $\pm 1 mA$

存储温度 引线焊接温度(10s) 输出短路持续时间 -55~100℃ 300℃ 连续


图 2-103 电路方块图

營脚说明:

1.11. NC 不连接; $2. + V_{CC}$ A_2 电源 A_2 正; $3.V_{OUT}$ 输出电压 $4. - V_{CC}$ A_2 电源 A_2 负; 5.6、13.14. B_d 平衡 7. R_F 反馈电阻; 8. R_{eC} 栅电阻 2; 9. output common 输出公共端; $10. + V_{CC}$ A_1 电源 A_1 正; $12. - V_{CC}$ A_1 电源 A_1 负; 15. + 1n 输入正; 16. R_{eC} 栅电阻 1. 17. - 1n 输入负; 18. Input Common 输入公共端

图 2-104 管脚图(顶视)

注:输入端,引脚 15 和 16 用于双极性,16 和 17 用于单极性。输出端,引脚 7 和 8 用于双极性,脚 8 和脚 9 用于单极性。 图 2 - 105 工作原理图

技术参数 $(T_{\rm A}=25\%,V_{\rm CC}=\pm15{\rm V})$

电参数

参 数	单位		ISO100A			ISO100BF			ISO100CF	
- ~	<u> </u>	最小	典型	最大	最小	典型	最大	最小	典型	最大
隔离										
电压					İ					
额定连续 AC 或 DC	v	750	-		*			*		
试验击穿 DC	v	2500			*			*		
抑制比 DC	pA/V		5			*			*	
	dB		146			*			*	
AC	pA/V		400			*			*	
	dB.		108		1	*	;		*	
阻抗	$\Omega \parallel pF$	1	$10^{12} \parallel 2.5$	4		*		·	*	
漏电流	μA, rms		"	0.3			*			*
失调电压(RTI)	<u> </u>		 							
A 製造型(RII) 輸入級(V _{OSI})										
固有失调	μV	i		500	ļ		300			200
对温度变化	μV/℃	<u> </u>		5			2			200
对电源变化				ſ			*			*
	dB		١,	105			*			*
対时间変化	μV/kHr		1			*			*	
输出级(V _{oso})										
固有失调	μV			500			300			200
对温度变化	μV/°C			5			2			2
对电源变化	ď₿			105			*			*
对时间变化	μV/kHr		1			*			*	
共模抑制比	nA/V		3			*			* i	
	d₿		90			*		į	*	
共模范围	v	± 10			*			*		
基准电流源									i	
幅度				1 [·				:	
标称	μA	10.5	12	12.5	*	*	*	*	*	*
对温度变化	ppm∕°C		!	300			*			150
对电源变化	nA/V		0.3	3		*	*		*	*
匹配								i		
标称	nA		50			*			*	
对温度变化	ppm∕°C		150			*	1		*	
对电源变化	nA/V		0.3				İ			
		10	0.3		_	- 1	*	*	~ /	
順从电压 ************************************	V	- 10		+ 15	*		*	•		*
输出电阻	Ω		2×10°	- -		*			*	
愛率响 应										
小信号带宽	kH2		60			*	İ		*	
功率带宽	kHz		5			*	ŀ		*	
转换率	V/μs	0.22	0.31	[*	*		¥	*	
建立时间	μв		100			*			*	
温度范围										
^{鱼度和田} 特定	°C	- 25		+ 85	*		*	*		*
工作	ec	- 40		+ 100	*		*	*		*
	•C	- 40 - 55		+100	*		*	*		*
存储	· · ·	- 33		+100			*	*		
	-			极性工作	:					
~般参量			[
输人电流范围										
线性工作	μΑ	- 20		-0.02	*		*	*		*
无损坏	mA	- 1		+1	×		*	*		*
輸入阻抗	Ω		1.0	ĺ		*			*	
輸出电压波动	v	- 10		0	×	i	*	*	- 1	¥
				-	I			I		

续表

	34 /3-		ISO100AP	,		ISO100BP		ISO100CP		
参数 	单位	最小	典型	最大	最小	典型	最大	最小	典型	最大
增益			_	_						_
固有误差	% of FS		2	5		1	2		1 1	2
对温度变化	%/°C		0.03	0.07		0.01	0.05		0.005	0.03
对时间变化	%/kHr		0.05			*			* :	
非线性	%		0.1	0.4		0.03	0.1		0.02	0.07
噪声电流										
0.01Hz ~ 10Hz	$\mathbf{p}\mathbf{A}_{\mathbf{p}\cdot\mathbf{p}}$		20			*			*	
10 H z	pA∕√Hz		1			*			*	
100Hz	pA∕√Hz		0.7			 *			*	
1kHz	pA√√Hz		0.65			*			*	

技术参数($T_A = 25\%$, $V_{CC} = \pm 15V$)(续)

电参数

	34 £1	1	ISO100AP	•		ISO100BI)	ISO100CP		
参 数	单位	最小	典型	最大	最小	典型	最大	最小	典型	最为
输人失调电流										
固有失调	nA.		1	10		×	*		*	*
对温度变化	nA/°C		0.05	ļ !		*			*	
对电源变化	nA/V		0.1			*			*	
对时间变化	pA/kHr		100			*		1	*	
电源 輸入级										
	v .		± 15				•	-	*	
电压(额定) 电压(降额)	v	±7	1 ± 12	± 18	*	i •	*	*	_ ^	. *
	1	± /	±1.1	± 16 ± 2	-	*	* *		*	
电源电流	mA			+13, -2		* *	* *		*	*
輸出级	mA.		+8,-1.1	+ 13, - 4		*	7		"	*
电压(额定)	v		± 15			*			*	
电压(降额)	v	± 7		± 18	* .		*	*		*
电源电流	mA	′	±1.1	±2		*	.*		*	*
短路电流限	mA			± 40			*		İ	*
/32.FH			**	又极性工作	:					
一般参数										
输入电流范围										
线性工作	μА	- 10		+ 10	*		*	*		*
无损坏	mA	- 1		+ 1	*		*	*	1	*
输入阻抗	Ω		0.1			*			*	
输出电压波动	v	- 10		+ 10	*		*	*	i	*
输出阻抗	Ω		1200			*			*	
固有误差	% FS		2	5		l	2		1	2
对温度变化	%/°C		0.03	0.07		0.01	0.05		0.005	0.03
对时间变化	%/kHr		0.05			*			*	
非线性	%		0.1	0.4		0.03	0.1		0.02	0.0
東 声电流			j							
$0.01 \text{Hz} \sim 10 \text{Hz}$	nA,p-p		1.5			*			*	
10Hz	pA∕√H2		17			*			*	
100Hz	pA∕ √Hz		7			*			*	
1kHz	$pA/\sqrt{H_2}$		6			*			¥	
企 全人失调电流										
固有失调	nA		40	200		20	70		10	35
对温度变化	nA∕℃			3			2		i	1
对电源变化	nA/V]	0.7			*]	¥
对时间变化	pA∕kHr		250		i	*			*	

4 4	34 /-		ISO100AP	•		ISO100BP	1		ISO100CP)
参 数	单位	最小	典型	最大	最小	典型	最大	最小	典型	最大
电源										
輸入级										i
电压(额定)	v		± 15			*			*	
电压(降额)	v	±7	•	± 18	*		*	*	i	*
电源电流	mA	!	+2, -1.1	÷3, -2	i	*	*		×	*
	m A		+8, -1.1	+13, -2		*	*		*	*
输出级										
电压(额定)	v	i	± 15			*			*	
电压(降额)	l v	± 7	!	± 18	*		*	*		*
电源电流	mA.		±1.1	± 2		¥:	*		*	*
短路电流限	mA			± 40			*			*

注: * 表示与 ISO100AP 的参数相同

2.4 光传感器放大器应用电路

传感器 OPA404 型高速隔离运算放大电路

用途:用于光电检测、医学仪器、声纳和超声检测等领域。

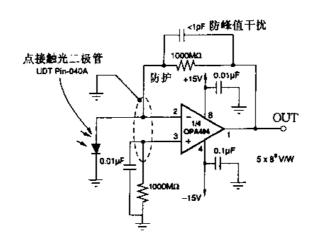


图 2-106 光敏管检测电路

OPA404 型运算放大器

OPA404 是高性能介质隔离场效应输入单片运算放大器。带宽为 $6.4 \mathrm{MHz}$,高转换速率为 $35 \mathrm{V}/\mu\mathrm{s}$,低失调电压最大为 $\pm 750 \mu\mathrm{V}$,低偏置电流最大为 $\pm 4 \mathrm{pA}_\mathrm{c}$

最大绝对额定值

电源电压± 18V内功耗1000mW差动输入电压± 36V输入电压范围± 18V

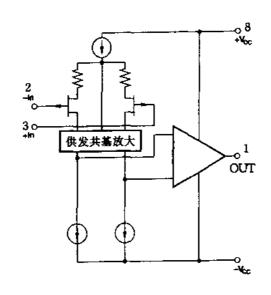
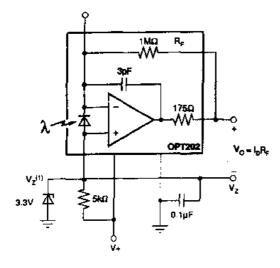



图 2-107 OPA404 电路方块图

存储温度 -40~125℃
 工作温度 -25~85℃
 引线焊接温度(10s) 300℃
 输出短路持续时间 无限
 结温 175℃

光传感器 OPT202 型光二极管和放大器集成电路

用途:用于位置和接近开关、烟雾检测、照相分析、医学仪器和实验室仪器等场合。

(齐纳二极管或其他分压器)

注: 优点: 高增益用小电阻对电路板泄漏敏感小 缺点: 用高的 R_F 值, 有高的偏置和低的信噪比 图 2-108 光检测 T 形反馈电路

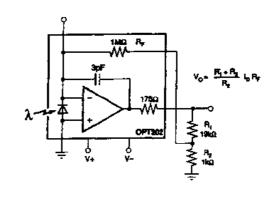


图 2-109 光检测单电源工作电路

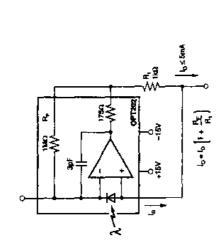


图 2-110 光检测电流输出电路

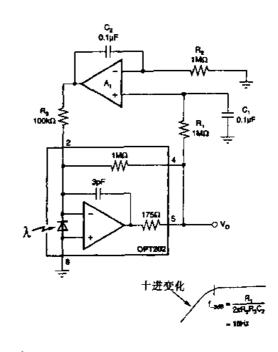


图 2-111 直流恢复抑制无用的稳定背景光的 光检测电路

OPT202 型光二极管和放大器集成电路

OPT202 是一个光电集成电路,在一个介质隔离芯片上有一个二极管和互阻抗放大器。互阻抗放大器由一个精密 FET 输入运放和芯片金属膜电阻组成。光二极管工作于零偏压,有较好的线性和低暗电流。光二极管和互阻抗放大器在单一芯片上集成可消除漏电流误差、噪声检拾和寄生电容产生的增益尖峰。OPT202 的工作电压为 \pm 2.25V ~ \pm 18V,电源电流为 400μ A。透明塑料封装的工作温度为 0 ~ 70%,有玻璃窗口。陶瓷封装的工作温度为 - 40 ~ 85%。

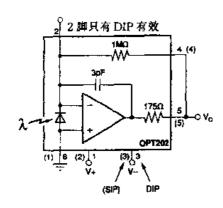


图 2-112 OPT202 电路功能方块图

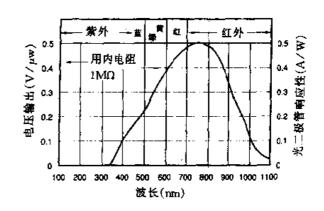


图 2-113 光响应特性

特点:带宽 50kHz,光二极管尺寸为 $2.29 \times 2.29mm(0.090 \times 0.090$ 英寸), $1M\Omega$ 反馈电阻,高响应性(650nm)0.45A/W,低暗误差 2mV,低静态电流为 400μ A。8 引脚 DIP 型封装和 5 引脚 SIP 型封装。

工作时去耦电容对器件构成回路,无光时输出零电压,随着光强的增加,输出电压也增加。 光二极管电流 In 与光二极管上的辐射功率成比例。

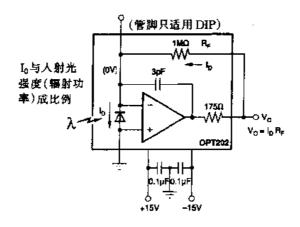


图 2-114 OPT202 工作时基本连接电路

外电阻接一个不同的敏感电压,通过与内阻串联 $(R_F>1M\Omega)$ 或并联 $(R_F<1M\Omega)R_{EXT}$ 完成最好的动态范围。 R_F 阻值小于 $1M\Omega$ 时,要并联一个电容 C_{EXT} ,这个电容消除了增益尖峰。电容值的选择见下表。

	,
$ ho_{ m F}$	C _{EXT}
100ΜΩ	(1)
10ΜΩ	(1)
1ΜΩ	(1)
330kΩ	2pF
≤100kΩ	(2)

注:(1) 不要求 C_{EXT}

(2) 因运放不稳定,不要求用 CEXT

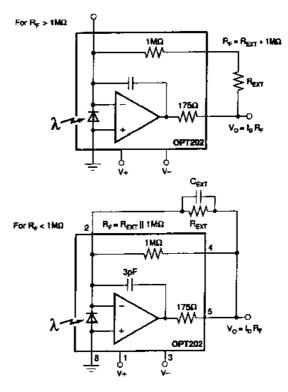
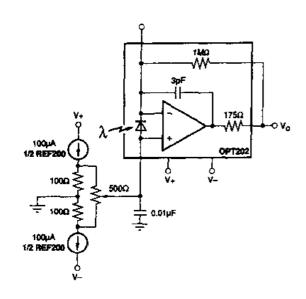
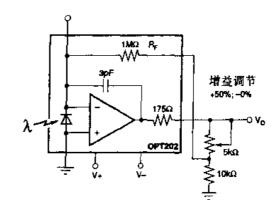




图 2-115 OPT202 用外反馈电阻的电路图

注:调节暗输出为 0V,调节范围为±7mV 图 2-116 暗误差(偏置)调节电路

图 2-117 OPT202 增益调节电路

技术参数($T_A = 25$ ℃, $V_S = \pm 15$ V, $\lambda = 650$ nm, 内有 1MΩ 反馈电阻)

电参数

45 ¥4	346 43-	OPT202P, W, G				
参数	单 位	最小	典型	最大		
光二极管电流	A/W		0.45			
电压输出	V/µW		0.45			
对温度变化	ppm∕°C		100			
单位变化	%		± 5			
非线性	% FS		0.01			
光二极管面积	in ²		0.008			
	nun²		5.2			
失调电压,输出:P,W 封装	mV		± 0.5	± 2		
G封装	mV		± 0.5	± 3		
对温度变化	μV/℃		± 10			
对电源变化	μV/V		10	100		
噪声电压	mVrms		1			
MC内阻		 	-			
电阻	MΩ		1			
容差:P,G 封装	%	ı	±0.5	± 2		
W封装	%		± 0.5			
对温度变化	<i>ppm</i> /℃	<u> </u>	50			
频率响应	• •		,			
带宽,大或小信号,3dB	kHz	<u></u>	50			
上升时间,10%~90%	μs	1	10			
建立时间,1%	μв	†	10			
0.1%	με		20			
0.01%	តែខ		40			
过载恢复时间(至1%)	μs		44			
	μs	1	100			
	μs		240	_ _		
新出		(1/) 1.05	(//) 1			
电压输出	v v	$(V_+) - 1.25$ $(V_+) - 2$	$(V_+)-1$ $(V_+)-1.5$			
容性负载,稳定工作	nF	(*+/-2	10			
短路电流	mA		± 18			

绒表

da Yer	单位	OPTZ02P, W, G				
多数 	单位	最小	典型	最大		
电源						
特定工作电压	v		± 15			
工作电压范围	v	± 2,25		± 18		
静态电流	μA		± 400	± 500		
温度范围				•		
特定;P,W 封装	%C	0		± 70		
G封装	%	- 40		± 85		
工作,P,W 封装	°C	0	!	± 70		
G封装	•° •° •° •° •° •° •° •° •° •° •° •° •° •	- 55		± 125		
存储,P,W 封装	°C	- 25		± 85		
G封装	°C	- 55		± 125		
热阻,θ _{JA}	℃/W		100			

技术参数 $(T_A = 25\%, V_S = \pm 15V)$ (续) 电参数(OPT202 运放部分)

	** #	OPT202 运放部分				
参 数	单位	最小	典型	最大		
輸入						
失调电压	mV		±0.5			
对温度变化	μV/°C		± 5			
对电源变化	μV/V		10			
输入偏置电流		ļ				
	pΑ	}	l fr 41090			
对 温 度变化 ————————————————————————————————————	<u> </u>	<u> </u>	二倍/10℃			
吳 声			[
输入噪声电压			j l			
噪声电压密度,f=10Hz	nV/√Hz		30			
f = 100Hz	nV/\sqrt{Hz}	1	25			
f = 1kHz	π V /√ H z	!	15			
噪声电流密度,f=1kHz ————————————————————————————————————	fA∕√Hz		0.8			
輸入电压范围						
共模输入	v		± 14.4			
共模抑制比	dB		106			
共快抑制氏	αв		100			
會人阻抗].			
差动	$\Omega \parallel { m pF}$		1012 3			
共模	$\Omega \parallel \mathbf{pr}$		1012 3			
六侠 - <u></u>	\$2 Pr		10 11 3			
开环增益						
开环电压增益	dВ	j .	120			
	<u>ub</u>		120			
页率响 应			}			
增益带宽乘积	MHz		16			
转换速率	V/µs		6			
建立时间 0.1%	με		4			
0.01%			5			
0.01%	μ8					
象 出]					
电压输出	v	$(V_+) = 1.25$	$(V_{\star}) = 1$			
	, v	$(V_+)-2$	$(V_{+}) = 1.5$			
短路电流	mA	\``*/ ~	± 18			
	——————————————————————————————————————	<u> </u>				
3.源						
特定工作电压	V		± 15			
工作电压范围	v	± 2.25		± 18		
静态电流	μA	[± 400	± 500		

电参数(OPT202 二极管部分)

- Mar.	24 (2)	OP1202 二极管					
参数	单位	最小	典型	最大			
二极管面积	in² mm²		0.008 5,2				
电流响应 暗电流	A/W fA		0.45 500				
对温度变化 电容	pF		2.倍/10℃ 600				

光传感器 OPT209 型光二极管运算放大器集成电路

用途:用于位置和接近传感器、烟雾检测、照相分析和医学仪器等场合。

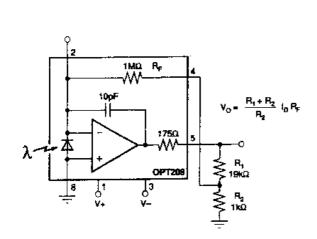


图 2-118 光检测 T 形反馈电路

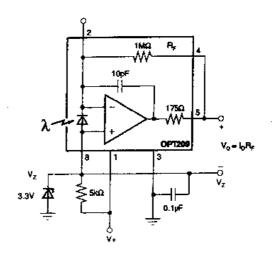


图 2-119 光检测单电源电路

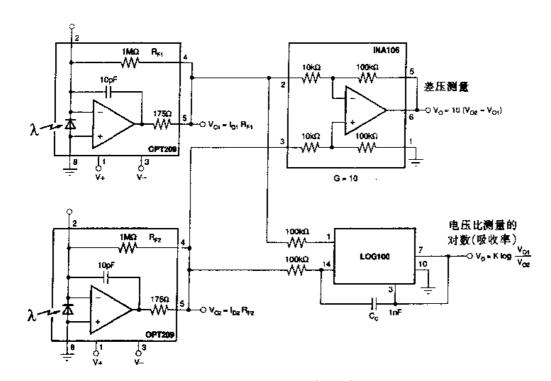


图 2-120 差动光检测电路

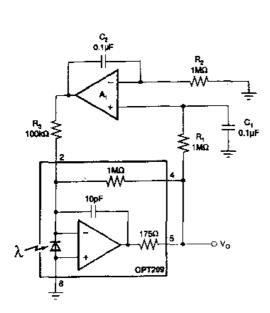


图 2-121 直流恢复抑制无用的稳定背景光的光检测电路

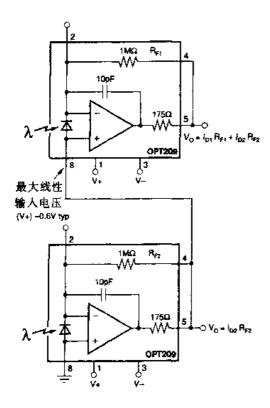


图 2-123 和光检测电路

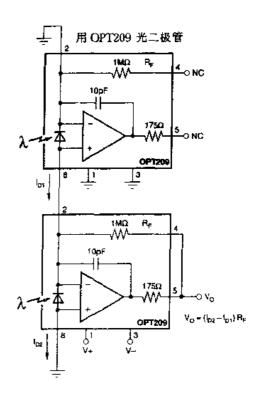


图 2-122 差光检测电路

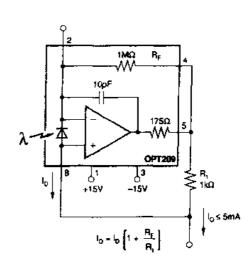


图 2-124 具有电流输出的光检测电路

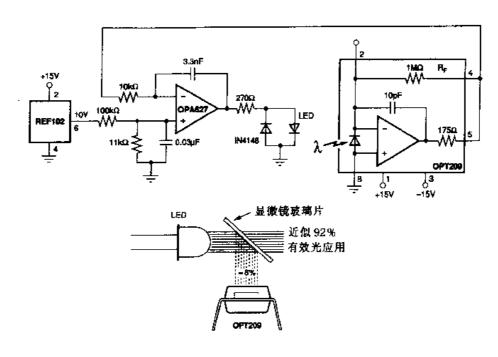


图 2-125 用光检测稳定 LED 输出电路

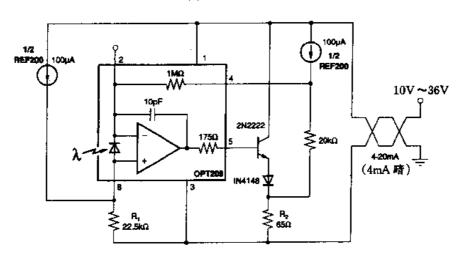


图 2-126 光檢測 4~20mA 电流变送器

光传感器 OPT209 型光二极管、运算放大器集成电路

OPT209 是一个光电集成电路,在介质隔离芯片上有一个二极管和一个互阻抗放大器。互阻抗放大器由一个精密 FET 输入运放和一个金属薄膜电阻组成。光二极管工作在零偏压;具有较好的线性和低的暗电流。因为光二极管和互阻抗放大器集成在一个单片上,所以能消除漏电流误差、噪声检拾和寄生电容产生的增益尖峰。OPT209 的工作电源为 $\pm 2.25V \sim \pm 18V$,电源电流为 400μ A。透明塑料 8 脚封装。工作温度 $0 \sim 70 \circ$ C。

特点:二极管尺寸 2.29×2.29 mm(0.090×0.090 英寸),1M Ω 反馈电阻,高响应性(650nm) 0.45A/W,低暗误差 2mV,带宽为 16kHz,低静态电流为 400 μ A。

工作时去耦电容对器件构成回路。无光时输出零电压,随着光强的增加,输出电压也增加。光二极管电流 lo 与光二极管上的辐射功率成比例。

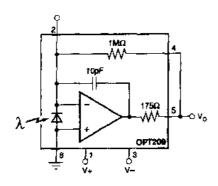


图 2-127 OPT209 电路功能方块图

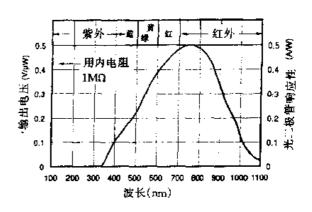
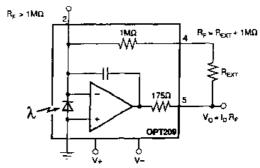



图 2-128 光响应特性

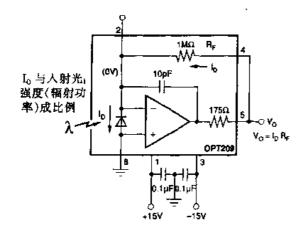
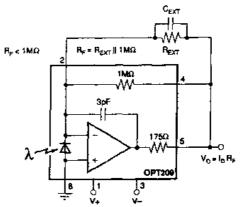
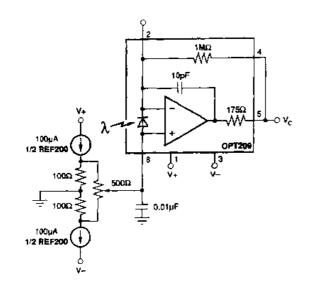


图 2-129 (PT209 工作时基本连接电路




图 2-130 OPT209 用外反馈电阻电路

外电阻能连接一个不同的敏感电压,通过与内电阻串联($R_F > 1M\Omega$)或并联($R_F < 1M\Omega$) R_{EXT} 完成最好的动态范围。 R_F 阻值小于 $1M\Omega$ 时应该并联一个电容 C_{EXT} ,这个电容消除了增益 尖峰。电容值见下表。

$R_{\rm F}$	C _{EXT}
ΙΩΟΜΩ	(1)
10ΜΩ	(1)
iMΩ	(1)
330kΩ	⁽¹⁾ pF
100kΩ	9pF
33kΩ	25pF
≤20kΩ	(2)

注:(1) 不要求 C_{EXT}

(2) 无要求,因运放不稳定

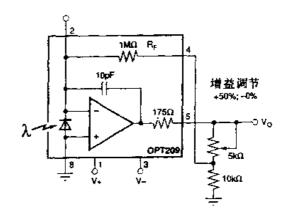


图 2-132 OPI209 增益调节电路

注:调节暗输出为 0V,调节范围为±7mV。

图 2-131 暗误差(偏置)调节电路

技术参数(T_A = 25℃, V_S = ±15V, λ = 650nm, 内有1MΩ反馈电阻)

A #L	单位	OFT209P				
参数	中 124	最小	典型	最大		
响应性						
光二极管电流	A/W		0.45			
电压输出	V/µW		0.45			
· · · · · · · · · · · · · · · · · · ·	ppm/℃					
对温度变化)	100			
单位变化	%		±5			
非线性	% FS		0.01			
光二极管面积	in ²		0.008			
	rym²		5.2			
· · · · · · · · · · · · · · · · · · ·	-		1			
失调电压,输出	mV		±0.5	±2		
对温度变化	μV/°C	1	± 10			
对电源变化	μV/V		10	100		
噪声电压	μVrms		350	100		
	i ivanus	 	330			
MΩ内电阻	340					
电阻	MΩ	· į	1	_		
容差	%	i	±0.5	±2		
对温度变化	ppm∕°C		j 50			
	T					
带宽,大或小信号, - 3dB	kH2		16			
上升时间,10%~90%		1	22			
	μs					
建立时间,1%	ίπε	•	60			
0.1%	fita		85			
0.01%	J.15		100			
过载恢复时间(至1%)	μв		44			
	μs	i	100			
	ļus -	Ì	240			
- · · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	-		
电压输出	v	$(V_+) = 1.25$	$(V_{+}) - 1$			
- 12 - 12 - 12 - 12 - 12 - 12 - 12 - 12	v	$(V_+)-2$	$(v_{+}) - 1.5$			
容性负载,稳定工作	nF	(+)-2	(7+/-1.5			
		(,			
短路电流	mA	 	± 18			
己源						
特定工作电压	v		± 15			
工作电压范围	v	± 2.25		± 18		
静态电流	μA	1 2.20	± 400	± 500		
111 12 12 41	µ.n.		+ TVV	± 200		

参数	单位	OPT209P				
		最小	典型	最大		
温度范围		······································				
特定,工作	\sim	0)	+ 70		
存储	℃ .	- 25		+ 85		
热阻, θ _{JA}	°C/W		100			

技术参数(T_A = 25℃, V_S = ±15V)OPT209 运放部分

参 数	单位	OPT209 运放				
	# IV	最小	典型	最大		
輸人 失调电压 对温度变化 对电源变化 输入偏置电流 对温度变化	mV μV/°C μV/V pA		±0.5 ±5 10 1 二倍/10℃			
噪声 输入噪声电压 噪声电压密度,f=10Hz f=100Hz f=1kHz 噪声电流密度,f=1kHz	nV/\sqrt{Hz} nV/\sqrt{Hz} nV/\sqrt{Hz} fA/\sqrt{Hz}		30 25 15 0.8			
输入电压范围	V dB		± 14.4 106	A T		
输人阻抗 差动 共模	Ω pF Ω pF		10 ¹² 3 10 ¹² 3	<u> </u>		
开环增益 开环电压增益	dB	<u> </u>	120			
频率响应 增益带宽积 转换速率 建立时间 0.1% 0.01%	MHz V/µs µs µs		4 6 4 5	·		
輸出 电压輸出 短路电流	V V mA	(V ₊) -1.25 (V ₊) -2	(V ₊)-1 (V ₊)-1.5 ±18			
电源 特定工作电压 工作电压范围 静态电流	V V V µA	± 2.25	± 15 ± 400	± 18 ± 500		

二极管参数(T_A = 25℃)

参 数	单位	OPT209 二极管					
		最小	典型	最大			
二极管面积 电流响应 暗电流 对温度变化 电容	 	in ² mm ² A/W fA	0.008 5.1 0.45 500 2倍/10℃ 600				

光传感器 OPT301 型集成光二极管运算放大器电路

用途:用于位置和接近传感器、烟雾检测、照相分析和医学仪器等场合。

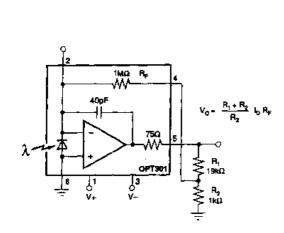


图 2-133 光检测 T形反馈电路

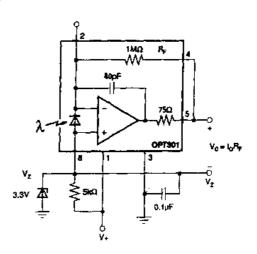


图 2-134 光检测单电源工作电路

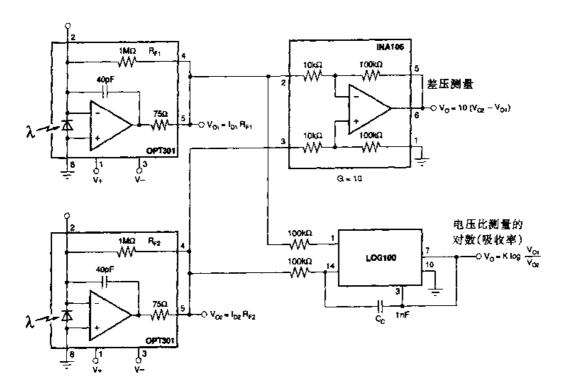


图 2-135 差动光检测电路

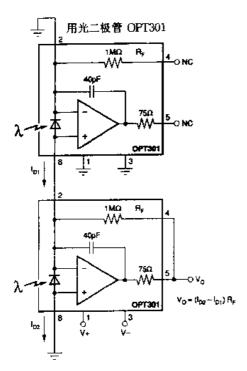


图 2-136 差光检测电路

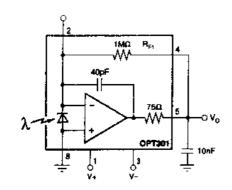


图 2-138 具有輸出滤波器减少噪声的光检测电路

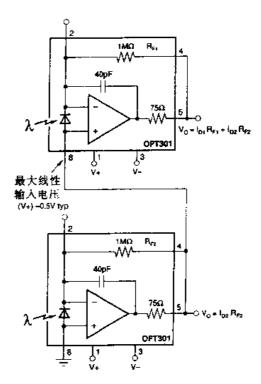


图 2-137 和光检测电路

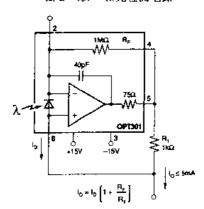


图 2-139 电流输出光检测电路

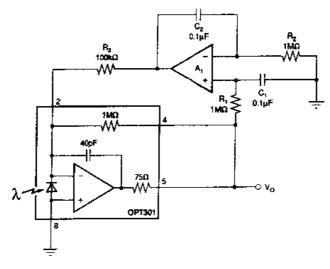


图 2-140 直流恢复抑制无用稳定背较光的光检测电路

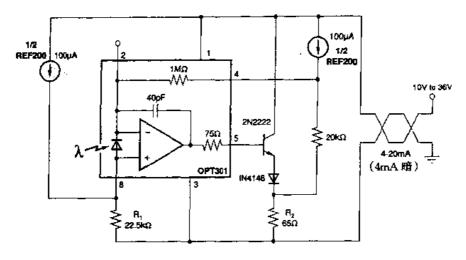


图 2-141 光检测 4~20mA 电流变送器

OPT301 型集成光二极管、运算放大器电路

OPT301 是一个光电集成电路,在一个介质隔离芯片上有一个光二极管和一个互阻抗放大器。互阻抗放大器由一个精密 FET 输入运放和芯片上的金属膜电阻组成。光二极管工作在零偏压,具有极好的线性和低的暗电流。由于光二极管和互阻抗运放集成在一个单片上,所以能消除漏电流误差、噪声检拾和寄生电容产生的增益尖峰。OPT301 的工作电压范围为±2.25V~±18V,电源电流为400从。封装型式为密封型 TO-99 金属封装,有一个玻璃窗口,工作温度为-40~85℃。

特点:光二极管尺寸为 2.29mm×2.29mm(0.090×0.090 英寸), 1M Ω 反馈电阻,高响应性(650nm)0.47A/W,改进的 UV(紫外线)响应低暗电压误差为 2mV,频带宽度为 4kHz,低静态电流为 400 μ A。

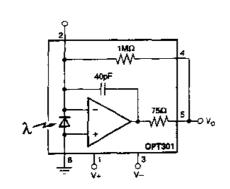


图 2-142 OPT301 电路功能方块图

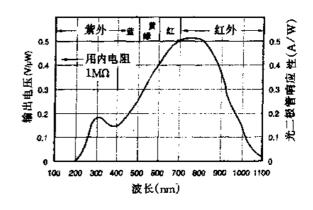


图 2~143 光响应特性

技术参数(T_A = 25℃, V_S = ±15V, λ = 650nm, 1MΩ 内阻反馈)

参 数	A4 /2,	OPT301 M				
	单位	最小	典型	最大		
<u> </u>						
光二极管电流	A/W		0.47			
电压输出	V/µW		0.47			
对温度变化	ppm/℃		200			
	%		±5			
单位变化	% FS		0.01			
非线性	in ²	0.008				
二极管面积	mm²		5.2			

参 数	单位	OPT301M				
多数	平 位	最小	典型	最大		
暗误差,RTO ⁽²⁾						
失调电压,输出	mV		±0.5	± 2		
对温度变化	μ V /℃		± 10			
对电源变化	$\mu V/V$		10	100		
噪声电压	μVrms	·	160			
IMO 内阻						
电阻	MΩ		1			
容差	%		±0.5	± 2		
对温度变化	ppm√°C		50			
頻率响应						
带宽,大或小信号,3dB	kHz	İ	4			
上升时间,10%~90%	l _{TB}		90			
建立时间,1%	ļ18		240			
0.1%	ha		350			
0.01%	îve		900			
过载恢复时间	ha		240			
	μs	· · · · · · · · · · · · · · · · · · ·	500			
	tra	İ	1000			
输出						
电压输出	v	$(V_+) - 1.25$	(V ₊)-0.65			
容性负载,稳定工作	v	$(V_+)-2$	$(V_{+})-1$			
短路电流	nF		10			
	mA.		± 18	· <u> </u>		
电源						
特定工作电压	v		± 15			
工作电压范围	v	±2.25		± 18		
静态电流	mA		±0.4	± 0.5		
温度范围						
特定	v	- 40		+ 85		
工作/存储	ъ	- 55		+ 125		
热阻,θ _{IA}	°C/W		200			

参 数	单位	OPT301 运放				
少 	平 证	最小	典型	最大		
输入						
失调电压	mV	ļ	± 0.5			
对温度变化	μV/°C		±5			
对电源变化	$\mu V/V$		10			
輸入偏置电流	pA		1 1			
对温度变化	1		二倍/10℃			
噪声						
输人噪声电压	1					
噪声电压密度, $f=10Hz$	nV √Hz		30			
f = 100Hz	nV √Hz		25			
f = 1 kHz	nV √Hz		15			
噪声电流密度,f=1kH2	fA √Hz		0.8			
輸入电压范围			1			
共模输入范围	v		± 14.4			
共模抑制比	dB		106			
輸入阻抗						
差动	$\Omega \parallel \mathbf{p} \mathbf{F}$		10 ^{f2} 3			
	Ω pF		1012 3			
开环增益						
开环电压增益	dB		120			
频率响 应						
增益带宽积	kHz		380			
转换速率	V/µs		0.5			
建立时间 0.1%	ha		4			
0.01%	μ5		5			
逾 出						
电压输出	v	$(V_+) - 1.25$	$(V_{+}) - 0.65$			
	V	$(V_{+})-2$	$(V_+)-1$			
短路电流	mA_		±18			
电源						
特定工作电压	v		± 15			
工作电压范围	v	± 2.25		± 18		
静态电流	mA]	±0.4	± 0.5		

二級管參数(T_A=25℃)

参 数	单位	OPT301 二极管				
	単位 	最小	典型	最大		
极管面积	in ²		0.008			
	num²		5.1			
电流响应性	A/W		0.47			
暗电流	fA		500			
对温度变化	}		二倍/10℃			
电容	pF		4000			

光传感器 OPT101 型集成光二极管和单电源放大器电路

用途:用于位置和接近传感器、烟雾检测、照相分析、医学仪器、实验室仪器和条形码扫描器等场合。

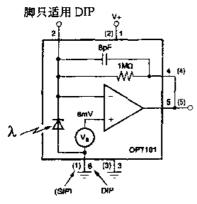


图 2-144 OPT101 电路功能方块图

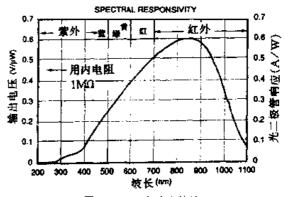


图 2-145 光响应特性

OPT101 是一个具有阻抗放大器和光二极管的单片集成电路。放大器可用单电源或双电源工作。光二极管和互阻抗放大器集成在一块单片上,故可消除漏电流误差、噪声检拾和寄生电容产生的增益尖峰。光二极管工作在光导型,具有极好的线性和极低的暗电流。工作电源电压为 2.7V ~36V,电流为 120μA。透明塑封 8 脚 DIP 型封装和 5 脚 SIP 型封装。工作温度为 0~70℃。

特点:光二极管尺寸为 2.29mm×2.29mm(0.090×0.090 英寸),内部 1M Ω 反馈电阻,高的 光响应(650nm)0.45A/W,低暗误差,带宽为 20kHz,极好的光特性,低静态电流为 120 μ A。

技术参数(T, = 25%)	$V_{\rm c} = 2.7 V_{\odot}$	- 36V) - 650nm	. 齿控 1MΩ	反傳由四	$R_{\rm c} = 10 kO$
17 JN 46401 L L = 2011	. V . = / / V ^	~ ทาง.ง=กทุกก	1 274 1765 1 1813	. 12 1.07 (23) (24)	. AT + 25 11 AKS 1 / 1

6 *	#4 12n	OPT101P, W				
多 数	单位	最小	典型	最大		
响应性			1			
光二极管电流	A/W		0.45			
电压输出	V/μW		0.45			
对温度变化	ppm∕°C		100			
单位变化	%		± 5			
非线性	%FS		0.01 .			
光二极管面积	in ²		0.008			
			5.2			
暗误差						
失调电压,输出	mV (+ 5	+7.5	+ 10		
对温度变化	μV/°C		± 10			
对电源变化	μV/V		10	100		
噪声电压,暗	mVrms		11			
互阻抗增益		•				
电阻	MΩ		1			
容差,P	%		0.5	2		
W	%		0.5			
对温度变化	ppm_/°C		50			
頻率响应						
带宽	kHz		20			
上升时间,10%~90%	μв		20			
建立时间,0.1%	με		140			
1 %	με		45			
100%过载恢复,FS~暗	μs		50			

	NC 12-	OPT101P, W				
参 数	单位	最小	典型	 最大		
輸出						
电压输出,商	v	$(V_+) - 1.3$	$(V_{+}) + I$			
低	mV	5	7.5	10		
容性负载,稳定工作	пF		10			
短路电流	mA		15			
电源						
工作电压范围	V	+2.7		+ 36		
静态电流	μA		120	240		
	μ A		220			
温度范围			-			
特定	ዮ	0		+ 70		
工作	e e	0		+ 70		
存储	ሮ	-25		+ 85		
熱阻 θ _{ΙΑ}	°C/W		100			

技术参数(T_A = 25℃, V_S = 2.7~36V)

OPT101 二极管部分

参 数		OPT101P 二极管				
	単位 -	最小	典型	最大		
二极管面积	in ²		0.008			
	mm²,		5.2			
电流响应	A/W		0.45			
	μ A/W/cm ²		865			
暗电流	pA		2.5			
对温度变化			二倍/8℃			
电容	pF		1200			

激光 OPA2662 型宽带跨导运算放大电路

用途:用于 LED 和激光二极管的驱动电路。

OPA2662 型跨导运算放大器

OPA2662 是一个单片放大器件,用于宽频带系统,含有高分辨率的视频、射频和中频电路、通讯和测试部件。还含有一个集成电流反馈运放块和一个电压缓冲块。

最大绝对额定值

电源电压	± 6V
输入电压	$\pm V_{\rm C} \sim \pm 0.7 \rm V$
工作温度	- 40 ~ 85℃
存储温度	-40 ~ 125 °C
结温	150℃

· 166 ·

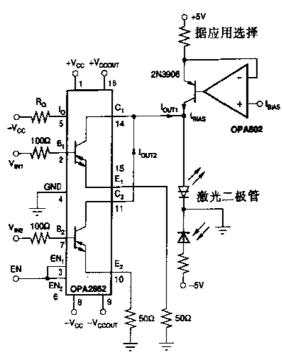


图 2-146 激光二极管的驱动电路

引线焊接温度(10s) 数字输入电压(EN₁,EN₂) 300 ℃ -0.5V ~ + V_{CC} + 0.7V

生产厂家:BURR - BROWN

光二极管自适应阈值电路

用途:用于光检测自控电路

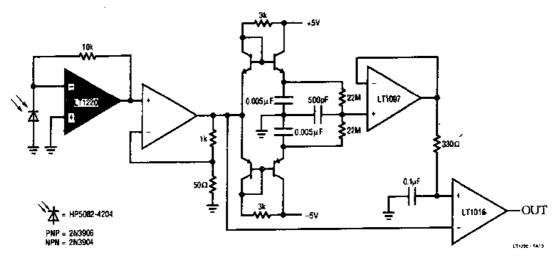


图 2-147 具有自适应阈值的光二极管放大器

光二极管放大电路

用途:用于光检测场合。

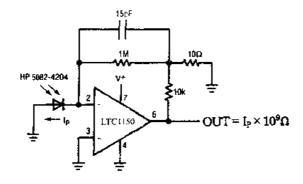


图 2-148 低电平光电检测电路

生产厂家:LINEAR TECHNOLOGY

2.5 传感器特殊放大器应用电路

传感器与 AD822 型单电源、电源正负限输出、低功耗 FET 输入运算放大电路

用途:用于传感器放大调节、光二极管前置放大、医学仪器和数据采集等领域。

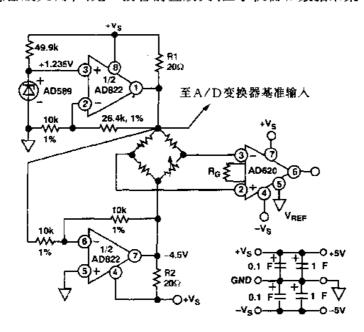
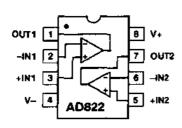


图 2-149 传感器桥驱动放大电路

电路中的 AD822 用于驱动传感器桥, AD822 的一半用于缓冲 AD589 的 1.235V 基准电压。 4.5V 输出可驱动 A/D 变换器前端。AD822 的另一半构成增益一致的反相器,产生桥一端 -4.5V 输入。电阻 RI 和 R2 对桥产生恒流激励。AD620 是低功耗仪器放大器,用于调节桥的 差动输出电压。AD620 的增益可编程控制,用外接电阻 R_C来实现,由下式决定:

$$G = \frac{49.4 \text{k}\Omega}{R_G} + 1$$

AD822 型单电源、电源正负限输出低功耗 FET 输入运算放大器


AD822 是精密型低功耗 FET 输入双运算放大器,主要特点:

真正的单电源工作,输出摆幅接近电源正负极限,输入电压范围含地,单电源电压:3~36V,双电源电压;±1.5V~±18V。高负载驱动能力,350pF容性负载驱动能力,15mA最小输出电流。

优良的交流特性,每个放大器最大静态电流仅为 800μ A,增益带宽乘积一致性好,为 1.8 MHz,转换速率为 $3.0 V/\mu$ s。

好的直流特性,最大输入失调电压为 $800\mu V$,典型失调电压温漂 $2\mu V/ C$,最大输入偏置电流为 25pA。

低噪声,在 10kHz 时为 13nV/√Hz。

管脚说明:

1.OUT1 输出 1; 2-IN1 输入 1负;

3.+ IN1 输入 1 正; 4. V_电源负;

5.+ IN2 输入 2 正; 6. - IN2 输入 2 负;

7.OUT2 输出 2; 8.V. 电源正。

图 2-150 管脚图

最大绝对额定值

电源电压

± 18V

输入电压

 $(+V_S+0.2V) \sim -(20V+V_S)$

输出短路持续时间

无限

差动输入电压

± 30V

存储温度

 $-65 \sim 150(125)$ °C

工作温度

 $-40 \sim 125(85) \, ^{\circ}\text{C}$

引线焊接温度(60s)

300℃

技术参数($V_S = \pm 5V$, $T_A = 25\%$, $V_{CM} = 0V$, $V_{OUT} = 0V$)

den Wille	Ar let.	** **-	AD822A			AD822B			AD822St		
参 数	条件	单位	最小	典型	最大	最小	典型	最大	最小	典型	最大
直流特性									_ 		
初始失调电压		mV		0.1	0.8	ĺ	0.1	0.4		0.1	
最大失调电压		mV	1	0.5	1.5	ĺ	0.5	1		0.5	
失调温源		- μV/℃		2			2			2	
输入偏置电流,在 Tmag	$V_{\rm CM} = -5V_{\rm ps}4V$	pA		2	25		2	10]	2	25
		nA		0.5	5		0.5	2.5		0.5	
输入失调电流,在 7		pA		2	20		2	10		2	
		nA	-	0.5		}	0.5			1.5	
开关增益	$V_0 = -4V \sim 4V$										
$T_{\text{MIN}} \sim T_{\text{max}}$	$R_{\rm L} = 100 \rm k$	V/mV	400	1000		400	1000		400	1000	
		· V/mV	400			400		i			
$T_{\text{MIN}} \sim T_{\text{max}}$	$R_{\rm L} = 10 \mathrm{k}$	V/mV	80	150		80	150		80	150	
	J	V/mV	80			80					
$T_{\text{MIN}} \sim T_{\text{max}}$	$R_{\rm L} = 1 \rm k$	V/mV	20	30		20	30		20	30	
	Į	V/mV	10			10					

		24 tr		AD822A			AD822B			AD8225	
参数	条件	单位	最小	典型	最大	最小	典型	最大	最小	典型	最大
噪声/谐波特性						-					
输入噪声电压	ĺ										
0.1Hz ~ 10Hz		$\mu V_{p,p}$		2			2			2	
f = 10Hz		nV/√Hz		25			25			25	
f = 100Hz		nV/√Hz		21			21			21	
f = 1kHz		nV/√Hz		16			16			16	
f = 10kHz		nV/√Hz		13			13			13	
輸入噪声电流									1		
0.1Hz ~ 10Hz		fA _{p.p}		18		, 	18			18	
f = 1kHz	1	£A∕√Hz		0.8			0.8			0.8	
谐波失真	$R_{\rm L} = 10$ k		!								
f = 10kHz	$V_0 = \pm 4.5 \text{V}$	dВ	· i	- 93			- 93			- 93	
动态特性	10 =										
増益帯宽积		MH2		1.9			1.9			1.9	
全功率响应	$V_{\rm Op,p} = 9V$	kHz		105			105			105	
转换速度	in the p	V/μs		3			3		J F	3	
建立时间		سر				 	-			-	
至 0.1%	$V_0 = 0 \text{V} \sim \pm 4.5 \text{V}$	μs		1.4		İ	1.4			1.4	
至 0.01%	10-07 21.07	eu		1.8			1.8			1.8	
匹配特性		, rac		110		ł					
初始失调电压		mV	1		1.0			0.5			1.6
最大失调电压		mV	:		3			2			2
失调温漂	; ;	μV/°C	<u> </u>	3	5		3				-
輸入偏置电流于批		pA		•	25		_	10			25
f = 1 kHz	$R_{\rm L} = 5 \mathrm{k}\Omega$	dВ		- 130	-		- 130	10		- 130	_
f = 100 kHz	14, - 214	dB		-93			-93			- 93	
输入特性		ш)			,		7.0				
共模电压范围		V	-5.2		4	-5.2		4	-5.2		4
$T_{\text{MIDN}} \sim T_{\text{max}}$		v	-5.2		4	-5.2		4			·
CMRR	$V_{\rm CM} = -5V_{\rm to} + 2V$	dB	66	80	,	66	80		66	80	
$T_{\text{MIIV}} \sim T_{\text{max}}$	1.00 - 2.16.2	dВ	66			66					
输入阻抗		1111	_ ~			_ ~					
差动		Ω_i^{F} pF		$10^{13} \parallel 0.5$			1013 0.5			1013 0.5	
共模		Ω : pF		10 ^B 2.8			$10^{13} \parallel 2.8$			10 ¹³ 2.8	
<u> </u>				10 ; 2.0			10 2.0			10 11 2.0	
输出饱和电压											
$V_{\mathrm{OL}} - V_{\mathrm{KK}}$	$I_{SINK} = 20 \mu A$	mV		5	7		5	7		5	7
T _{MIN} ~ T _{MAX}	12INK — 20/21	mV		J	10			10		_	·
$V_{\text{OC}} - V_{\text{OH}}$	$I_{\text{SOURCE}} = 20 \mu \text{A}$	mV		10	14		10	14		10	14
$T_{MIN} \sim T_{MAX}$	- SUURICE - SOPRE	m V		-0	20			20		-	= -
$V_{\text{OL}} \sim V_{\text{EE}}$	$I_{\text{SINK}} = 2\text{mA}$	mV		40	55		40	55		40	55
T _{MIN} ~ T _{MAX}	- 504R	mV			80			80		-	
$V_{\text{OC}} - V_{\text{OH}}$	$I_{\text{SOURCE}} = 2 \text{mA}$	mV		80	110		80	110		80	110
$T_{MIN} \sim T_{MAX}$	- SAIMLE - Zaika	шV			160			160			
$V_{\text{OL}} - V_{\text{EE}}$	$I_{\rm SINK} = 15 { m mA}$	mV		300	500		300	500		300	500
T _{MIN} ~ T _{MAX}	SHAY - TANK	mV	•	5.60	1000		200	1000			-
$V_{\rm CC} = V_{\rm QH}$	I _{SOURCE} = I5mA	mV		800	1500		800	1500		800	1500
$T_{\text{MIN}} \sim T_{\text{MAX}}$	SOURCE - 15th	mV		~~	1900			1900			
工作輸出电流		mA	15			15			15		
T _{MIN} ~ T _{mex}		mA	12			12			12		
AMIN ~ 1 mex 容性负载		рF		350			350			350	
	 -	pr		22.0							
					- 1						
电源 静态电流	Į l	m4		13	16		13	1.6		1.3	
电碾 静态电流 电源抑制比	$V_S + = 5V \sim 15V$	mA dB	70	1.3 80	1.6	70	1.3 8 0	1.6		1.3 80	

传感器与 OP196/296/496 型电源正负限输入输出运算放大电路

用途:用于传感器调节、小型电源控制、小型仪器和电池监测等场合。

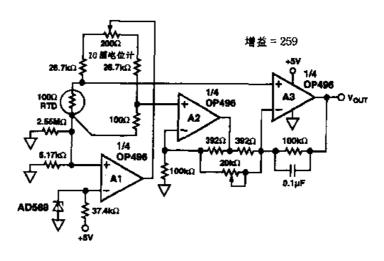


图 2-151 单电源 RTD 放大电路

电路为 OP496 的三个运算放大器,对 RTD 桥驱动放大,工作电源电压为 5V。OP496 有宽的输出摆幅,产生桥激励电压 3.9V。AD589 提供 1.235V 基准供桥电流。运放 A1 驱动桥,在 并联电阻 $6.17k\Omega$ 和 $2.55M\Omega$ 上保持 1.235V 电压,产生 200μ A 电流源。本电流等分流过桥,因此 100μ A 电流通过 RTD,产生的输出电压与它的电阻值成比例。电路中的电阻精度要求优于 1%。

OP196/296/496 型微功耗电源正负限输入和输出运算放大器

OP196/296/496 是 CMOS 运算放大器,具有微小的功耗和电源正负限输出范围。

特点:电源正负限输入和输出摆动范围;低功耗;50μA/放大器;增益带宽乘积:450kHz;单电源工作:3~12V;低失调电压:最大 300μV;高开环增益;500V/mV;增益稳定。

最大绝对额定值

电源电压 15V 输入电压 15V 差分输入电压 15V 输出短路持续时间 无限 存储温度 -65 ~ 150℃ -40~125°C 工作温度 结温 - 65 ~ 150℃ 引线焊接温度 300℃

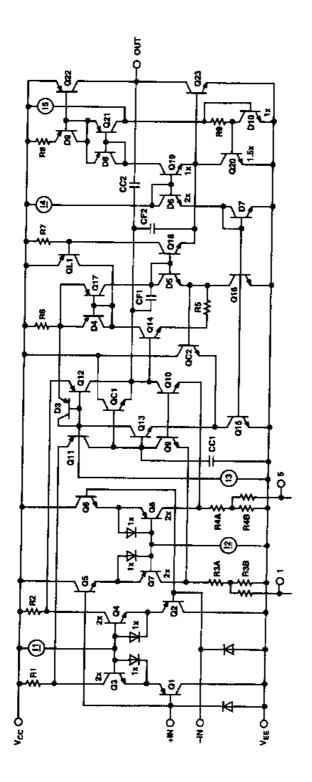
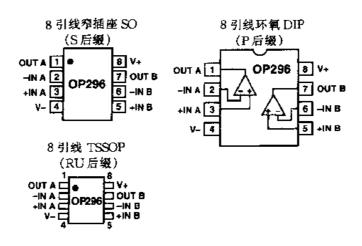



图 2-152 OP196/296/496 电路原理图

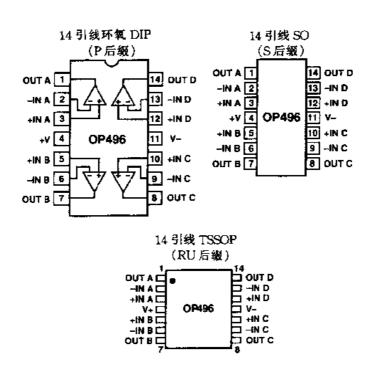


图 2-153 管脚图

管脚说明

型 式	引出端		NA 642
	名称	编号	说 明
	NVLL	1.5	空
	– INA	2	输入 A 负
8 引线窄插座 SO 型(C 后 缀)	+ INA	3	输入 A 正
	V_	4	电源负
8 引线环氧 DIP(CP 后缀)	OUT A	6	輸出人
0 7/34-1 T (dz //d /////////	<u>V</u> ,	7	电源正
	NC	8	不连接
	OUT A	1	输出 A
o al share tart on all so at	INA	2	输入A负
8 引线窄插座 SO 型(C 后	+ INA	3	输入 A 正
缀)	V_	4	电源负
8引线环氧(CP后缀)	+ INB	5	输入 B 正
8 引线 TSSOP(RU 后缀)	_ INB	6 _	输入 B 负
0 3/3/ 13001 (100 /H-9/)	OVTB	7	输出 B
	V,	8	电源正
	OUT A	1	输出 A
	_ IN A	2	输入 A 负
	+ IN A	3	输入A正
	+ V	4	电源正
	+ 1NB	5	输入 B 正
14 引线环氧 DIP(P 后缀)	IN B	6	输入B负
14引线 SO型(S后缀)	OUTB	7	輸出 B
	OUTC	8	输出 C
14 引线 TSSOP(RU 后缀)	- INC	9	输入 C 负
	+ INC	10	输入 C 正
	V.	11	电源负
	+ IND	12	输入D正
	- IND	13	
	OUTD	14	输出 D

技术参数(V_S = 12V, V_{CM} = 6V, T_A = 25°C)

参 数	符号	条件	单位	最大	典型	最小
输入特性					- ·	
失调电压	V_{os}		μV		35	300
		$-40\% \le T_{\rm A} \le +125\%$	μV			650
輸入偏置电流	$I_{\mathbf{B}}$	$-40\% \le T_A \le +125\%$	nA		± 10	± 30
输人失调电流	I_{08}		nA		± l	± 5
		-40 °C ≤ T_A ≤ + 125°C	пA			± 15
共模输入电压范围	V_{CM}		v	0		+ 12
共模抑制比	CMRR	$0 V \leq V_{\rm CM} \leq + 12 V,$				
		$-40^{\circ}\text{C} \leq T_{\text{A}} \leq +125^{\circ}\text{C}$	dВ	65		
大信号电压增益	Avo	$R_{\rm L} = 100 {\rm k}\Omega$	V/mV	300	1000	
长期失调电压	$V_{\rm OS}$		μV			550
失调电压温漂	$\Delta V_{\rm CS}/\Delta T$		μV/°C		1.5	
输出特性						
輸出电压摆幅高	V_{OH}	$I_{\rm L} = 100 \mu {\rm A}$	V	11.85		
		$I_{\rm L} = 1 {\rm mA}$	v	11.30		
输出电压摆幅低	$V_{\rm OL}$	$I_{\rm L} = -100 \mu \rm A$	mV			70
		$I_{\rm L} = -1 {\rm mA}$	mV			450
输出电流	I_{0UT}		mA		±4	

参 数	符号	<u></u>	单位	最大	典型	最小
电源						
电源电流/放大器	I_{SY}	$V_{\rm OUT} = 6 \mathrm{V}$, $R_{\rm L} = \infty$	μА			60
		$-40\% \le T_{\Lambda} \le +125\%$	μΑ			80
电源电压范围	V_{S}		[v	+ 3		+ 12
动态范围						
转换速率	SR	$R_{\rm L} = 100 { m k}\Omega$	V/µs		0.3	
增益带宽积	GBP		kHz		450	
相限	∲m		Degrees		50	
			;		•	
噪声电压	e _n p-p	0.1Hz ~ 10Hz	μV_{Pep}		0.8	
噪声电压密度	e _n	$f = 1 \mathrm{kHz}$	nV/√Hz		26	
噪声电流密度	i_n	f = 1 kHz	pA∕√ Hz		0.19	

传感器桥与 AD824 型正负电源限输出 FET 输入运算放大器电路

用途:用于桥传感器放大调节、遥控传感器、光二极管前放、医学仪器、低电压应变放大、电源控制和保护等领域。

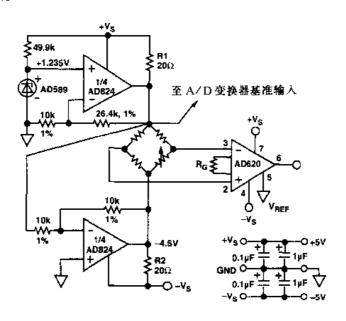


图 2-154 双极性传感桥驱动调节电路

电路中的 AD824 用于驱动传感桥, AD824 的一半用于缓冲 AD589 的 1.235V 低功耗基准源, +4.5V 输出用于驱动 A/D 变换器的前端。AD824 的另一半构成增益一致的反相器,供给桥另一端 -4.5V 输入。电阻 R1 和 R2 对桥提供恒流激励。AD620 小功耗仪器放大器用于调节桥的差动输出电压。AD620 的增益利用外接电阻 R_G 可实现编程控制,由下式决定其放大倍数:

$$G = \frac{49.4 \text{k}\Omega}{R_G} + 1$$

AD824 型单电源正负电源限输出低功耗 FET 输入运算放大器

AD824 是一个 FET 输入单电源正负电源限输出的四放大器。由于 FET 输入和正负电源限

输出,使得 AD824 广泛用于低电压应用领域。

特点:单电源工作:3~30V;低输入偏置电流:2pA;宽输入电压范围;正负电源限输出;低电源电流 500μA/放大器;带宽:2MHz;转换速率:2V/μs。

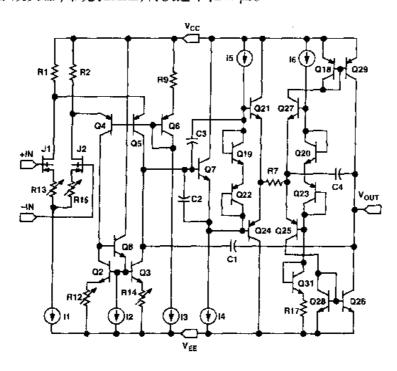
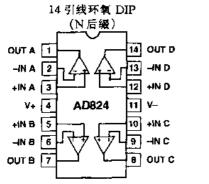


图 2-155 1/4AD824 的原理图

最大绝对额定值

电源电压 ± 18V


输入电压 $-V_S - D.2V \sim V_S$

 差分输入电压
 ± 30V

 输入到地短路持续时间
 无限

存储温度 -65~150℃
 工作温度 -40~85℃
 结温 -65~150℃

引线焊接温度(60s) 300℃

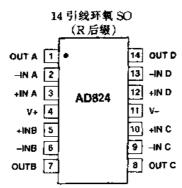


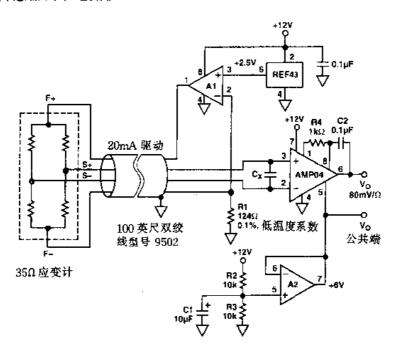
图 2-156 管脚图(顶视)

管脚说明:

1.OUT A 输出; 2.-INA 输入 A 负; 3.+IN A 输入 A 正; 4.V+电源正; 5.+INB 输入 B 正; 6.-INB 输入 B 负 7.OUT B 输出 B; 8.OUTC 输出 C; 9. -INC 输入 C 负; 10.+INC 输入 C 正; 11.V_电源负;

10. + INC 输入 C 正; 11. V₋ 电源负; 12. + IND 输入 D 正; 13. - IN D 输入 D 负; 14. DUT D 输出 D。

技术参数($V_S = 3V$, $V_{CM} = 0V$, $V_{OUT} = 0.2V$, $T_A = 25$ °C)


多 数	符号	条件	单位	最小	典型	最大
输入特性						
输入失调电压	$V_{\rm os}$		mV	{	0.2	1.0
		$T_{\text{MIN}} \sim T_{\text{MAX}}$	mV	}		1.5
输人偏置电流	I _B		pA		2	12
		$T_{\text{MIN}} \sim T_{\text{MAX}}$	рA		250	4000
输入失调电流	I _{os}		pА	(2	10
		TMIN ~ TMAX	pA]	250	
输入电压范围			v	0		1
共模抑制比	CMRR	$V_{\rm CM} = 0 \mathrm{V} \sim 1 \mathrm{V}$	∫dB	58	74	
		$T_{\text{MIN}} \sim T_{\text{MAX}}$	dB	56		
输入阻抗			$\Omega \parallel \mathbf{p} \mathbf{F}$		$10^{13} \parallel 3.3$	
大信号电压增益	A vo	$V_0 = 0.2V - 2.0V$				
	Į	$R_L = 2k\Omega$	V/ m V	10	20	
	1	$R_{\rm L} = 10 {\rm k}\Omega$	V/mV	30	65	
		$R_{\rm L} = 100 {\rm k}\Omega$	V/mV	180	500	
		$T_{\text{MIN}} \sim T_{\text{MAX}}, R_{\text{L}} = 100 \text{k}\Omega$	V/mV	90	250	
失调电压温漂	$\Delta V_{08}/\Delta T$	}	μ V /℃		2	
输出特性			-			-
輸出电压高	V _{OH}	$I_{\text{SOURCE}} = 20\mu A$	ν	2.975	2.988	
		T _{MIN} ~ T _{MAX}	v	2.97	2.985	
		$I_{\text{SOURCE}} = 2.5 \text{mA}$	$\{\mathbf{v}\}$	2.8	2.85	
		$T_{\text{MIN}} \sim T_{\text{MAX}}$	} v }	2.75	2.82	
备 出电压低	V _{OL}	$I_{\rm SINK} = 20 \mu {\rm A}$	mV		15	25
	1	$T_{\text{MIN}} \sim T_{\text{MAX}}$	ωV		20	30
	1	$I_{SINK} = 2.5 \text{mA}$	mV		120	150
		$T_{MIN} \sim T_{MAX}$	mV		140	200
逗路电流限	I_{SC}	Sink/Source	mA.		±8	
逗路电流限	I _{SC}	Sink/Source, $T_{MIN} \sim T_{MAX}$	mA		±6	
會出、阻抗	z_{our}	$f = 1 \text{MHz}, A_{\text{Y}} = 1$	ו מ		1 0 0	

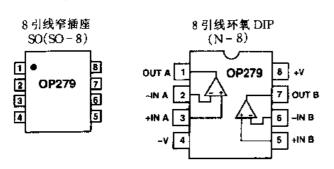
技术参数($V_S = 3V$, $V_{CM} = 0V$, $V_{OUT} = 0.2V$, $T_A = 25$ °C)

参 数	符号	条件	单位	最小	典型	最大
电源						
电源抑制比	PSRR	$V_{\rm S} = 2.7 \text{V} - 12 \text{V}$	dВ	70		
		$T_{MIN} \sim T_{MAX}$	dB	66		
电源电流/放大	I _{SY}	$V_{\rm O} = 0.2 \mathrm{V}$, $T_{\rm MIN} \sim T_{\rm MAX}$	μ A		500	600
转换速率	SR	$R_{\rm L} = 10 \mathrm{k}\Omega, A_{\rm V} = 1$	V/μs		2	
全功率带宽	$\mathbf{BW_{P}}$	1% Distortion, V _O = 2V _{P-P}	kHz		300	
建立时间	ts	$V_{\text{OLT}} = 0.2 \text{V} \sim 2.5 \text{V}, 0.01\%$	μв		2	
增益带宽积	GBP		MHz		2	
相限	∳ o	1	(°)		50	
通道隔离度	cs	$f = 1 \text{kHz}, R_L = 2 \text{k}\Omega$	dB		- 123	
噪声						
噪声电压 .	e _n p-p	0.1Hz ~ 10Hz	μV_{PP}		2	
噪声电压密度	e _a	f = 1 kHz	nV/√Hz		16	
噪声电流密度	Ín		fA/ \sqrt{Hz}		0.8	
全谐波失真	THID	$f = 10$ kHz, $R_L = 0$, $A_V = +1$	%		0.01	

传感器与 OP279 型电源正负限输出大电流运算放大器电路

用途:用于传感器调节电路。

注:A1,A2=1/20P279


图 2-157 单电源遥控应变计信号调节电路

电路中的 OP279 是采用 12V 单电源工作的 350 Ω 应变计信号调节电路。在电路中, OP279 有两个作用:(1) 放大驱动 REF43 的输出,2.5V 输出加在 R1 上,对应变计提供 20mA 的驱动电流,应变计变化产生的差动输出电压加到 AMP04 的输入端;(2)提高电路的动态范围。电路可测量张力和压力。AMP04 的增益为 100,电路灵敏度为 $80\text{mV}/\Omega$,电容 C2 接至 AMP04 的脚 8 和 6,用于滤除 16Hz 噪声。 C_X 用于抑制差动型噪声。

OP279 电源限高输出电流运算放大器

OP279 是双限高输出电流单电源放大器。用于低电压,可驱动电流或电容负载。OP279 的电流 沉和电流源电流为±80mA。电路输出可驱动送受话器、显示器、变压器和功率晶体管等负载。

特点:电源极限输入和输出;大输出电流:±80mA;单电源:5~12V;宽频带:5MHz;高转换速率:3V/µs;低失真:0.01%;短路保护;驱动容性负载:10nF。

管脚说明:

- 1.OUT A 输出 A; 2. INA 输入 A 负;
- 3. + INA 输入 A 正; 4. V 电源负;
- 5. + INB 输入 B 正; 6. IN B 输入 B 负;
- 7.OUTB 输出 B; 8.+ V 电源正。

图 2-158 管脚图

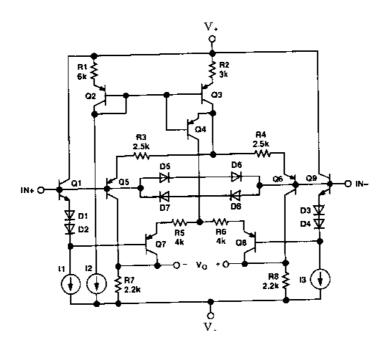


图 2-159 输入等效电路

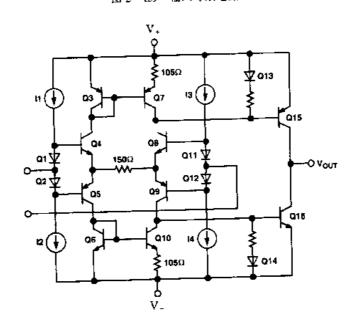


图 2-160 输出等效电路

最大绝对额定值	
电源电压	16V
输入电压	16V
差动输入电压	± 1V
输出到地短路持续时间	无限
存储温度	- 65 ~ 150℃
工作温度	– 40 ~ 85 ℃
结温	- 65 ~ 150℃
引线焊接温度(60s)	300℃

技术参数 $(V_S = \pm 5.0V, -40\% \leqslant T_A \leq 85\%)$

参数	符号	条件	单位	最小	典型	最大
输人特性						
失调电压	V_{08}		mV			4
输人偏置电流	I_{B}	$T_A = +25$ °C	пА			± 300
输人偏置电流	I_{B}		nA			± 600
输人失调电流	106	$T_A = +25$ °C	n A			± 50
输入失调电流	Ios	 	пА			± 100
共模输入电压范	· 图 V _{CM}		v	-5		+ 5
共模抑制比	ĊMRR	$V_{\rm CM} = -5V_{\rm to} + 5V$	dB	60	66	
大信号电压增益	A _{vo}	$R_{\rm L} = 1 \text{k}\Omega, -4.7 \text{V} \le V_{\rm OUT} \le 4.7 \text{V},$				
		$T_A = +25$ °C	V/mV	20		
	A_{VO}	$R_{\rm L} = 1 \mathrm{k} \Omega, -4.7 \mathrm{V} \le V_{\rm OUT} \le 4.7 \mathrm{V}$	V/mV	20		
失调电压温票	$\Delta V_{\rm OS}/\Delta T$		μ V /°C	3		
輸出特性						
输出高电平	V_{OH}	I _L = 10mA 电流源	v	+4.8		
输出低电平	$V_{\rm OL}$	I _L = 10mA 电流沉	ļ v			-4.8
短路电流限	I_{SC}		mA	± 50	± 80	
开环输出阻抗	Z_{0UT}	$f = 1 \text{MHz}, A_{V} = +1$	Ω		22	
电源						
电源电流/放大器	≸ I _{SY}	$V_{\rm S} = \pm 6 \text{V}, V_{\rm OUT} = 0 \text{V}$	mA.		2	3.75
动态特性						
转换速率	SR	$R_{\rm L} = 1 \mathrm{k}\Omega$, $1 \mathrm{nF}$	V/μs		3	
功率带宽	BW _P	1%失真	kHz			
增益带宽积	GBP		MHz		5	
相位	φm		(°)		69	
· 県声特性						
噪声电压	<i>e</i> _n p−p	0.1Hz ~ 10Hz	μV_{P-P}		2	
噪声电压密度	e_n	f = 1 kHz	nV/√Hz		22	
噪声电流密度	i_{n}		pA/√Hz		1	

生产厂家: ANALOG DEVICES

传感器 INA105 型增益为 1 的差动放大电路

用途:在 4~20mA 变送器中用于增益为 1 的反相放大电路。 电路中的 INA105 用于仪器放大器告警驱动产生器。可控制放大器的增益。

INA105 型增益为 1 的差分放大器

INA105 是增益为 1 的差分放大器。它由运放和金属膜电阻构成。共模抑制比最小为 86dB,增益误差最大为 0.01%,非线性最大为 0.001%,不要求外部调节,使用方便。

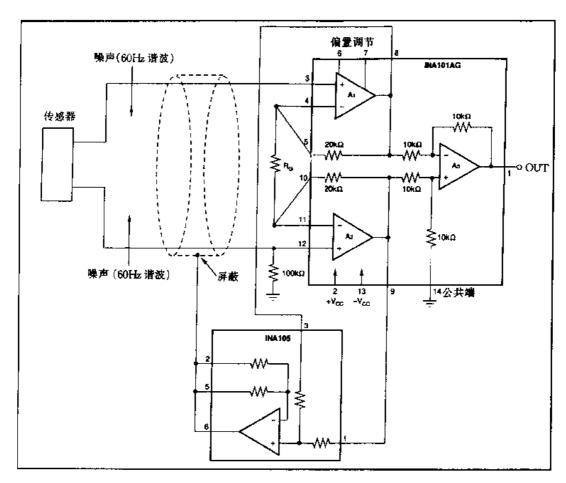


图 2-161 传感器变送电路

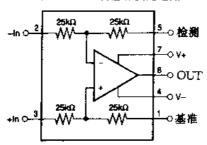
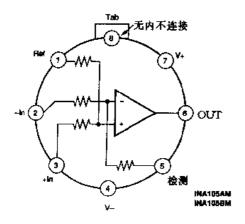



图 2-162 INA105 电路功能方块图

TO-99 DIP/SOIC

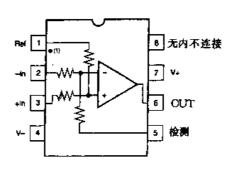


图 2-163 管脚图(顶视)

管脚说明:

1.Ref 基准

2. - m 输入 负

3. + In 输入 正

4.V. 电源负

5.Sense 检测

6.Out 输出;

7.V₊电源正

8.NC 无内连。

电参数

	36.71	INA105AM		INA105BM			INA105KP/KU			
参 数	单位	最小	典型	最大	最小	典型	最大	最小	典型	最大
	<u> </u>			<u></u>				İ		
固有	V/V		1			*			*	
误差	%		0.005	0.01		*	*		0.01	0.025
对温度变化	ppm/℃		1	5		*	*		*	1
非线性	%		0.0002	0.001		*	- 41	ļ. <u>.</u> .	<u>*</u>	*
輸出	1 -			1				!		
额定电压	v	10	12		*	*		, *	*	
额定电流	mA	+ 20, - 5			*	 		*	 -	
阻抗	Ω		0.01			*			*	
电流限	mA		+ 40/ - 10			*	ļ		*	
容性负载	рF		1000			*	<u> </u>		*	} -
输人	1	<u></u>								
阻抗	kΩ		50			*			*	
	kΩ		50	į		*		,	*	
电压范围	v	± 10			*	 :		* :		
	, v	± 20	i l		*			*	!	
共模抑制比	dВ	80	90		86	100		72	*	ļ
失调电压										
固有	μV		50	250		*	*		*	500
对温度变化	μ٧╱℃		5	20		5	10		*	:
对电 源 变化	μV/V		1	25		*	15		**	*
对时间变化	μV/mo		20			*		!	*	
输出噪声电压			1			1			! }	
$f_B = 0.01 Hz \sim 10 Hz$	μV_{P-P}		2.4			*			*	
$f_0 = 10 \text{kHz}$	nV∕ <u>√Hz</u>	<u> </u>	60			*	ļ		*	<u> </u>
动态响应										:
小信号带宽	MHz		1			*			*	i
功率带宽	kHz	30	50		*	*		*	*	
转换速率	V/μs	2	3		*	*		*	*	
建立时间:0.1%	ha		4			*		1	*	
0.01%	tra		5			*			! *	
0.01%	<i>[18</i>	<u></u>	1.5			*_		ļ	* *	
电源	-]			t i			
额定	\ v	ļ	± 15			*			++	
电压范围	į v	± 5		± 18	*		*	.*		*
静态电流	mA		±1.5	± 2		*	*	<u> </u>	*	*
温度范围										
特定	°C	- 40		+ 85	*		*	**	į	*
工作	<i>€</i> C	- 55		+ 125	*		#	- 40		+ 85
	°C	- 65		+ 150	*		*	- 40	<u> </u>	+ 12

注:*表示与 JNA105AM 的参数相同

最大绝对额定值

电源电压
 输入电压
 工作温度
 存储温度
 一40~85℃
 存储温度
 引线焊接温度(10s)
 300℃
 波峰焊(3秒)

传感器 PGA204/205 型可编程增益仪器放大电路

用途:用于数据采集、医学仪器和传感器电路等场合。

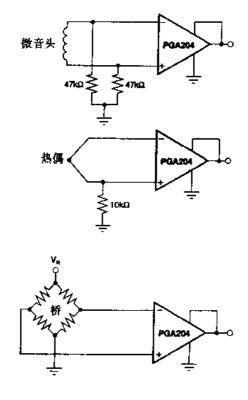


图 2-164 传感器电路

PGA204/205型可编程增益放大器

PGA204/205 是通用型可编程增益放大器。增益可直接选择:

PGA204 为 1、10、100,1000V/V, PGA205 为 1、4、8V/V。增益 1 选择通过两个与 TTL 或 CMOS 兼容的地址线 A_0 和 A_1 来实现。内部输入过压保护 \pm 40V,低的失调电压最大为 50μ V,低的失调电压、漂移为 0.25μ V/°C,低的输入偏置电流最大为 2nA,低的静态电流典型值为 5.2mA。

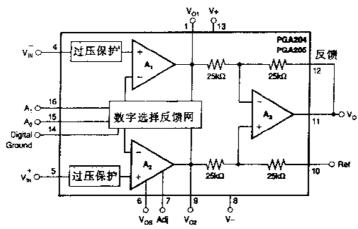


图 2-165 PGA204/205 电路功能方块图

图 5 - 165 为 PGA204 和 PGA205 数字可编程增益仪器放大器功能方块图。用于数据采集系统。

特点:可编程数控增益;

快速建立时间: $3\mu s$; FET 输入: $I_B = 100 pA(最大)$; 输入过压保护: ± 40V; 低失调电压:最大为 250 μ V。

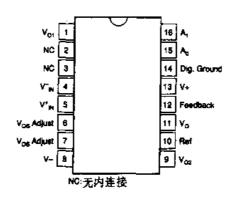


图 2-166 臂脚图(顶视)

管脚说明

A 194 WE-22			
编号	符号或功能	编号	符号或功能
1	V ₀₁	9	V ₀₂
2	_	10	Ref
3	_	11	Vo
4	V _{IN} _	12	反馈
5	V _{IN}	13	V +
6	Vos调节	14	数字地
7	Vos调节	15	A ₀
8	V	16	$\mathbf{A_{t}}$

最大绝对额定值

电源电压	± 18V
模拟输入电压	± 40V
数字输入电压	$\pm V_S$
输出短路(到地)	连续
工作温度	- 40 ~ 125℃
存储温度	- 40 ~ 125℃
结温	150℃
引线焊接温度(10s)	300℃

图 2-167 电路输出电压相对输出基准端(Ref)。PGA204/205 输出反馈连接脚 12 必须与脚 11 连接。数字输入 A0 和 A1 的选择按图中逻辑表确定。脚 14 为数字地。

图 2 - 168 表示放大器失调电压的调节电路,这个电路只适于 PGA204/205 输入级的失调电压调节。

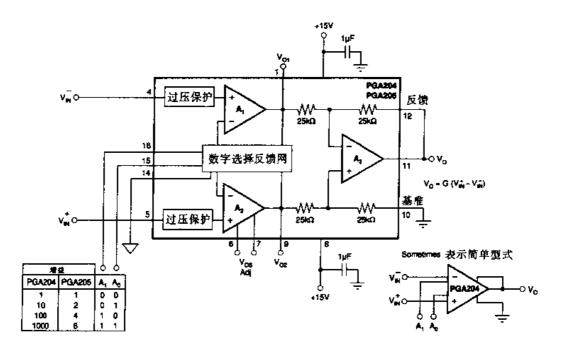


图 2-167 基本连接电路

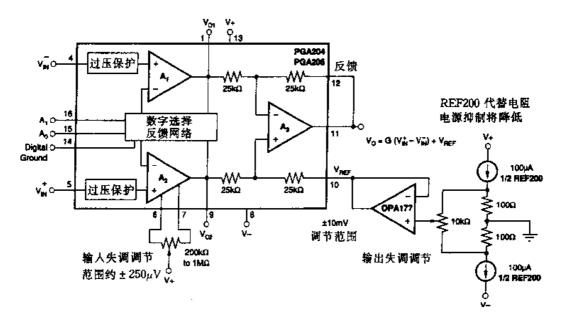


图 2-168 失调电压调节电路

生产厂家:BURR - BROWN

第三章 传感器通用电路

3.1 传感器 A/D 变换器应用电路

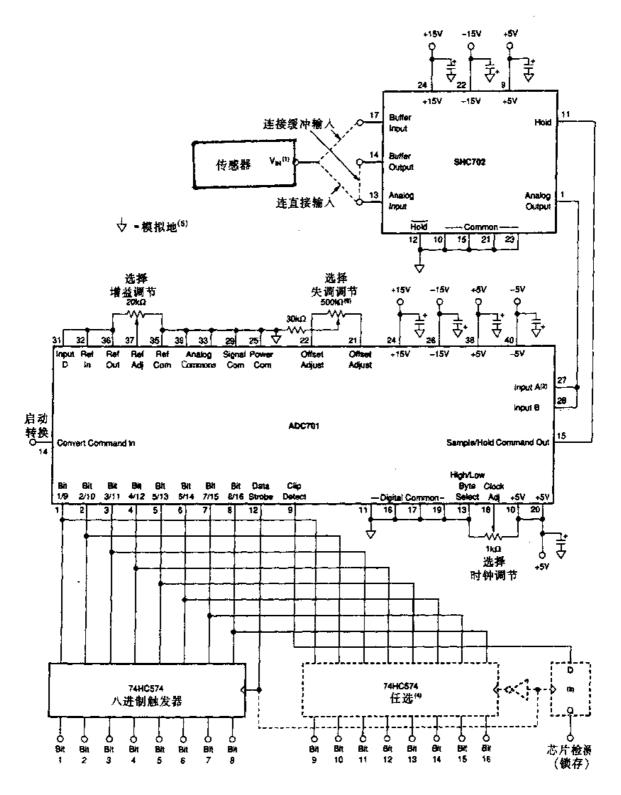
传感器输入采样 16 位 A/D 变换器电路

用途:用于传感器模拟信号数字化、数据采集、医学图像、声纳和超声信号的处理。

ADC701/SHC702 16 位 A/D 采样变换系统

ADC701 是一个高速 16 位模数变换器, SHC702 是采样/保持放大电路。由于两个器件是混合结构, 故可靠性高, 体积小, 功耗低。

特点:转换速率在工作温度范围内可达 512kHz; 在 16 位无丢失码,动态范围抑制为 107dB;低非线性±0.0015%;可选择输入范围:±5V、±10V,0~10V、0~5V、-10V~0;包括采样/保持在内的低功耗 2.8W;金属和陶瓷 DIP 型封装。


ADC701 管脚说明

编号	说明
1	Bit 1/9 (Bit 1 = MSB)
2	Bit 2/10
3	Bit 3/11
4	Bit 4/12
5	Bit 5/13
6	Bit 6/14
7	Bit 7/15
8	Bit 8/16
9	限幅检测输出
10	+ V _{vto} (+ 5V)数字电源
11	公共端(数字)
12	数据选通
13	高/低字节选择
14	转换命令
15	采样/保持控制
16	公共端(数字)
17	公共端(数字)
18	时钟调节
19	公共端(数字)
20	+ V _{DD2} (+ 5V)数字电源

编号	说 明
40	- V _{pin} (- 5V)模拟电源
39	公共端(模拟)
38	+ V _{DDI} (+5V)模拟电源
37	基准(增益)调节
36	+ 10V 基准输出
35 .	公共端(基准)
34	DNC
33	公共端(模拟)
32	+ 10V 基准输入
31	∤ 輸入 D
30	輸人 C
29	公共端(信号)
28	输入 B
27	输人 A
26	- V _{cc} (- 15V)模拟电源
25	公共端(电源)
24	+ V _{cc} (+ 15V)模拟电源
23	DNC
22	失调调节
21	失调调节

ADC701 最大绝对额定值

 $\begin{array}{ll} \pm \ V_{\rm CC} & \pm \ 18 \rm V \\ \\ \pm \ V_{\rm DD1} \,, \, \pm \ V_{\rm DD2} & + \ 7 \rm V \,, \, + \, 7 \rm V \end{array}$

注:(1) 在高頻輸入时为了降低失真不用缓冲,輸入应接地。(2) 表示连接输入±5V电压。(3) 如果要检测芯片,信号用一个简单 D型触发器锁存。(4) 推荐用第二个八进制触发器电路。(5) 所有公共端应连接至模拟地。(6) 失调调节范围近似为±0.25% FSR。

图 3-1 传感器模拟信号输入 ADC701/SHC702 电路

模拟输入电压

 $\pm V_{\rm CC}$

数字输入电压

 $-0.5V \sim (+V_{DD2} + 0.3V)$

数字输出电流

± 25mA

壳体温度

150℃

结温

165℃

存储温度

-65 ~ 165℃

功耗

3W

ADC701 输出码

	A	DC701 标准输入电			
輸入电平 (码精确中心)	0 ~ 10V (1LSB≈153μV)	± 10V (1LSB≈ 305μV)	± 5V (1LSB≈ 153μV)	輸出码(1=逻辑高) MSB LSB	芯片检测
欠量程	< - 76μV	< - 10.000153V	< -5.000076V	0000 0000 0000 0000	1
- FS	OV	- 10V	- 5V	0000 0000 0000 0000	0
- FS + 1LSB	+ 153μV	- 9.999695V	-4.999847V	0000 0000 0000 0001	0
- 3/4FS	+1.25V	-7.5V	- 3.75V	0010 0000 0000 0000	0
- 1/2FS	+2.5V	- 5V	- 2.5V	0100 0000 0000 0000	0
- 1/4FS	+3.75V	-2.5V	- 1.25V	0110 0000 0000 0000	0
- 1LSB	+ 4.999847V	- 305μV	- 153μV	0111 1111 1111 1111	0
中量程	+ 5V	ov'	ov'	1000 0000 0000 0000	0
+ 1LSB	+ 5.000153V	+ 305μV	+ 153μV	1000 0000 0000 0001	0
+ 1/4FS	+6.25V	+ 2.5V	+ 1.25V	1010 0000 0000 0000	0
+ 1/2FS	+7.5V	+ 5V	+ 2.5V	1100 0000 0000 0000	0
+ 3/4FS	+8.75V	+7.5V	+ 3.75V	1110 0000 0000 0000	0
+ FS - 2LSB	+9.999695V	+ 9.99939V	+ 4.999695V	1111 1111 1111 1110	0
+ FS - USB	+9.999847V	+9.999695V	+ 4.999847V	1111 1111 1113 1111	0
过量程	> +9.999924V	> + 9.999847V	> + 4.999924V	1111 1111 1111 1111	1

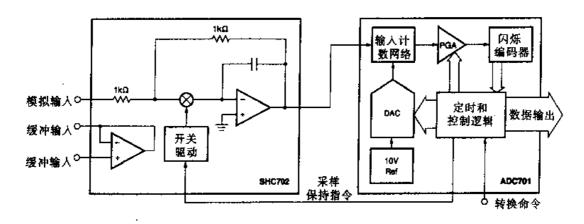


图 3-2 电路功能方块图

SHC702 管脚说明

编 号	说
1	采样/保持輸出
2	NC
3	NC
4	NC
5	NC
6	NC
7	NC
8	NC
9	+ V _{DDI} (+ 5V)模拟电源
] 10 j	公共端(数字)
11	保持輸入
12	保持输入(低电平有效)

编号	说 明
24	+ V∞(+ 15V)模拟电源
23	公共端(电源)
22	- V _{CC} (- 15V)模拟电源
21	公共端(模拟)
20	NC (
19	NC
18	NC
17	缓冲放大输入
16	NC
15	公共端(信号)
14	缓冲放大输出
13	模拟输入

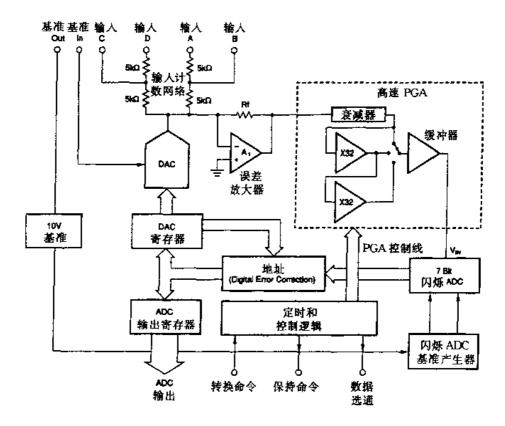


图 3-3 ADC701 简单方块图

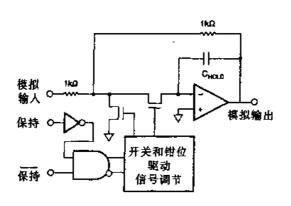


图 3-4 SHC702 简单方块图

SHC702 最大绝对额定值

± 18V $\pm V_{\rm CC}$ + 7V $+ V_{\rm DDI}$ 模拟和缓冲输入电压 $\pm V_{\rm CC}$ $-0.5V \sim (+V_{DOI} + 0.3V)$ 数字输入电压 壳体温度 150℃ 结温 165℃ 存储温度 -65 ~ 165℃ 功耗 1.5W

ADC701/SHC702 技术参数

(T_A = 25℃,500kHz 采样速率, ± V_{CC} = ± 15V ± V_{DD1} = ± 5V, + V_{DD2} = 5V, 输入 ± 5V)

参 数	条 件	单位	最小	典型	最大
采样速率 动态非线性 全谱波失真(THD) 动态范围抑制(SFDR) 双音交调失真(IMD)	未调 $f_{IN} = 20 \text{kHz}(-0.3 \text{dB})$ $f_{IN} = 199 \text{kHz}(-0.2 \text{dB})$	kHz %FSR dB dB dB dB dBC dBC	DC	± 0.002 - 103 - 82 107 94 - 81 - 86	512
信噪比 总功耗	f _{IN} = 5kHz(-0.5dB) 工作	dB W		93 2.8	3.25

ADC701 技术参数

	** **		ADC701JH			ADC701KH	
参 数	单位	最小	典型	最大	最小	典型	最大
分辨率	Bits			16			*
·····································			1				
模拟	-		!				
电压范围	v			0~+5,0~	+ 10, - 10~	0	
	v			±5,	± 10		
电阻	kΩ	2.45	2.5	2.55	*	*	*
<u> </u>	kΩ	4.9	5	5.1	*	*	*
معر ــــ	kΩ	9.8	10	10.2	*	*	*
电容	pF		5			*	
数字							
逻辑系列			İ	TTL 🔄 C	MOS 兼容		
转换命令							
脉宽	ns	50		t - 50	#	!	*
转移特性							
精度	1						
増益误差	%		±0.03	±0.1		*	*
	%		±0.03	± 0.1		*	*
增益电源灵敏度	% V		±0.005	± 0.1		*	**
输入失调误差	mV		± 1	± 3		*	**
	mV		± 5	± 10		*	
失调电源灵敏度	% FSR/V		±0.006	± 0.1 ± 0.003		± 0.0012	*
积分线性误差	% FSR ⁽³⁾		± 0.002	±0.003		*	*
微分线性误差 不无生 <i>组</i>	% FSR		±0.0006 保证	10.0012		保证	
不丢失码 燥声	LSBms		0.6			*	
	I I I I I I I I I I I I I I I I I I I						
采样速率	kHz.	DC		512	*		*
转换时间	με		1.45	1.5		*	*
			•				
数字							
罗辑系列			1	TTL与CN	MOS兼容		
数据编码		二进制					
逻辑"0"电平(V _{OL})	v		0.1	0.4		*	*
逻辑"1"电平(V _{OH})	v	4	4.9		*	*	
选通前数据有效设定时间	ns	28	37		*	*	
内基准							
内基框 电压	\ v	+ 9.995	+ 10.000	+ 10.005	*	* }	*
^{电压} 对外 负载 电流有效	mA	2	5	1	*	*	

参数	<u>μ</u> μ.		ADC701JH		ADC701KH		
∌ X	单位	最小	典型	最大	最小	典型	最大
电源要求			•	•	•		•
电源电压: + V _{cc}	v	+ 14.25	+ 15	+ 15.75	¥	*	*
- V _{CC}	v	- 14.25	- 15	- 15.75	*	*	*
+ V _{DDI}	v	+ 4,75	+ 5	+ 5.25	*	*	*
- V _{DD}	i v l	-4.25	- 5	-6	*	*	*
+ V _{DD2}	v	+4.25	+ 5	+ 5.25	*	*	*
电源电流: + I _{cc}	mA		25	30		*	*
- I _{CC}	mA		33	45		*	*
$+$ I_{DD1}	mA.		45	55		*	*
– I _{DDI}	mA		37	50		<u>*</u>	*
+ I _{Df2}	mA		133	150		*	*
功耗	W		1.95	2.3		*	*
气温度范围特性			ı	1 1		;	
	v	+ 15		+ 55	0		+ 70
温度范围	ppm∕°C		± 10	± 15		*	*
增益误差	ppm FSR∕℃		± 1	± 5		*	*
输入失调误差	ppm FSR∕°C		± 1	± 5		*	*
积分线性误差	ppm∕°C		±0.2			*	 ±0.:
微分线性误差	ppm∕°C	i	±0.05			*	± 0.3
不丢失码			典型			保证	
基准输出温 漂	ppm√°C		± 3			 * .	
	ns/°C		+ 3	±4		*	*
转换时间温漂	ns/ C		, , ,				

注:* 表示与 ADC701JH 的参数相同

SHC702 技术参数

4. #h	ـدم بعد	SHC702JM				
参 数	単 位	最小	典型	最大		
输入(无输入缓冲)						
模拟			ĺ			
电压范围	γ	± 10.25	± 11			
电阻	kΩ	0.98	1	1.02		
电容	pF		3			
数字						
逻辑系列	!		LSTTL			
输人负载	LSTTL Loads		2			
转移特性			· · · · · · · · · · · · · · · · · · ·			
増益			_1 _1			
增益误差	9%		± 0.02	± 0.1		
线性误差	% FSR		± 0.0003			
失调误差	тV		± 0.5	± 3		
电荷失调误差	mV		± 0.5	± 5		
下降速率	$\mu V/\mu s$		± 0.2	± 2		
动态非线性	% FSR		± 0.0005			
电源灵敏度	%FSR/V		±0.003			

<u>续表____</u>

		SHC702JM				
参数	单位	最小				
动态特性				最大		
采集时间 采集时间	ns		600			
21-31-4	ns		500	[
S/H 建立时间	ns		120			
孔径延迟时间	rıs		20			
孔径不定性	ps ms	}	10	25		
转换速率	V/μs		150			
小信号带宽	MHz		3.1			
全功率带宽	MHz		2	}		
馈通抑制	%		0.001			
		<u></u>	<u> </u>	·		
—————————————————————————————————————	v	± 10.25	± 11			
輸出电流	mA.	± 40				
短路保护	1	_ ,,,	不定			
输出阻抗	Ω	:	0.01	0.1		
	.	i	<u></u>	· · · · · · · · · · · · · · · · · · ·		
						
阻抗	Ω pF		1013 3			
偏置电流	pA	ĺ	± 2	± 15		
失调电压	mV		± 2 ± 0.3	±1.5		
电压范围	V V	± 10.25	±11 :	11.5		
				 -		
第211	V/μs	20	35			
全功率带宽	kHz	20	570			
建立时间	μ5		1.7			
	125		1.,			
输出 			•			
输出电流	mA	± 15	± 20			
短路保护 ————————————————————————————————————			不定			
电源要求 ————————————————————————————————————						
电压: + V _{cc}	V	+ 13.5	+ 15	+ 16.5		
~ V _∞	V	- 13.5	- 15	- 16.5		
+ $V_{ m DDL}$	v	+4.75	+ 5	+ 5.25		
电流:+ I _{cc}	mA		33	40		
$-I_{\infty}$	mA.	ļ	18	25		
+ I _{DD4}	mA		5	10		
功耗	mW		790	950		
全温度特性						
	£ 1	0	.]	+ 70		
S/H 增益误差	p pm∕° C	-	±1	± 5		
S/H 失调误差	μV/°C		± 10	± 30		
S/H 电荷失调误差	μV/°C		± 10	± 80		
下降速率	μV/μs			± 50		
· · · · · · · · ·	1 77.7		1			

传感器 DDC101 型 20 位 A/D 变换器电路

用途:光传感器数字化,适用于低电平电流直接输入,电压通过选择电阻输入,最佳适用单极性信号,对双极性输入信号也能数字化。用于化学分析、CT扫描、精细过程控制、精密仪器

和红外高温测量等领域。

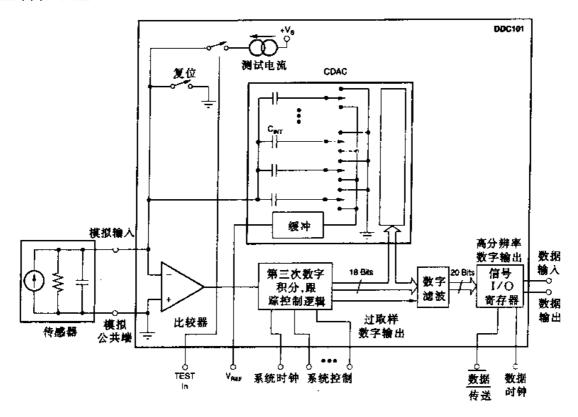


图 3-5 传感器和 DDC101 的连接电路

图表示 DDC101 较详细的结构。单个积分电容 C_{INT}和 D/A 变换器被高分辨率电容 D/A 变换器(CDAC)取代。通过地和基准之间的开关, CDAC 的二进制加权电容阵列积累输入信号的电荷至保持电容输入。

DDC101 型 20 位 A/D 变换器

DDC101 是一个精密型宽动态范围并具有 20 位分辨率的电荷数字化 A/D 变换器。低电流输出器件,如光传感器和许多单极性传感器能直接输入。DDC101 的组合功能有电流电压变换、积分、输入编程、增益放大、A/D 变换、提供精密数字滤波和宽的动态范围。

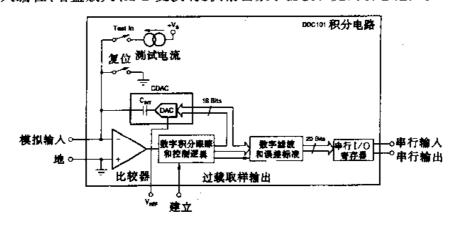


图 3-6 DDC101 电路功能方块图

特点:单片电荷输入 ADC,数字滤波降低噪声 0.9ppm(ms),数字误差校正钳位相关二次采样(CDS),转换速率可达 15kHz。

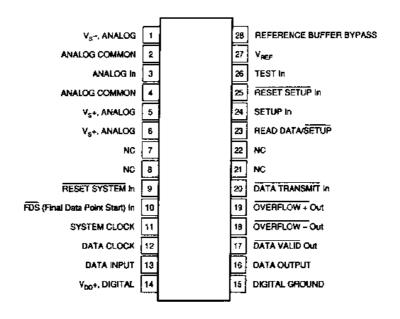


图 3-7 28 引脚管脚图(顶视)

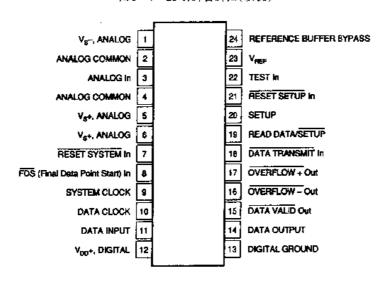
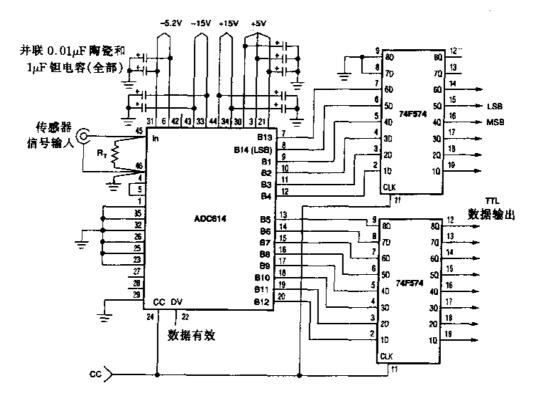


图 3-8 24 引脚管脚图(顶视)

管脚说明

_	SOIC 管脚编号	DIP 管脚编号	名 称	说 明
	1	1	V _S – , ANALOG	负模拟电源, - 5VDC
	2	2	ANALOG COMMON	模拟地
	3	3	ANALOG INPUT	输入低信号电流
	4	4	ANALOG COMMON	模拟地
	5	5	V _s + , ANALOG	正模拟电源, + 5VDC
	6	6	V _S + , ANALOG	正模拟电源,+5VDC

SOIC 管脚编号	DIP 管脚编号	名 称	说 明
7	9	RESET SYSTEMIN	輸入复位(低电平有效)
8	10	FDS In	数据开始输入(低电平有效)
9	11	SYSTEM CLOCK	时钟输入设定采样速率
10	12	DATA CLOCK	时钟输入控制数据转换速率
11	13	DATA INPUT	输人用于数据收集和整理系统电路
12	14	V _{DD} ← , DIGITAL	数据电源,+5VDC
13	15	DIGITAL GROUND] 数字地
14	16	DATA OUTPUT	提供串联数字、数据记录
15	17	DATA VALID	启动输出(低电平有效)
16	18	OVERFLOW -	每个輸出提供一个集电极开路输出(低电平有效)
17	19	OVERFLOW +	
18	20	DATA TRANSMITin	输入控制数据传输(低电平有效)
19	23	REDA DATA/SETUP in	用此输入读反向电流 SETUP 数据
20	24	SETUP in	 輸入控制 DDC101 SETUP
21	25	RESET SETUP	复位 SETUP 访存器(低电平有效)
22	26	TEST _{IN}	数字输入
23	27	$V_{ m REF}$	外接-2.5V 基准
24	28	REFERENCE BUFFER BYPASS	10μF外接电容。REFERENCE 输入脚连一个内基 准缓冲放大器。
-	7	NC	不连接
_	8	NC	不连接
-	21	NC NC	不连接
_	22	NC	不连接


最大绝对额定值

模拟输入	
输入电流	100mA(瞬时)
输人电流	100mA(连续)
输入电压	$V_{\rm S}^+ + 0.5 {\rm V} \sim V_{\rm S}^ 0.5 {\rm V}$
电源	
正电源 Vs ⁺	+ 7V
负电源 V₅	– 7 V
数字电源 Vpp	$\leq V_{\rm S}^{+}$
最大结温	165℃

参 数	单位		DDC101	
29 XX	平区	最小	典型	最大
输人				
电荷输入				
单极性输入范围	pC/积分	-1.95		500
双极性输入范围	pC/积分	- 251.95		250
输入电流	μΑ			7.8
电流输入举例				
单极性输入范围	μΑ	- 0.0195		5
单极性输人范围	nA	-1.95		500
双极性输人范围	μΑ	~ 2.5195		2.5
双极性输入范围	nA l	- 251.95	ŀ	250
电压输人举例				
单极性输入范围	v	- 0.0195		5
双极性输入范围	v	- 2.5195		2.5
动态特性		:		
转换时间	μs	64		256×10^6
积分时间	μв	64		106
系统时钟输入	MHz	0.5		2
数字输入/输出				
逻辑系列			TTL与 CMOS 兼容	
逻辑电平 V _{III}	v	+ 2.0		+ V _{oc}
$V_{\mathbf{L}}$	v	-0.3		+0.8
V_{OH}	v	+ 2.4		+ V _{oc}
V_{OL}	· γ	0.0		0.4
数据时钟			I	
数据 1/0	MHz			8
SETUP 码 I/O	MHz			4
数据格式			1	
标准二进制	位		20	
二二的补码	位		21	
电源				
工作	VDC	± 4.75	±5	± 5.25
静态电流,正电源	mA		15.6	19.5
模拟, V _{s+}	mA		8.9	
数字, V _{DD} +	m.A.		6.7	
静态电流,负电源	mA		18.0	22.5
功耗	ww		170	
温度范围				
工作	૧	- 40		+ 85
存储	\mathbf{r}	- 60		+ 100

传感器 ADC614 型 14 位 A/D 变换器电路

用途:用于采集传感器±5V输出模拟电压信号、CCD图像系统和医学仪器等领域。

注:接口电路,通过转换命令(CC)选通数字输出。电源地和模拟、数字地连接在一起。当输出数据时,用转换命令能取得最佳噪声性能。ADC614 管脚见说明,其他器件见 BURR-BROWN 公司产品手册。

图 3-9 传感器和 A/D 变换器 ADC614 的连接电路

注:传感器输入信号通过数据有效脉冲选通数据输出。电源地和模拟地、数字地接在一起。 图 3-10 传感器信号通过 A/D 变换器电路

ADC614 型 14 位 A/D 变换器

ADC614 是一个 14 位 5.12MHz 采样 A/D 变换器,具有宽的动态范围。ADC614 包含一个 ADC、采样/保持放大器、电压基准、时序电路和误差校准电路。46 引脚 DIP 型塑封。逻辑接口是 TTL 电路。

特点:高抑制寄生的动态范围: -90dB;宽带采样/保持:60MHz;采样速率:DC~5.12MHz; 高信号/噪声比:78dB,无丢失码,全部子系统包含采样/保持和基准。

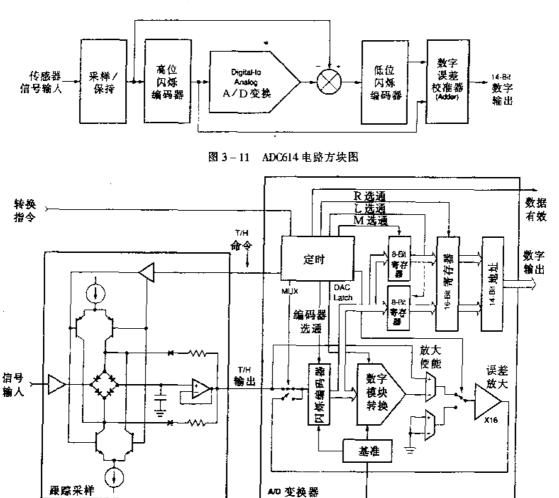


图 3-12 ADC614 方块图

增益调节

ADC614 管脚说明

编 号	说 明	编号	说 明
1	Common(模拟)	46	Common(模拟)
2	DNC	45	模拟信号输入
3	+ V _{DDI} (+ 5V)模拟	44	+ V _{cc} (+ 15V)模拟电源
4	S/H Out	43	- V∞(-15V)模拟电源
5	A/D in	42	NC
6	- V _{DD} (-5.2V)模拟	41	NC
7	Bit 13	40	NC
8	Bit 14(LSB)	39	DNC
9	Bit 1(MSB)	38	DNC

编 号	说明	编号	说 明
10	Bit 2	37	增益调节
11	Bit 3	36	偏置调节
12	Bit 4	35	Common(模拟)
13	Bà 5	34	+ Vcc(+ 15V)模拟电源
14	Bit 6	33	- V∞(-15V)模拟电源
15	Bit 7	32	Common(模拟)
16	Bit 8	31	- V _{DD2} (- 5.2V) Digital
17	Bit 9	30	+ V _{nDI} (+ 5V)模拟电源
18	Bit 10	29	1通道延迟选择
19	Bit 11	28	0 通道延迟选择
20	Bit 12	27	输出逻辑反相
21	+ V _{DDi} (+5V)数字	26	Common(数字)
22	数据有效输出	25	3 - 态ENABLE
23	Common(数字地)	24	转换命令输入

最大绝对额定值

$\pm V_{\rm CC}$	± 16.5 V
$\pm V_{\mathrm{DD1}}$	+7.0V
$\pm V_{\mathrm{DD2}}$	-7.0V
模拟输入	± 5.0V
数字输入	$-0.5V \sim + V_{DDS}$
工作温度	85℃
结温	100℃
存储温度	- 65 ~ 125℃

电参数($T_{\rm A}=25\%$,采样速率 5.12MHz, $R_{\rm S}=50\Omega$, $V_{\rm CC}=\pm15{\rm V}$, + $V_{\rm DDi}=+5{\rm V}$, - $V_{\rm DD2}=-5.2{\rm V}$)

参数	单位		ADC614II	I	ADC614KH			ADC614LH		
参 数 単	单 世	最小	典型	最大	最小	典型	最大	最小	典型	最大
分辨率	位		T	14			14	_ 		14
	-									
			Ţ	7	<u> </u>		- -	_		
输入范围	v	-1.25		+1.25	*		*	*		*
输入阻抗	MΩ		1.5	 		. *			*	
输入电容	pF		5			*		· ·	*	
数字										
逻辑系列	ļ		ļ							
转换命令]]		ļ]]
脉宽	ns	10		ι – 20	*		*	* _		¥
传输特性		·	· · · · · · · · · · · · · · · · · · ·			. <u>-</u>				
精度										
增益误差	% FSR		±0.8	±2		±0.4	±1 /		*	1.
輸入失调	% FSR		±0.4	±2		±0.2	± 0.75		*	¥
差动线性误差	LSB		1.3	1.5		0.9	1.25		*	*
无丢失码			保证			保证			保证	
电源抑制比	%FSR%		±0.03	±0.1		*	*]		¥	*
	%FSR%		±0.04	±0.1		*	*		*	*
	%FSR%		±0.004	± 0.07		*	*		*	*
	% FSR%		± 0.01	± 0.07		*	*	:	*	*
转换特性	'									
	次/8	DC		5.12M	*		*	*		*

A #	, p.	ADC614JH			ADC614K	Н	ADC614LH			
参数	单 位	最小	典型	最大	最小	典型	最大	最小	典型	最大
<u></u> 输出										_
逻辑系列			!	_		TTL兼容	: -			
逻辑编码	1				二的	补码或二	的补码的	反码		
逻辑电平	v	0	+0.3	0.5	*	*	*	*	*	*
	v	+ 2.4	+3.5	+5.0	*	*	*	*	*	*
EOC(延迟时间)	1)) }		}				
三态使能/失能时间	ns		37	100		*	*		*	*
数据有效脉宽							! [
电源要求	<u>' </u>			<u> </u>		<u></u>	· · · · · · · · · · · · · · · · · · ·			
电源电压: + V _{CC}	v	+ 14.25	+ 15	+15.75	*	*	*	*	*	*
$-v_{\infty}$	v	- 14.25	- 15	- 15.75	¥	*	*	×	×	*
$+ V_{\mathrm{DDI}}$	i v	+ 4.75	+ 5	+ 5.25	*	*	*	*	#	*
$-V_{ m DD2}$	v	- 4.95	-5.2	-5.46	*	*	*	*	*	*
电源电流 : + $I_{ m CC}$	mA.		+ 60		İ	*	+ 80		*	*
$-I_{\infty}$	mA		- 60			*	- 80		*	*
$-I_{\mathrm{DDI}}^{(4)}$	mA		+ 305			*	+ 330	ŀ	*	*
$-I_{\mathrm{DH2}}^{(5)}$	mA.		- 550		Ì	*	- 630		*	*
功耗	w		6.1	6.5]	*	*		*	*

注:* 表示与 ADC614JH 的参数一样

生产厂家:BURR-BROWN

传感器 A/D 变换电路

电路中的 AD872 为 12 位 A/D 变换器。AD8047 为通用型电压反馈运算放大器,输入阻抗

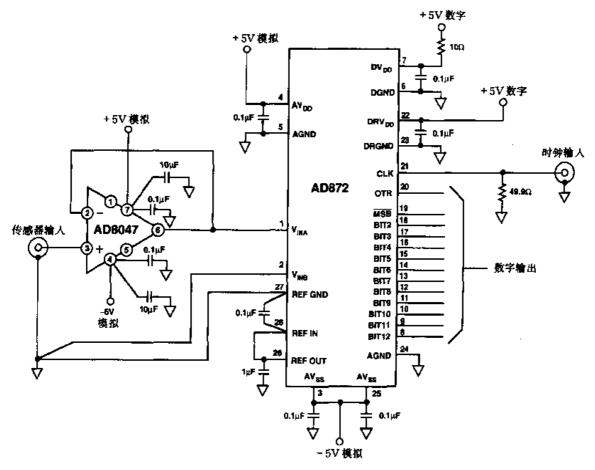
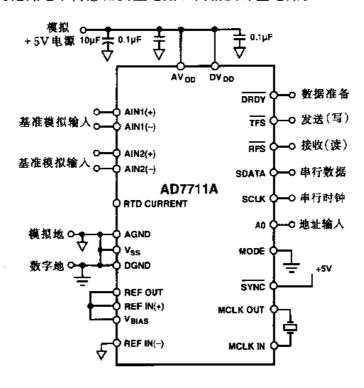
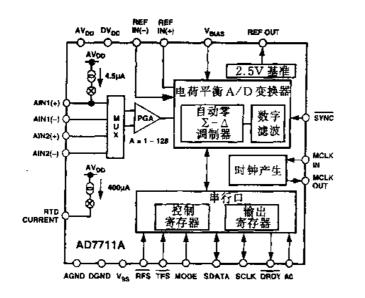



图 3-13 AD8047 用于驱动 12 位 10MHz 采样速率的 A/D 变换器

为电阻 500kΩ, 电容 1.5pF; 输入共模电压范围: ± 3.4 V; 输出电压范围: R_L = 150Ω 时为 ± 3.0 V; 输出电流为 50mA; 输出电阻为 0.2Ω; 短路电流为 130mA。

RTD 传感器与 24 位 AD7711A 电路

用途:用于慢变化低电平传感器测量电路和高精度计量电路。



注:RID 电流用于电桥激励,传感器信号直接输入、输出为串行数字字。 图 3-14 RTD 与 AD7711A 的基本连接图

AD7711A 为具有 RTD 电流源的 LC2MOS 信号调节 ADC

AD7711A 是一个低频模拟输入测量电路,直接从传感器接收低电平信号,输出串行数字字。采用新的工艺,转换时可实现 24 位不丢失码。输入信号加到模拟调制器前端的可编程增益放大器。调制器的输出通过数字滤波器。数字滤波器通过控制寄存器可调。器件有两个模拟差分输入通道和一个基准差分输入通道。通常只用一个通道,第二个通道用于辅助输入测量第二电压。可工作在单电源和输入信号大于 - 30mV 的场合。器件提供的 400μA 电流源用于激励 RTD 传感器。AD7711A 完成信号调节并转换成单或双通道信号。AD7711A 是一个理想的控制系统,输入通道可选择,增益可设定,信号极性可选择。内有自校准、系统校准和背景校准选择。允许用户读出和写入芯片校准寄存器。低功耗,24 引脚封装。

特点:电荷平衡 ADC24 位不丢失码,非线性:±0.0015%;两通道可编程,增益1~128,差分输入;用可编程低通滤波器;读/写校准系数功能;双向微型控制器串联接口;内外基准选择; 单或双电源工作;待机型式下的低功耗为25mW(典型值)。

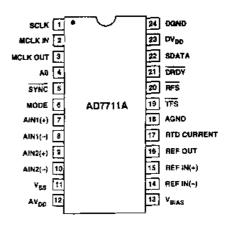


图 3-15 电路功能方块图

图 3-16 管脚图(顶视)

管脚说明

	官脚 况明							
编号	名 称	· · · · · · · · · · · · · · · · · · ·						
L	SCLK	串联时钟,逻辑输入/输出取决于 MODE 脚状态。当 MODE 高时,器件在时钟型式,SCLK 脚输出串行时钟。						
2	MCLK _{IN}	器件的主控时钟,可提供晶体或外时钟型式。晶体接 MCLKIN 和 MCLKOUT 脚。						
3	MCLK _{OUT}	当器件主控时钟是晶体时,晶体连接在 MCLK _{IN} 和 MCLK _{OUT} 之间						
4	A0	地址输入。当输入低时,读和写经器件到控制寄存器。						
5	SYNC	当用 AD7711A 时,逻辑输入用于数字滤波器间步。						
6	MODE	逻辑输入。当这点为高时,器件为计时型式;当为低时,器件为外时钟型式。						
7	AINI(+)	模拟输入通道 1。可编程增益正的差动输入。当 AINI(+)连至输出电流源时,可用于检查外传感器损						
		坏或开路。通过控制寄存器输出电流聚能接通/关断。						
8	AINI(-)	模拟输入通道 1、可编程增益负输入差动模拟输入						
9	AIN2(+)	模拟输入通道 2、可编程增益正输入差动模拟输入						
10	AIN2(-)	模拟输入通道 2,可编程增益负输入差动模拟输入						
11	V_{SS}	模拟负电源,0~5V。						
12	AVDD	正模拟电源,+5~ +10V。						
13	V _{BIAS}	輸入偏置电压。輸入电压设定 + 0.85 × V _{REF} < A V _{DD} 和 V _{BLAS} , − 0.85 × V _{REF} > V _{SS} 。 V _{REF} 是 REF(+) −						
13	Y RIAS	REF(-) _o						
14	REFIN(-)	基准输人。REFIN(-)可在 AV _{DD} 和 V _{SS} 之间,使 REFIN(+) > REFIN(-)						
15	REFIN(+)	基准输入。基准输入差压,使 REFIN(+) > REFIN(-)。 REFIN(+)在 AV _{DD} 和 V _S 之间。						
16	REFOUT	基准输出。内 2.5V 基准在本脚供给。它是单端输出相对 AGVD,缓冲输出对外负载可供 1mA 电流。						
17	RIDCURRENT	恒流输出。在这脚通常供 100µA 恒流,用于激励 RTD 的电流,通过控制寄存器电流能通/断。						
18	AGND	模拟地						
19	TFS	发送帧同步。实际低逻辑输入用于对器件写串联数据。TTS变低后,在记时型式,串联时钟有效。在						
17	11.0	外时钟型式,数据字被写人器件第一位之前,TFS必须变低。						
		接收帧同步。实际低逻辑输入用于从器件取串联数据。在记时型式,RFS变低后,SCLK和 SDATA 变为						
20	RFS	有效。在外时钟型式,RFS变低后,SDATA 变为有效。						
21	$\overline{\mathrm{DRDY}}$	逻辑输 出。						
		串联数据。输入输出串联数据用于写入控制寄存器或校准寄存器,串联数据从控制寄存器、校准寄存						
22	SDATA	器或数据寄存器取出。						
23	DVDD	数字电源、+ 5V。						
24	DGND	数字地						

最大绝对额定值	$(T_{\rm A}=25\%)$
AV_{DD} $\cong DV_{DD}$	$-0.3V \sim +12V$
AV_{DD} 至 V_{SS}	$-0.3V \sim +12V$
AV_{DD} 至 $AGND$	$-0.3V \sim +12V$
AV_{DD} 至 DGND	$-0.3V \sim +12V$
DV _{DD} 至 AGND	$-0.3V \sim +6V$
DV _{DD} 至 DGND	$-0.3V \sim +6V$
V_{SS} Ξ AGND	$+0.3V \sim -6V$
V _{ss} 至 DGND	$+0.3V \sim -6V$
模拟输入至 AGND	$V_{SS} - 0.3V \sim AV_{DD} + 0.3V$
基准输入至 AGND	$V_{SS} - 0.3V \sim AV_{DD} + 0.3V$
REF OUT 至 AGND	$\cdots - 0.3 \text{V} \sim \text{A} V_{\text{DD}}$
数字输入至 DGND	$-0.3V \sim AV_{DD} + 0.3V$
数字输出至 DGND	$-0.3V \sim DV_{DD} + 0.3V$
工作温度 AD7711AAR	– 40 ~ 85 °C
AD7711ASQ	55 ~ 125℃
存储温度	- 65 ~ 150℃
引线焊接温度(10s)	300℃
功耗(至 75℃)	450mW
75℃以上降额	6mW/℃

传感器与 AD7710/7712 型信号调节 ADC 电路

用途:用于称重计量、热电偶、工业控制和新式变送器等领域。

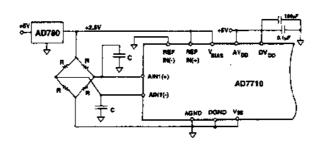


图 3-17 称重传感器电路

AD7710/7712 型 LC2MOS 信号调节 ADC 电路

AD7710/7712 有两个模拟输入通道,可接收从传感器来的低电平信号或高电平信号($\pm 4 \times V_{REF}$),并输出串行数字字。

特点:电荷平衡 ADC; 24 位不丢失码; 非线性为±0.0015%; 双通道可编程, 增益 1~128; 小信号差动输入, 大信号输入仅限 AD7712; 低通滤波器的截止频率可编程控制; 可读/写校准系数; 双向微控制串行接口; 内/外基准选择; 单或双电源工作; 待机方式下的低功耗为 25mW

(典型值)。

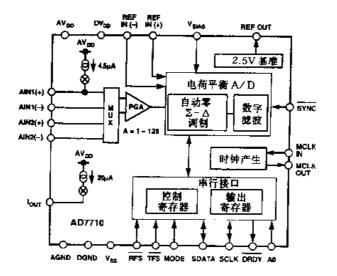


图 3-18 AD7710 功能方块图

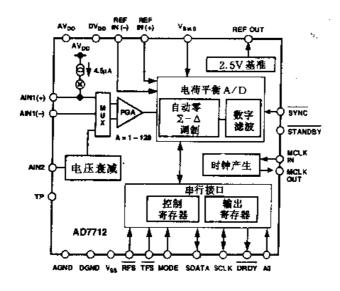
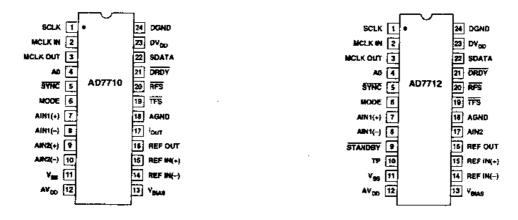



图 3-19 AD7712 功能方块图

注:除 AD7712:9 脚备用,10 脚空外,其他管脚说明参考 AD7711A 图 3-20 管脚图(顶视)

最大绝对额定值(T _A = 25℃)					
AV_{DD} 至 DV_{DD}	$-0.3V \sim 12V$				
A $V_{ m DD}$ 至 $V_{ m SS}$	$-0.3V \sim 12V$				
AV_{DD} 至 AGND	-0.3V ~ 12V				
AV_{DD} 至 DGND	$-0.3V\sim12V$				
DV_{DD} 至 AGND	$-0.3V\sim6V$				
DV_{DD} 至 DGND	$-0.3V \sim 6V$				
$V_{\rm SS}$ 至 AGND	$-0.3V \sim -6V$				
$V_{\rm SS}$ 至 DGND	$-0.3V \sim -6V$				
模拟输入至 AGND	$V_{\rm SS} - 0.3 \rm V \sim A V_{\rm DD} + 0.3 \rm V$				
基准输入至 AGND	$V_{\rm SS} - 0.3 \rm V \sim A V_{\rm DD} + 0.3 \rm V$				
REFOUT 至 AGND	$-0.3V \sim AV_{DD}$				
数字输入至 DGND	$-0.3V \sim AV_{DD} + 0.3V$				
数字输出至 DGND	$-0.3V \sim DV_{DD} + 0.3V$				
工作温度	- 55 ~ 125℃				
存储温度	-65 ~ 150℃				
引线焊接温度(10s)	300℃				
功耗(至 75℃)	450mW				
75℃以上降额	6mW/℃				
	工作温度范围				
AD7710AN	-40°C ~ +85°C				
AD7710AR	-40°C ~ +85°C				
AD7710AQ	-40℃ ~ +85℃				
AD77108Q	-55°C ~ +125°C				
AD7712AN	-40℃ ~ +85℃				
AD7712AR	- 40℃ ~ + 85℃				
AD7712AQ AD7712SQ	- 40°C ~ + 85°C - 55°C ~ + 125°C				

AD7730 型传感器 ADC 电路

用途:用于压力测量。

电路直接从传感器接收低电平信号,输出一个串联数字字节。信号加至可编程增益前端(在模拟调制器前),模拟调制器的输出通过可编程低通数字滤波器。滤波器的截止频率、输出速率和建立时间可调。有两个缓冲差动可编程增益模拟输入和一个差动基准输入。工作电源电压: +5V或±2.5V;4个单极性模拟输入:0~10mV;0~20mV,0~40mV,0~80mV;4个双极性模拟输入;±10mV,±20mV;±40mV,±80mV。桥的交流激励同步信号同样由时钟提供。

特点:分辨率 50000;失调温漂 ≤ 1 ppm/ \mathbb{C} ;增益温漂 2ppm/ \mathbb{C} ;电源抑制比 > 150dB;缓冲差 动输入;工作基准电压为 1~5V;两通道可编程增益前端;AC 或 DC 激励;单电源工作。

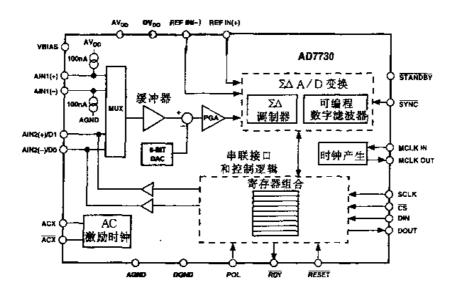


图 3-21 AD7730 电路功能方块图

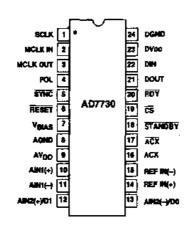


图 3-22 管脚图(顶视)

器件工作温度范围

AD7730BN	- 40°C ~ + 85°C
AD7730BR	-40°C ~ +85°C
AD7730BRRL	- 40℃ ~ + 85℃
AD7730BRS	- 40°C ~ + 85°C
AD7730BRSRL	− 40°C ~ + 85°C
AD7730BChips	-40℃ ~ +85℃

管脚说明

I、串联时钟,2、主控时钟输入,3、主控时钟输出,4、极性控制,5、同步,6、复位,7、偏压,8、模拟地,9、正模拟电源,10、模拟输入通道 I(+),11、模拟输入通道 I(-),12、模拟输入通道 I(-),12、模拟输入通道 I(-),13、模拟输入通道 I(-),14、基准输入I(-),15、基准输入I(-),16、激励,17、激励,18、备用,19、片选,20、读出,21、数字输出,22、数字输入,23、正数字电源,24、数字地。

生产厂家: ANALOG DEVICES

ML2280/2283 与传感器电路

用途:用于温度、压力、比例计量、模拟输出传感器的测量控制等场合。

· 206 ·

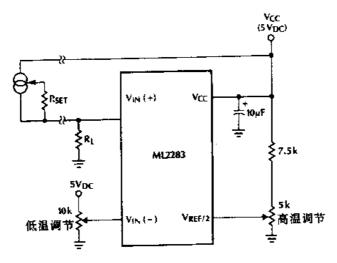
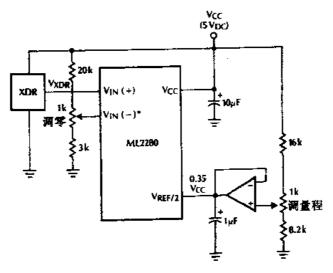



图 3-23 遥控温度传感电路

注: $V_{\rm IR}(-) = 0.15 V_{\rm CC}, 15\% V_{\rm CC} \le V_{\rm XDR} \le 85\% V_{\rm CC}$

图 3-24 电位计传感电路

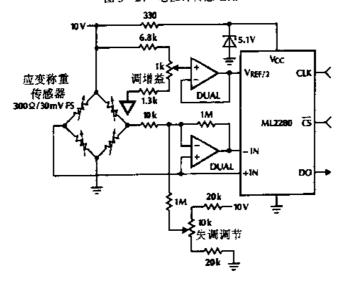
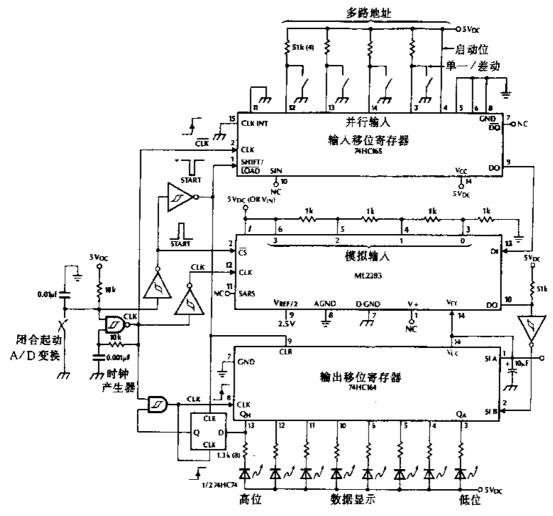



图 3-25 载重测力传感电路

· 207 ·

注:传感器 3.4.5.6 脚输入模拟信号,可直接选通道。 V_+ 要断开(即 5VDC 断开)。图 3-26 ML2283 传感器独立工作电路

ML2280/2283 型串行 I/O 8 位 A/D 变换器

ML2280/2283 是具有串行 I/O 和 4 个输入通道多路开关的 8 位逐次接近式 A/D 变换器。特点:转换时间 $6\mu s$; ML2280 数字化能力 5V, 40kHz 正弦波; 外基准未调节总误差为 $\pm 1/2$ LSB 或 ± 1 LSB; 采样保持时间 375ns, 5V 单电源; 模拟输入 $0 \sim 5V$; 2.5V 基准可供 $0 \sim 5V$ 模拟输入; 无零和满量程调节要求; 低功耗最大为 12.5mW; 模拟输入保护每通道输入最小 25mA; 可选 4 个通道的多路开关。

管脚说明

名 称	说 明	名 称	说明
v_{∞}	正电源,5V±10%	SARS	逐次接近寄存器状态
DGND	数字地	ŀ	
AGND	模拟地		
GND	地		
CHO, $V_{\rm IN}$ + , $V_{\rm IN}$ -	模拟输入:数字选择单端输入 Vm; Vt,或 Vm差动输入	CLK	 时 钟
$V_{\mathrm{REF}/2}$	基准	DI	数据输入
. V+	输人至并联稳压器		
, DO	数据输出	√ CS	 片选

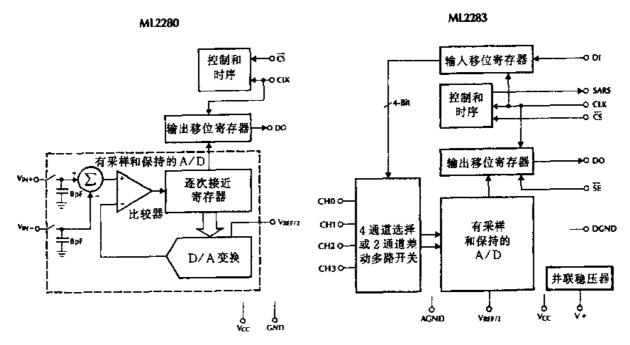


图 3-27 MI 2280/2283 电路方块图

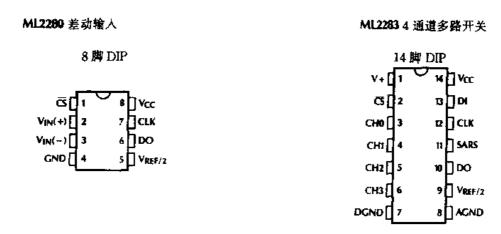


图 3-28 管脚图(顶视)

MI.2258 与传感器工作电路

用涂:用于生产工艺、机器控制、汽车和通讯等领域。

ML2258 型 A/D 变换器

MI 2258 是一个将 8 位 A/D 变换器、8 通道模拟多路开关、与 8 位并行口兼容的微处理器和控制逻辑集成在硅片上的 CMOS 单片电路。

特点:转换时间: $6.6\mu s$;未调节总误差: ± 1/2LSB 或 ± 1LSB;无丢失码;采样和保持时间 390ns;数字化能力 5V,50kHz 正弦;8 输入多路开关;单电源 5V;模拟输入 0~5V;比例计量可达 5V 基准;零或满量程要求调节;模拟输入保护 25mA;低功率失真最大 35mA;数字输入和输出与 TTL和 CMOS 兼容;标准 28 引脚 DIP 型封装或表面安装 PCC。

图 3-29 15% V_{CC} ≤ V_{XDR} ≤ 85% V_{CC} 传感器工作电路

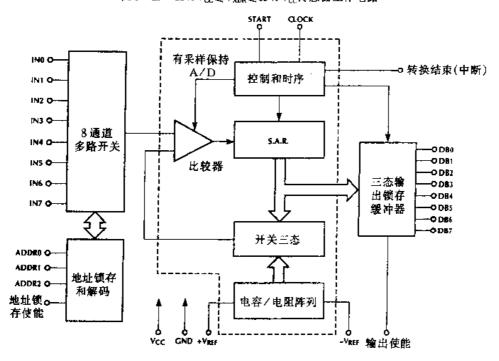


图 3-30 ML2258 方块图



图 3-31 管脚图(顶视)

管脚说明

编号	符号	说明	编号	符号	说 明
1	IN3	模拟输入3	15	DB2	数据输出 2
2	IN4	模拟输入 4	16	- Vref	负基准电压
3	IN5	模拟输入5	17	DBO	数据输出 0
4	1/1/6	模拟输入6	18	.DB4	数据输出 4
5	IN7	模拟输入7	19	DB5	数据输出 5
6	START	转换开始	20	DB6	数据输出 6
7	EOC	转换结束	21	DB7	数据输出 7
8	DB3	数据输出 3	22	ALE	地址锁存使能
9	OE	输出使能输人	23	ADDR0	地址输入 0 至多路开关
10	CLK	时钟,时钟输入	24	ADDRI	地址输入1至多路开关
11	V_{CC}	正电源,5V±10%	25	ADDR2	地址輸入 2 至多路开关
12	$+ V_{REF}$	近基准电压	26	INO	模拟输入 0
13	GND	接地	27	IN1	模拟输入 1
14	DB1	数据输出1	28	IN2	模拟输入 2

ML2252/2259 与传感器工作电路

用途:用于生产工艺、机器控制、自动化、汽车和通讯等领域。

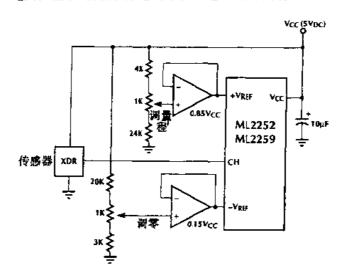


图 3-32 工作电压 15% V_{CC} ≤ V_{XDR} ≤ 85% V_{CC}电位计传感器电路

ML2252/2259 型 μP 兼容的 A/D 变换器

ML2252/2259 是将 8 位 A/D 变换器、2 或 8 通道多路开关、与微处理器兼容的 8 位并行口和控制逻辑集成在硅片上的 CMOS 单片电路。

特点:转换时间(f_{CLK} = 1.46MHz):6.6 μ s;未调节总误差:±1/2LSB或±1LSB;无丢失码;采样和保持时间390ns;数字化能力5V,50kHz正弦;单电源5V;模拟输入范围为0~5V;比例变量可达5V基准;无零或满量程调节要求;模拟输入保护电流25mA;连续转换型式;低功耗最大为15mW;数字输入、输出TTL和CMOS兼容;标准20引脚或28引脚DIP型封装或表面安装PCC;工作温度范围为0~70°C、-40~85°C或-55~125°C。

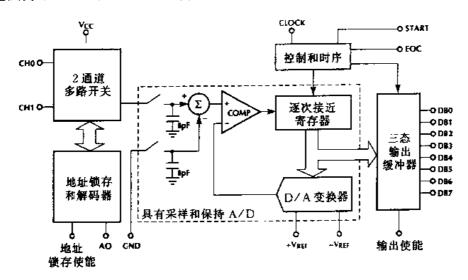


图 3-33 ML2252 方块图

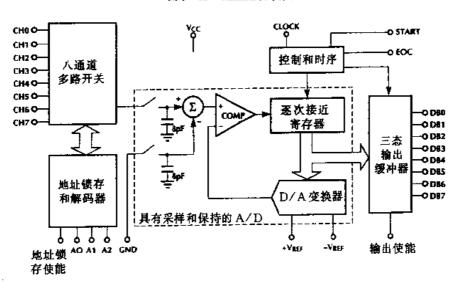


图 3-34 ML2259 方块图

管脚说明

MI.2252 型编号	ML2259 型编号	符号		说	明
	1	CH3	模拟输入3		
	2	CH4	模拟输入4		
	3	CH5	模拟输入5		
	4	СН6	模拟输入6		
	5	CH7	模拟输入7		
2	6	START	转换开始		
3	7	EOC	转换结束		
4	8	DB3	数据输出3		

ML2252 型编号	ML2259 型编号	符号	说 明
5	9	OE	输出使能输人
6	10 ·	CLK	时钟
7	11	v_{cc}	正电源,5V±10%
8	12	$+$ V_{RFF}	正基准电压
9	13	GND	地
10	14	DB1	数据输出 1
11	15	DB2	数据输出 2
12	16	- V _{REF}	负基准电压
13	17	DBO	数据输出 0
14	18	DB4	数据输出 4
15	19	DB5	数据输出 5
16	20	DB6	数据输出 6
17	21	DB7	数据输出 7
18	22	ALE	地址锁存使能
	23	ADDR2	地址输入 2 到多路开关
	24	ADDR1	地址输入1到多路开关
19	25	ADDRO	地址输入0到多路开关
20	26	CHIO	模拟输入0
1	27	CH1	模拟输入1
	28	CH2	模拟输入 2

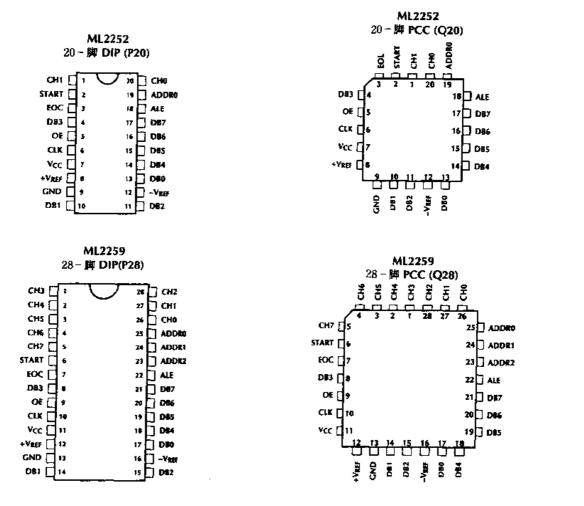


图 3-35 管脚图(顶视)

ML2221 型传感器光隔离接口电路

用途:用于传感器接口电路。

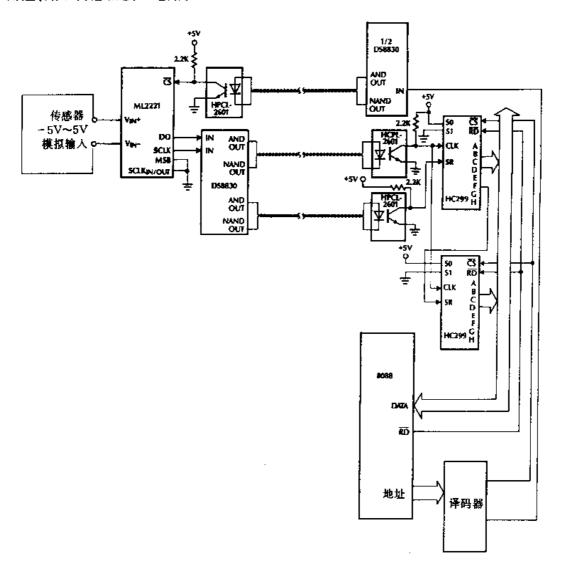
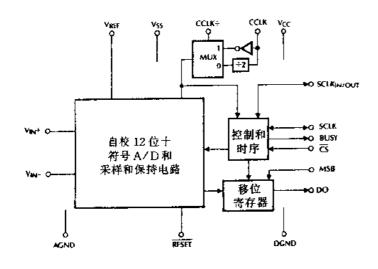



图 3-36 光隔离传感器 8088 接口电路

ML2221 型串联外设接口(SPI)A/D 变换器

ML2221 是一个组件,12 位十符号位 A/D,串联接口与工业标准串联接口兼容。ML2221 有四种工作型式:栅门串联数据时钟,栅门芯片选择,用 M2221 控制的串联输出数据变换和自由工作型式。

特点:非线性误差最大为±3/4LSB 和±1LSB;包括 S/H 采集的转换时间最大为 44 μ s;谐波失真为 0.01%;无丢失码;输入耐压大于电源[7V];双极性模拟输入为 – $5V \sim + 5V$;控制或自由型式工作; μ PCMP(1)4 线接口用同步串联格式;工作温度范围为: $0 \sim 70$ $^{\circ}$ C、 $-40 \sim 85$ $^{\circ}$ C;16 引脚 DIP 型封装。

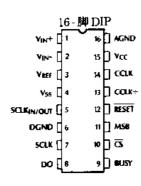


图 3-37 ML2221 方块图

图 3-38 管脚图(顶视)

型 号	线性误差	未调节总误差	温度范围
ML2221BCP MB2221BIJ	± 3/4 LSB	± 1 1/2	0℃ ~ +70℃ -40℃ ~ +85℃
ML2221 CCP ML2221 CH	± 1 ISB	± 2 1/2	0℃ ~ +70℃ ~40℃ ~ +85℃

管脚说明

ML2221

编号	符号	说明
ı	V _{IN}	正差 动模拟输人;范围: V _{SS} ≤ V _{IN} ≤ V _{CL} .
2	V _{IN}	(V _N) - (V _N) ≤ V _{RE} , 负差动模拟输入;范围: V _{SS} ≤ V _N ≤ V _{CC}
3 4	V _{REF} V _{SS}	(V _N) - (V _N) ≤ V _{REV} 电压基准输入,参考模拟地。 负电源: -5V±5%
5	SCLK _{IN/OUT}	SCLK 选型: SCLK _{IN/OUT} = 5V; SCLK 是输入串联 CLK
	; ! !	SCLK _{IN/OUT} = 0V; SCLK 是输出串联 CLK
6	DGND	数字地
7	SCLK	双向串联数据时钟
8	DO	数据输出,数字输出包含 A/D 转换结果。
9	BUSY	三态有效高,BUSY输出,一般为低。
10	\overline{cs}	低有效,芯片选择
11	MSB	如果 MSB 接近 V_{∞} ,第一个发送的是最高有效位;如果 MSB 接近数字地,第一个发送的是最低有效位。
12	RESET	低有效,复位。
13	CCLK ÷	如果该引脚接近 5V,设定时钟 = 内时钟;如果该引脚接近 0V,内时钟 = CCLK/2。
14	ÇÇLK	时钟 输 人
15	V _{cc}	正电源:5V ± 5%
16	AGND	<u>模拟地,0V</u>

MI.2281/2282/2284/2288 与传感器电路

用途:用于温度、压力、电位计传感和模拟输出 0~5V 传感器测量控制电路。

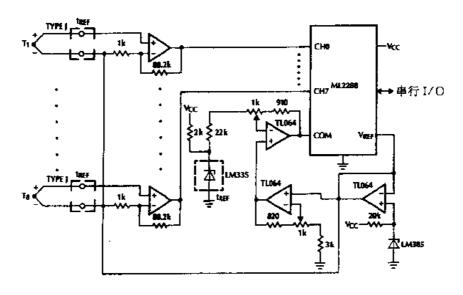


图 3-39 只有一个冷端补偿的 8个热偶传感电路

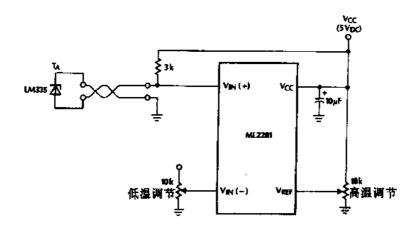


图 3-40 遥控温度传感电路

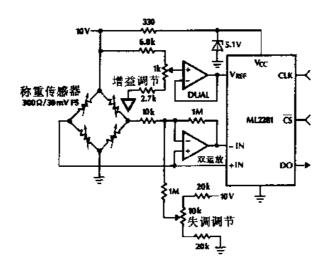


图 3-41 数字称重传感电路

· 216 ·



图 3-42 比率测量传感电路

注: $V_{\text{IN}}(-) = 0.15V_{\text{CC}}$,15% $V_{\text{CC}} \le V_{\text{XDR}} \le 85\% V_{\text{CC}}$

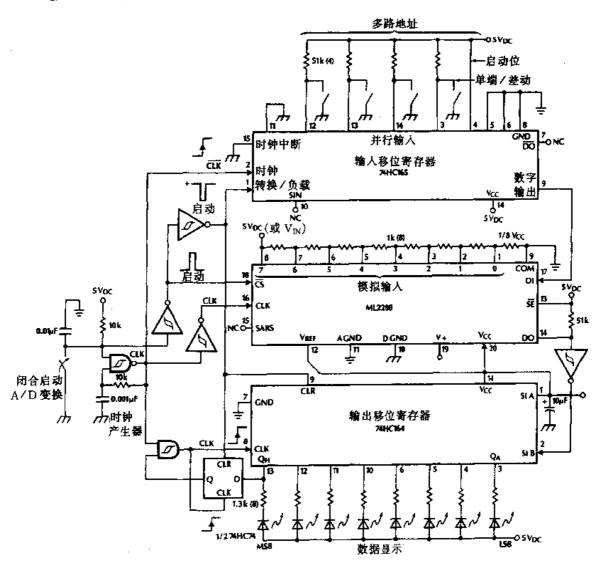


图 3-43 ML2288 与传感器独立电路

ML2281/2282/2284/2288 型 A/D 变换器

ML2281 系列是具有 I/O 和 8 通道输入多路开关的 8 位逐次接近式 A/D 变换器。

特点:转换时间: $6\mu s$;未调节总误差: ± 1/2LSB 或 ± 1LSB; 采样和保持时间 375ns; 2,4 或 8 输入通道可选;单电源 5V; 模拟输入: $0\sim5V$; 比率测量可达 5V 基准; 无零和满量程调节要求; ML2281 数字化能力 5V, 40kHz 正弦; 低功耗最大为 12.5mW; 模拟输入保护; 输入最小 25mA。

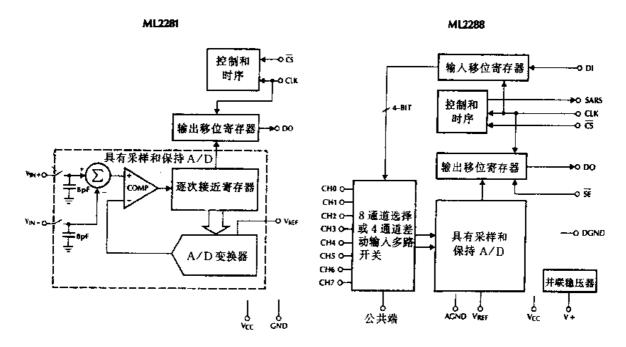


图 3-44 ML2281/2288 电路方块图

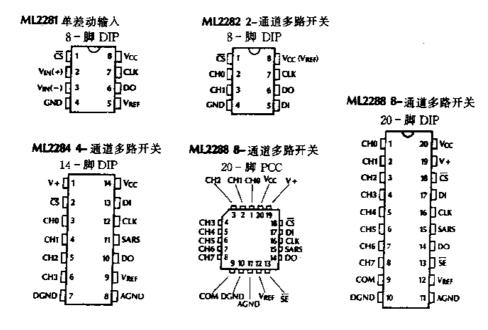


图 3-45 管脚图(顶视)

管脚说明

	管师	如号		→ 符号	
ML2281	ML2282	MI.2284	ML2288	一 符号	说明
8	8	14	20	v _{cc}	正电源,5V±10%
4(GND)	4(GND)	7	10	DGNI)	数字地
		8	11	AGND	模拟地
2-3	2-3	3~6	1 ~ 8	CH0 - 7, V_{IN_+} , V_{IN}	模拟输入
	-		9	COM	用于模拟输入的公共点
5		9	12	$V_{ m REF}$	基准
		· -	13	SE	移位使能
		1	19	V.	输人至并联稳压器
6	6	10	14	DO	数据输出
		11	15	SARS	逐次接近式寄存器状态
7	7	12	16	CLK	时钟
	5	13	17	DI	数据输入
1	1	2	18	<u>cs</u>	片 选

生产厂家:MICRO LINEAR

3.2 传感器变送器应用电路

传感器与 AD694 组成 4~20mA 变送器电路

用途:用于工业过程控制和桥传感器计量。

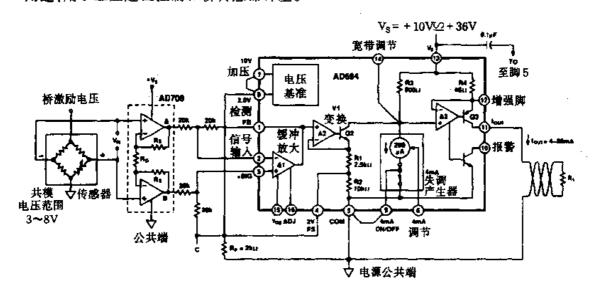


图 3-46 传感器变送器电路

AD694 4~20mA 变送器

AD694 是单片电流变送器。它接收高电平信号输入驱动标准的 4~20mA 电流环路。输 人信号经输入放大器缓冲,经电压转换成输出电流。

特点:输出范围:4~20mA,0~20mA;预校输入范围0~2V,0~10V;精密电压基准:可设置 2.000V或 10.000V;单或双电源工作,宽的电源范围 4.5V~36V;带输入缓冲放大器;开环告 警;线性误差典型值为 0.002%。

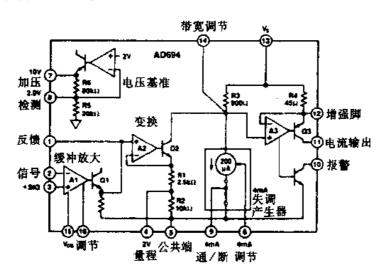


图 3-47 电路功能和管脚图

-	##	++-	4	♣	***
土	玄	1又	小	7	数

输入电压	$0.2\mathrm{V} \sim V_\mathrm{S} - 2.5\mathrm{V}$
输入阻抗	$5M\Omega$
输出电流	4 ~ 20mA
输出电压与电流一致性	$V_{\rm S}-36{\rm V}\sim V_{\rm S}-2{\rm V}$
输出阻抗,4~20mA	40 ~ 50MΩ
转换速率	1.3mA/us
电压基准 10V	9.960 ~ 10.020V
2V	1.992 ~ 2.004V
告警脚电流(脚10)	20mA

工作电压 2V/FS, $V_{REF} = 2V$

2V/FS, 10V/FS, $V_{REF} = 2V$, 10V

静态电流 4mA 开路

缓冲放大器(脚1)输出 最小

最大

 $4.5 \sim 36V$

 $12.5 \sim 36V$

 $1.5 \sim 2.0 \text{mA}$ $1.0 \sim 10V$

 $V_S - 2.5V \sim V_S - 2V$

AD693 型 4~20mA 传感器变送器电路

用途:用于桥传感器、RTD 传感器和其他传感器的信号调节电路。

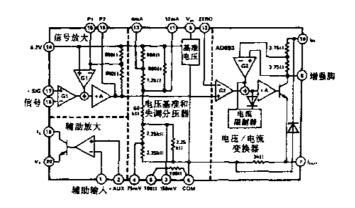


图 3-48 电路功能块和管脚图

AD693 是一个单片信号调节集成电路。它接收各种传感器的低电平信号,控制两线电流 4~20mA。芯片电压基准和辅助放大器供传感器激励,当器件工作在环路型式时,激励电流 3.5mA 有效。当工作在 0~20mA 时,通常器件用于三线方式。

AD693 完成低电平电压到电流的信号转换。主要特点:仪器放大器前端,环路工作;预校 30mV 或 60mV 输入刻度;独立调节输出刻度和零位,使输出电流 4~20mA 单极性,0~20mA 单极性,12±8mA 双极性;预校 100ΩRTD 接口;6.2V 基准,电流可达 3.5mA。

技术参数(R_L = 250Ω, V_{CM} = 3.1V)(T_A = 25℃, V_S = 24V, 输入电压 = 30 或 60mV)输出电流 = 4~20mA)

.	₩-	条件	単位		AD693AD/AQ/A	E
参	数	≯ ₹ 14	學 证 [最小	典型	最大
环路工作	·					
+ **	lae ae		%FS	_	± 0.25	± 0.5
未校准总误差	, IMIN ~ IM	AX .	%FS		± 0.4	± 0.75
100ΩRTD 校准	误差		€ 7		± 0.5	± 2.0
环路工作						
零电流误差		$Z_0 = 4mA$	μA		± 25	± 80
		$Z_0 = 12mA$	μΑ		± 40	± 120
		$Z_0 = 0 \text{mA}$	μΑ	+7	± 35	± 100
对温度变化		$\mathbf{Zo} = 4\mathbf{m}\mathbf{A}$	μ Α ∕°C		±0.5	±1.5
电源抑制比(F	riti)	$12V \leq V_{OP} \leq 36V^6$	μV/V		±3.0	± 5.6
		$0V \leq V_{CM} \leq 6.2V$				ł
共模输人范围			v	0		$+V_{OP}-4V^{t}$
共模抑制比(F	(II)	$0V \leq V_{CM} \leq 6.2V$	μV/V		± 10	±30
輸入偏置电流			nA		± 5	± 20
T _{MIN} ~ T _{MAX}			nA		±7	± 25
會人失 <mark>调电流</mark> 身导		$V_{\rm SIG} = 0$	nA		± 0.5	±3.0
际 称		30mV 输入	A/V		0.5333	
		50mV 福八 60mV 輸入	A/V		0.2666	1
未调节误差		OUmvas.A	%		± 0.05	±0.2
付共模电压变	化	$0V \leq V_{CM} \leq 6.2V$				
		30mV 输入	%/V		± 0.03	± 0.04
		60mV 输入	%/V		± 0.05	±0.06
吴差对温度变	化	00m / 1817 C	ppm∕°C		± 20	± 50
非线性		30mV 输入	%刻度		± 0.01	±0.05
	. <u> </u>	60mV 输入	%刻度		± 0.02	± 0.07
工作电压范围						
工作电压			V	+ 12		+ 36
静态电流		至9脚	μA		+ 500	+ 700
			mA	+ 21	+ 25	+ 32

	/uL	بدر بيد		AD693AD/AQ/AI	E
多 数	条件	单位	最小	典型	最大
误差分量					
信号放大器					
输入失调电压		μV		± 40	± 200
对温度变化		μV/°C		± 1.0	± 2.5
电源抑制比	12V ≤ V _{OP} ≤ 36V ⁶	μV/V		±3.0	± 5.6
	$0V \leq V_{CM} \leq 6.2V$				
V/I 变换器			•		
零电流误差	輸出 = 4 ~ 20mA	μA		± 30	± 80
电源抑制比	12V ≤ V _{OP} ≤ 36V	μA/V		± 1.0	± 3.0
跨导		!			
标称		A/V		0.2666	
未调节误差		%		± 0.05	±0.2
6.200V 基准				i	
输出电压容差		mV		± 3	± 12
对温度变化		ppm√°C		± 20	± 50
电压稳定度	12V ≤ V _{OF} ≤ 36V	μV/V		± 200	± 300
负载稳定度	OmA ≤ I _{REF} ≤ 3mA	mV/mA		± 0.3	±0.75
輸出电流	环路	mA	+3.0	± 3.5	
	3线	mA i		±5.0	
輔助放大器					
輸出电流范围	脚 I _x OUT	mA.	+ 0.01		+5
输出电流误差	脚 V _X – 脚 I _X	%	. 0.01	± 0.005	
H - O DIE O Z	NT 7A NT -A			10.005	
温度范围		[
工作	$T_{\text{MIN}} - T_{\text{MAX}}$	€	- 40	+ 85	
存储		€	– 65	+ 150	

生产厂家: ANALOG DEVICES

传感器 XTR101 型精密低漂移 4~20mA 两线变送器电路

用途:用于压力变送器、温度变送器、毫伏变送器、电阻桥输入、热偶输入和 RTD 输入等场合。

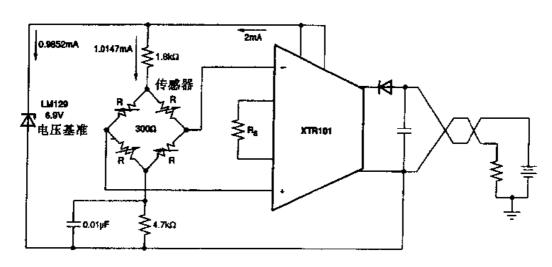


图 3-49 有激励的桥输入电路

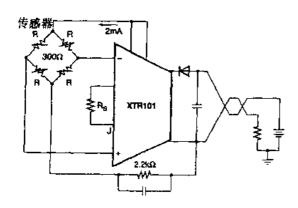
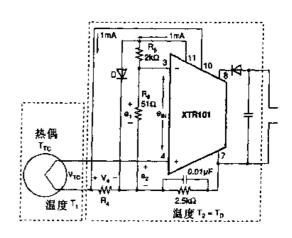



图 3-50 电流激励的桥输入电路

注:热电偶输入电路有两个温区和二极管 D的冷端补偿 图 3-51 热电偶输入电路

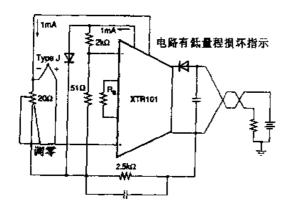


图 3-52 有二极管冷端补偿的热电偶输入电路

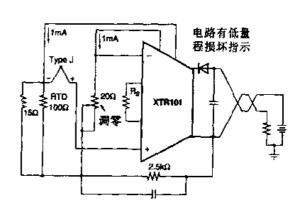


图 3-53 RTD 冷端补偿的热电偶输入电路

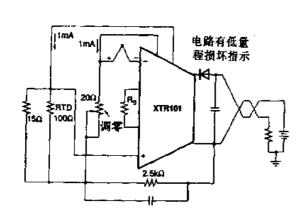


图 3-54 RTD冷端补偿的热电偶输入电路

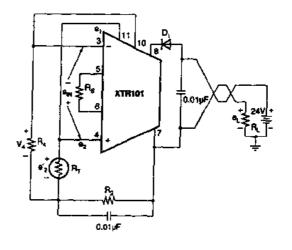
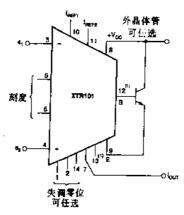



图 3-55 热敏电阻输入电路

XTR101 型低漂移 4~20mA 双线电流变送器

XTR101 是一个微型电路、4~20mA 的双线变送器。电路包含高精度仪器放大器、电压控制输出电流源和双匹配精密电流基准源,是各种传感器遥控信号调节的理想组合。可应用于热电偶、RTD、热敏电阻和应变计等场合。

注:(1)12 和 13 脚用于 BW 控制选择图 3-56 XTR101 电路功能方块图

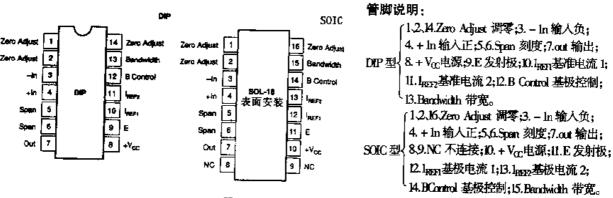


图 3-57 XTR101 管脚图(顶视)

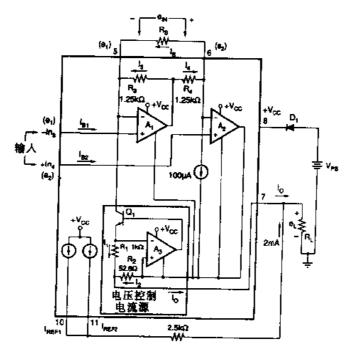


图 3-58 XTR101 电路原理图

最大绝对额定值 电源电压, + V_{CC} 输入电压, e₁或 e₂

$$40V$$
 $\geqslant V_{OUT}, \leqslant + V_{CC}$

存储温度

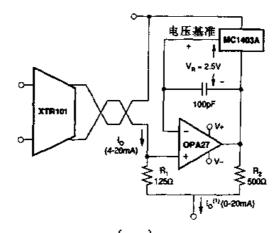
~55 ~ 165℃

引线焊接温度(10s)

300℃

结 温

165℃


工作温度

~ 55 ~ 125℃

特点:仪器放大器输入,低失调电压最大为 $30\mu V$,低漂移最大为 $0.75\mu V/$ 、低的非线性最大为 0.01%。

双线工作,电流信号传输,高噪声抑制,宽电源范围为 11.6~40V 双匹配电流源

工作温度范围: -40~85℃

注: (1) $I_0 = \left[1 + \frac{R_1}{R_2}\right]I_0 - \frac{V_A}{R_2} = 1.25 I_0 - 5mA$

改变电阻和 R1 对 R2比完成其他变换

图 3~59 0~20mA 输出变换器应用电路

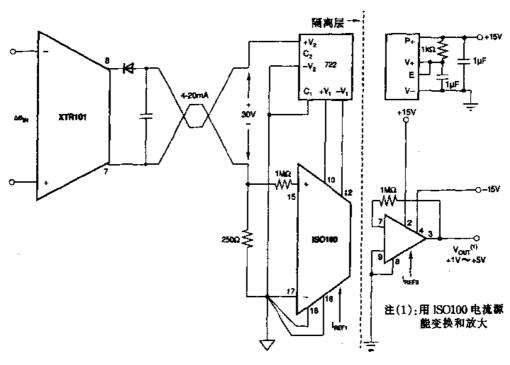


图 3-60 XTR101 用于隔离双线电流回路

电参数($T_{\rm A}=25\,{}^\circ\!{}{\rm C}$, + $V_{\rm CC}=24\,{}{\rm V}$, $R_{\rm L}=100\Omega)$

<u> </u>	* *		XTR101	AG]. :	XTR101	BG]	XTR101	AP	j .	XTR101.	AU
参 数	单 位 	最小	典型	最大	最小	典型	最大	最小	典型	最大	最小	典型	最大
输出和负载特性		•	•	•	-			·. <u> </u>		· · · · ·			
电流	mA	4		20	*·		*	*	Ţ"\ <u>"</u>	*	*		*
	mA.	3.8		22	 *		*	*		*	 *		*
电流极限	} mA	\	28	38	İ	*	 *		31	*	}	31	*
失调电流误差	μΑ	İ	± 3.9	± 10		= 2.5	± 6		± 8.5	e1 ±		±8.5	± 19
对温度变化	ppm, FS/°C		± 10.:			± 8	± 15	1	± 10.5	ſ	1	*	
满量程输出电流误差	μΑ		± 20	į.		± 15	1	1	± 30		}	± 30	± 60
电源电压	VDC	 (+ 11.6	1	± 40	! *		*	*	-50	*	*		*
负载电阻	Ω			600			*		j i	600] "	ļ	
N-4K-G/M	Ω			1400			,	1	ļ	1400	ĺ	\	
	41	-	 -	1400		i i	<u> </u>	+		1400	 	 -	<u> </u>
新出电流公式		 :	ĺ	i		 1=== 1	 ሲ 0160	 	$\left[egin{array}{c} \left[egin{array}{c} eta_{s} ight] & \left[eta_{2} ight] \end{array} ight]$				
新田屯加公式 刻度公式	A/V	\	l i		10 == -			1+ (40) 1+ (40)		- e ₁ /			i
烈度公式 对温度变化	1	İ		. 100		1	1	2 + (40) :	1	l			İ .
	ррт∕℃		± 30	'		* 	*		*	*		*	*
未调整误差	%	- 5	- 2.5	0	*	\ * 	₩.	*	*	*	* 	*	*
非线性	%	[1	0.01			*			*			*
迟滞	%		0			*		! 	*	İ	ļ	*	ļ
禁带	%		0			*			 *		}	*	
輸入特性	 -		<u>-</u> -			!	ļ .						
阻抗;差动	$G\Omega \parallel pF$		0.4 3	, ;		*				!] *	
共模型	GO ! pF		10 3	} }		*		i	*		ĺ) *	
电压范围,满量程	v v	0		1 1	*		*	 *	ĺ	*	*		*
失调电压	μV		± 30	± 60		± 20	± 30		*	± 100		*	± 100
对温度变化	μV/°C		± 0.75	±1.5		± 0.35	± 0.75	i	*	*		×	*
电源抑制比	dB	110	125		*	*		*	122		110	122	
偏置电流	nA]	ĺ	60	150		*	*		*	*		*	*
对温度变化	nA/°C		0.30	1		*	*		*	*]		*
失调电流	nA [10	± 30		*	± 20		*	*		*	*
对温度变化	nA∕℃		0.1	0.3		' * 	*		*	*		*	*
共模抑制比	[dB	90	190	ļ	*	*		¥	(E ;		*	* [
共模范围	V	_4	· ···-	6	<u>*</u> _			*	<u> </u>	*	* <u> </u>	<u>-</u>	*
电流源								l					
幅度 *** ***	m.A.		1		:	* 		l) }			* :	
精度	_					0.005	0.055			0.00	ļ ,	أدما	. 0. 00
n439 da es II.	%	ļ		± 0.17		± 0.025				± 0.37		±0.2	
对温度变化 对 Vcc变化	ppm/℃	}	± 50	±80		± 30	± 50	,	* *	*		*	*
对时间变化	ppm/V		±3			* !			*			* H	
斯列西安化 顺从电压	ppm/月 ′ V	0	_	V _{CC} - 3.5	*	· * :	*	*	*	*	*	π	*
匹配比	, ,	٠		'œ-3-4	^		•		{		<i>"</i>	İ	,,
精度	%		+0.014	± 0.06	ĺ	± 0.009	+ 0 04		±0.031	+ 0.088	ſ	± 0.031	+ // N8X
对温度变化	ppmi∕°C	i	± V. VI-	± 15		10.00	10		10.001	*		10.001	*
对 Vcc变化	ppm/V		± 10			* {			*			*	
对时间变化	ppm/月		±l			* [*			*	
输出阻抗	MΩ	10	20	İ	*	*	ļ	*	15	ļ	*	15	
温度范围													-
规定	°C	- 40		+ 85	*		*	- 40	' į	+ 85	*	ĺ	*
上作	°C	- 55		+ 125	*	ļ	*	- 40		+ 85	- 40		+ 85
存储	°C	- 55		+ 165	* (ĺ	*	- 55		+ 125	- 55		+ 125

注:* 表示和 XTR101AG 的参数相同。

XTR501 型大电流驱动 4~20mA 变送器电路

用途:用于气体检测传感器和应变计电路等场合。

图 3-61 半桥传感电路

本电路特别适用于桥路应用中传感器的高电流/低阻抗激励。图中 XTR501 包含高效 DC/DC 变换器和 4~20mA 三线电流变送器。它提供桥激励、差动输入、电流变送、低阻抗桥传感器信号调节和完整的信号传输。电路中 R_{SPAN}为刻度电阻,R_{SENSE}为检测电阻,R_{SET}为设定电阻。

特点:1W 传感器激励,1.5V~5.0V 可变激励电压,11.4V~30V 的单电源。

电参数($T_{\rm A}=25\,{}^\circ\!{}{\rm C}$, $V_{\rm SS}=24{\rm V}$, $V_{\rm fff}=2{\rm V}$, $I_{\rm L}=300{\rm m}{}{\rm A}$)

		XTR501				
参 数	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	最小	典型	最大		
仪器放大/电流变送器				1		
信号输出	<u> </u>					
输出电流公式	A	$I_0 = 0.004 +$	$0.016[(1 + 50k\Omega/F)]$	$(V_{\rm IN})/4.94$ $V_{\rm IN}$		
输出电流	mA	4		20		
量程上限	mA	25	27			
量程下限 	nA	. <u> </u>	0	<u> </u>		
零						
输出电流	mA.		4			
失调误差	[μΛ [± 50	± 100		
对温度变化	μ Α /℃		0.2			
対电源变化	μA/V		0.5	2		
]		
刻度公式	A/V	刻度 =(.016[(1 + 50kΩ/R _c)/4.94]		
未调整误差	%		± 0.2	±2.5		
-1-4 475 6497	%		±1.5	± 10		
对温度变化	ppm∕℃		50			
非线性	%			± 0.025		
· · · · · · · · · · · · · · · · · · ·				· -		
共模范 围	V	0		4.94		
失调电压	mV		35			
对温度变化	μV/°C		50			
对电源变化	dB		100			
共模抑制化	ab l		85	}		
阻抗:差动,共模型	Ω pF		1010 6			

ď

- 40

+ 85

XTR110 型精密电压电流变送器应用电路

用途:用于压力、温度变送器和工业过程控制等领域。

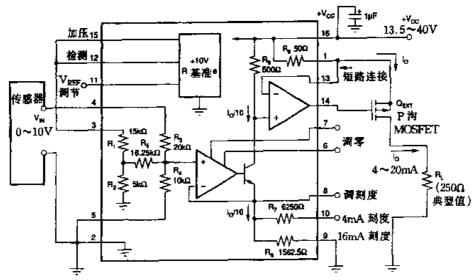


图 3-62 应用基本连接电路

基本连接电路传感器输入 0~10V 电压,输出为 4~20mA 电流,输入电压和输出电流的变化范围与引脚的关系如下表所示。

输入(V)	输出(mA)	脚 3	脚 4	脚 5	脚 9	脚 10
0 - 10	0 - 20	公共端	 输人	公共端	公共端	公共端
2 - 10	4 – 20	公共端	输入	公共端	公共端	公共端
0 - 10	4 – 20	+ 10V 基准	輸人	公共端	公共端	开路
0 - 10	5 – 25	+ 10V 基准	输入	公共端	公共端	公共端
0 – 5	0 - 20	公共端	公共端	輸入	公共端	公共端
1 - 5	4 - 20	公共端	公共端	输入	公共端	公共端
0-5	4 - 20	+ 10V 基准	公共端	输入	公共端	开路
0-5	5 - 25	+ 10V 基准	公共端 _	输入	_公共端	公共端

XTR110 的输出电流为:

存储

$$I_{\rm O} \approx \frac{10\left[\frac{(V_{\rm REFIN})}{16} + \frac{(V_{\rm INL})}{4} + \frac{(V_{\rm IN2})}{2}\right]}{R_{\rm SPAN}}$$

 R_{SPAN} 是内部 50Ω 电阻 R_9 ,外 R_{SPAN} 连接不同时有不同的输出范围。 O_{EXT} 是 P 沟场效应管。

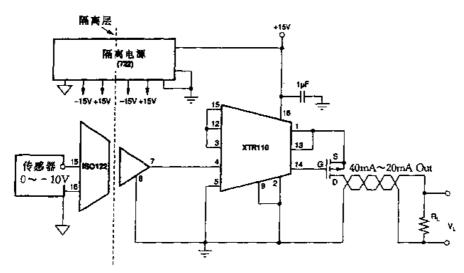


图 3-63 隔离 4~20mA 变送器

XTR110 型电压电流变送器

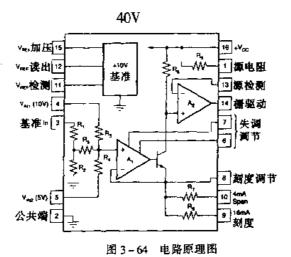
XTR110 是一个用于模拟信号传输的精密型电压电流变送器。输入电压为 0~5V 或 0~10V;输出电流为 4~20mA、0~20mA、5~25mA 和许多其他使用范围的电流信号。芯片上的精密电阻网络提供输入扫描和电流偏置,内部 10V 基准用于驱动外部电路。

特点。

输入和输出范围可选择

0.005%最大非线性,14位

10V 精密基准输出


单电源工作

宽电源电压范围

现也游电压范围 最大绝对额定值

电源电压, + V_{CC}

 $13.5 \sim 40V$

• 229 •

源电阻 1 16 电源电压 Cammon 2 15 VREF加压 VREF輸人 3 14 栅驱动 输入通道 1 4 13 源检测, VRE(5V) 5 12 VREF检测 调零 6 11 VREF调节 调零 7 10 4mA 刻度 调刻度 8 8 15mA 刻度

管脚说明:

1. 源电阻,2. 公共端,3. V_{REF}输入,4. 输入通道 1,5. 输入通道 2,6、7. 调零,8. 调刻度,9.16mA 刻度,10.4mA 刻度,11. V_{REF}调节,12. V_{REF}检测,13. 源检测,14. 栅驱动,15. V_{REF}电压,16. 电源+V_{CC}

图 3-65 管脚图(顶视)

输入电压, V_{IN1}, V_{IN2}, V_{REFIN}

 $+ V_{cc}$

存储温度

- 55 ~ 125℃

引线焊接温度(焊接 10s)

300℃

(波峰焊 3s)

260℃

输出电流(用内部 50Ω 电阻)

40mA

电参数($T_{\Lambda} = 25\%$, $V_{\text{CC}} = 24\text{V}$, $R_{L} = 250\Omega$)

参数			TRIIOAG, KP.		XTR110BG			
	1 Tr 12	最小	典型	最大	最小	典型	最大	
变送器								
转移函数	·		$I_{\rm o} = 10$ [(V_{REF} ln/16) + (1	$(V_{\rm IN1}/4) + (V_{\rm IN2}/4)$	$/2)]/R_{SPAN}$		
输入范围; $V_{\mathrm{INI}}^{(5)}$	v	0		+ 10	*		*	
$V_{ m pq}$	l v	Ö		+5	*		¥	
电流 /0	mA	4		20	*		*	
-C pit 1()	mA	0	1	40	*		*	
非线性	% of 刻度		0.01	0.025		0.002	0.005	
失调电流、 I_{CS}	% of 刻度		0.2	0.4		0.02	0.1	
固有	% of 刻度/℃		0.0003	0.005	ĺ	*	0.003	
对温度变化	% of 刻度/V		0.0005	0.005		*	*	
对电源变化 Vcc			İ					
刻度误差	% of 刻度		0.3	0.6		0.05	0.2	
固有 对温度变化	% of 刻度/℃		0.0025	0.005		0.0009	0.003	
对电源变化 $V_{\rm CC}$	% of 刻度/V		0.003	0.005	ļ	*	*	
輸出电阻	Ω		10×10^{9}			*		
输入电阻	kΩ		27			¥		
AMEN A PAGE 1	kΩ		22	{		#		
	kΩ		19	ļ		*		
动态响应	μ5		1.5					
建立时间	μs		20	li		*		
转换速率	mÅ/μs		1.3			*		
_ - 投送床卒				İ				
輸出电压		+ 9.95	+ 10	+ 10.05	+ 9.98	*	+ 10.02	
对温度变化	ppm/°C	1 7.75	35	50	1 3.30	15	30	
对电源变化 Voc	%/V		0.0002	0.005		*	*	
对输出电流变化	%/mA		0.0005	0.01) *)	*	
对时间变化	ppm/1kh		100	!	i	*		
调节范围	v	-0.100		+ 0.25	*		*	
输出电流	mA	10	<u> </u>		*			
源	1					İ		
输入电压 $V_{\rm CC}$	_ v	+ 13.5	1	f +40	*	,	· *	
静态电流	mA		3	4.5		' * · [*	
度范围								
特定:AG,BG	9C	- 40		+ 85	*		*	
KP, KU	. C	0		+ 70		ļ		
工作:AC,BG	1 °C	- 55	Í	+ 125	*	1	*	
KP, KU	f °C	- 25		+ 85		[

注:*表示和 XTR110AG、KP、KU 的参数相同。

桥传感器变送器电路

用途:用于桥输入信号电路、工业过程自动化、工厂自动化、加速度传感器和称重系统等领域。

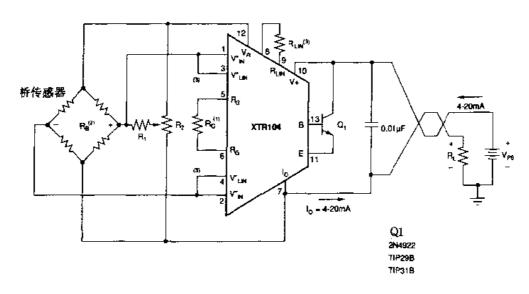


图 3-66 桥传感器和 XTR104 的基本连接图

图为 XTR104基本连接电路,环路电源 $V_{\rm PS}$ 供全部电路使用。在负载 $R_{\rm L}$ 上测回路电流。高阻抗应变计通过 $V_{\rm R}$ 5V基准输出端直接激励。桥输出端连至放大器的输入 $V_{\rm IN}$ 和 $V_{\rm IN}$ 。 $R_{\rm G}$ 通过满量程桥压 $V_{\rm PS}$ 调节放大器增益。转移函数是:

$$I_0 = V_{\rm IN} \cdot (0.016 + 40/R_{\odot}) + 4 \, \text{mA}$$

式中 $V_{\rm IN}$ 是加在 $V_{\rm IN}^{\dagger}$ 和 $V_{\rm IN}^{\dagger}$ 之间的电压差,单位是 $V_{\rm IR}$ 0 单位是 $\Omega_{\rm o}$ 当 $R_{\rm G}$ 不连时, $R_{\rm G}$ = ∞ , 0 ~ 1V 输入时,产生 4 ~ 20mA 输入电流。当 $R_{\rm G}$ = 25 Ω 时,如输入 0 ~ 10mV,将产生 4 ~ 20mA 输出电流。 $R_{\rm c}$ 其他值可按下式计算:

$$R_{\rm G} = \frac{2500}{\frac{1}{V_{\rm ES}} - 1}$$

式中 $V_{\rm PS}$ 是加至 $V_{\rm IN}^*$ 和 $V_{\rm IN}^*$ 差动输入端的满量程电压,单位是 $V_{\rm IN}$ 的单位是 $\Omega_{\rm o}$

输入负电压,使输出电流减至 4mA 以下,负电压增加使输出电流可达 3.6mA。根据转移函数,输入正电压增加时,输出电流可达 34mA。 Q_1 通过大部分信号电流。加至 XTR104 的电压 V_T ,相对于 I_0 连接脚 7来测量。 V_+ 电压为 $9 \sim 40$ V_0 。

电路中 V_{LN} 连成负非线性(B<0),如脚 3 和 4 换接 B>0,为正非线性。

$$R_{\text{LIN}} = \frac{24000 \times 0.01}{0.2 \times (-1.9)} \approx -632\Omega$$

用 $R_{\rm LIN}$ = 632Ω, 因为计算结果仍为负值, 连接 $V_{\rm IN}$ 至 $V_{\rm IN}$, $V_{\rm LIN}$ 至 $V_{\rm IN}$,通过变化的激励电压改变增益。每校准 1%的非线性,则必须改变 4%的增益。

电路表示 XTR104 输入范围宽,差动输入从 mV 级至 1V,相对 I₀端,7 脚。线性共模输入:从 2V 至 4V。用一个激励电压,对任何传感器 XTR104 输出均成比例。

D.用于串联保护,但电源电压损失 0.7V; D。虽不损失电源电压;但反向时有电流通过。

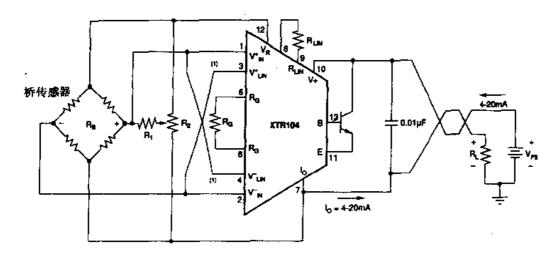


图 3-67 桥传感器和 XTR104 基本连接图

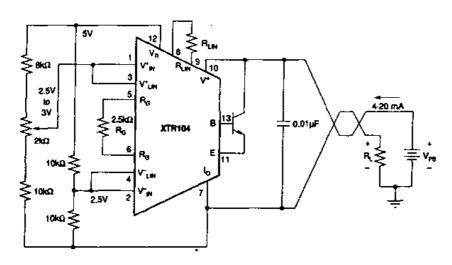


图 3-68 电位器传感器和 XTR104 的连接电路

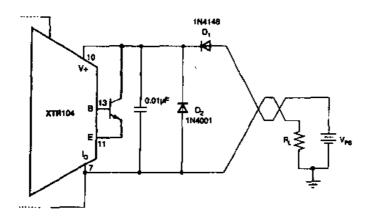
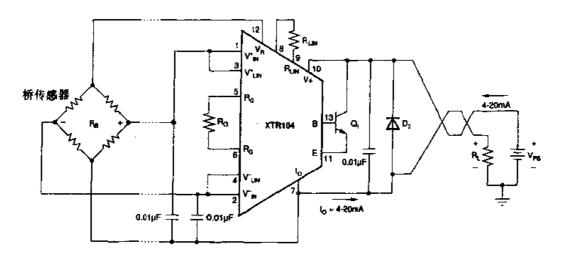



图 3-69 传感电路反向电压保护电路

长线传输中产生的浪涌电压可能损坏半导体器件。为避免损坏电路,对 XTR104 上所加的最大电压为 40V,当用齐纳二极管 D_2 钳位时加至 XTR104 上的电压为安全电压。电源电压必须低于齐纳二极管的额定电压。

注:齐纳二极管电压为 36V,型号为 1N4753A 或 1N6286A。如用小于 36V 的低压齐纳二极管,可提高保护功能。 $V_{\rm PS}$ 小于齐纳管电压。

图 3-70 传感器过压浪涌保护电路

注:桥徽励电压 0.42V, 放大器放大倍数为 10 图 3-71 350Q 桥传感器变送器电路

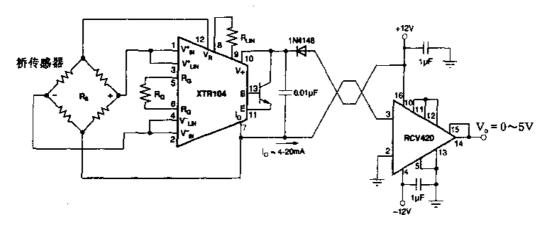


图 3-72 桥传感器发送/接收电路

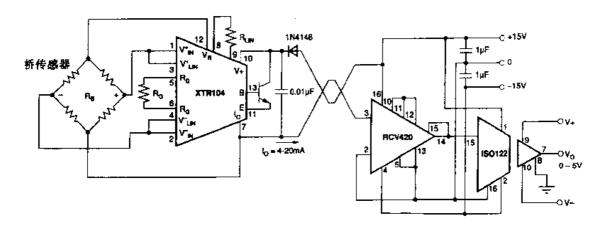
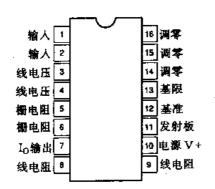



图 3-73 桥传感器发送/接收电路(具有隔离输出)

XTR104 型变送器

XTR104是一个单片 4~20mA 的双线电流变送器集成电路,用于桥输入信号。它具有全部的桥激励、仪器放大、线性化、用于高阻抗应变传感器必要的电流输出电路。可应用于工业过程控制和工厂自动化等领域。

特点:在 - 40 ~ 85 \mathbb{C} 范围内的总调节误差小于 ± 1%; 桥激励和线性化; 宽电源范围:9 ~ 40V; 低量程漂移:50ppm/ \mathbb{C} (最大值); 高电源抑制比:110dB(最小值); 高共模抑制比:80dB(最小值)。

管脚说明:

1、2. 输入,3、4. 线性电压,5、6. 栅电阻,7. I₀输出,8、9. 线性电阻,10. 电源 V₊,11. 发射极,12. 基准 V_{REF},13. 基极,14、15、16. 调零

图 3-74 管脚图(顶视)

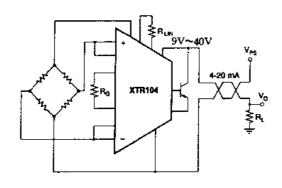


图 3-75 电路原理图

最大绝对额定值

电源电压, V_+ (相对 I_0 脚)

输入电压, $V_{\text{IN}}^{+},V_{\text{IN}}^{-},V_{\text{LIN}}^{+},V_{\text{LIN}}^{-}$ (相对 I_{O} 脚)

存储温度

引线焊接温度(10s)

输出电流极限

结 温

40V

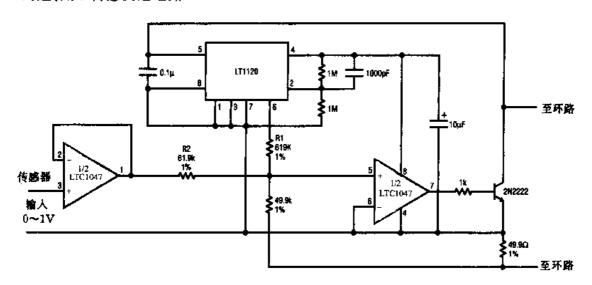
 $0 \sim V_{+}$

- 55 ~ 125℃

300℃

恒流

165°C


电参数(T_A = 25℃, V_t = 24V 和 2N6121 外接晶体管)

	$ \overline{}$ $\overline{}$	X	TR104BP, BU	_	XTR104AP, AU			
参数	単 位	最小	典型	最大	最小	典型	<u>最大</u>	
			 = V _{IN} •(0.016	. 40.78) +	4m∆ Vi	 n Volts.Ř.in	Ω	
出电流公式	A	1 0	= \ ^{IM} •(0.010	+ 40/ N _G / +	eture illi	1		
	% of FS	ļ		± 1			± 2	
调节误差	1 ' 1	4		20	*		*	
流,特定范围	mA mA	7	34	40		*	*	
量程上限	mA	ļ	3.6	3.8		*	* .	
量程下限	$\mu\Lambda$		± 15	± 50		*	± 100	
量程輸出误差	μA_{pp}		8	1		*		
p声 0.1Hz~1kHz	μα τρο						<u></u>	
	mA		4			* *	± 100	
有误差	μA		±5	± 50		* *	±100	
7月 庆左 对温度变化	μ λ /℃		±0.2	± 0.5		1	*	
对电源变化	μA/V		0.5	2		*	*	
对共模电压变化	μΑ/V		0.1	2		* _		
						1]	
到度 al 度 公 才	A/V	S:	0.016 + 40/	R_G		*		
刚度公式	1 4		1	± 1		*	*	
未调整误差	%		± 0.1 ± 20	± 50		*	± 100	
对温度变化	ppm√°C		1 20	0.01	Ì		*	
非线性:理想输入	%		0.1	0.01		*	ļ	
桥输人						 - 		
 俞入							*	
anへ 差砂范围	v 1		Ì	1	*	1	*	
输入电压范围	V	2		3	*	*		
供模抑制比	dB	80	100	1]	*		
阻抗:差动	$\mid CU \mid$		3			*	1	
共模型	GΩ		0.5	± 2.5	}	*	*	
失调电压	mV		± 0.5	2.5		2	5	
对温度变化	μV/°C		1 1	2.3	*	*	1	
对电源变化	dB	110	130	250	1	*	*	
輸入偏置电流	πA		100	2		*	*	
对温度变化	πA∕°C		0.1	20		*	*	
输入失调电流	nA		2	0,25	ļ	*	*	
对温度变化	nA∕℃		0.01	0,20			<u> </u>	
电压基准	v		5			*		
电压	, v		± 0.25	± 0.5		*	± 1	
精度	ppm∕°C	•	± 10	± 50		*	± 100	
对温度变化	ppm√ C ppm√ V		5			*		
对电源变化	ppm/mA		50	1		*		
对负载变化	ppm/ mA	 	+	 				
电源				40	*		*	
电压范围	<u>v</u>	9	 		 	 -		
温度范围							*	
特定	℃	- 40		85	*			
	₩.	- 40	l	125	*		*	
工作	°C/W		80			*		
$ heta_{\mathtt{JA}}$			_ 			 『厂家:BUI		

注: * 表示与 XfR104BP 的参数相同。

传感器电压电流变换电路

用途:用于传感变送电路

注:输入 0.00V 时,调 RI 使输出为 4.00mA

输入 1.00V 时, 调 R2 使输出为 20.0mA

图 3-76 传感器 4~20mA 放大电路

电路由 LT1047 运放和小功率稳压器 LT1120 组成。

LT1047 型运放

LT1047 是微功耗斩波稳定具有内电容的双运算放大器。

特点: 不要求外接元件; 电源电流: 80μ A; 最大失调电压 10μ V; 最大失调电压温漂 $50nV/\mathbb{C}$; 最大 CMRR: 110dB; 最大 PSRR: 110dB; 单电源工作: $4.75V \sim 16V$; 共模范围含地; 输出波动至地; 过载恢复时间: 70ms。

用途:用于应变计放大和遥控定位传感器等场合。

最大绝对额定值

总电源电压(V+~V-)

16V

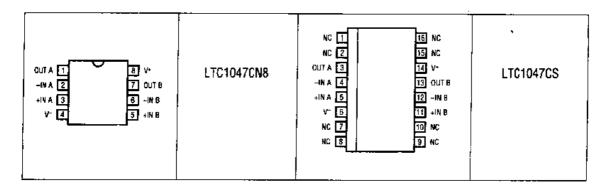


图 3-77 管脚图(顶视)

管脚说明:

(1.OUTA 输出 A;2. - INA 输入 A 负;

LTC1047CN8 型·

3. + 1NA 输入 A 正;4.V-电源负;

5.+1NB输入 B正;6.-INB输入 B负;

[【]7.OUTB 输出 B;8.V+电源正。

[1、2、7、8、9、10、15、16.NC 不连接;

3.OUT A 输出 A;4. - INA 输入 A 负;

LTC1047CS型 {5. + 1NA 输入 A 正;6. V 电源负;

11. + 1NB 输入 B 正; 12. - INB 输入 B 负;

^し13.OUT B 輸出 B;14.V * 电源正。

输入电压

 $(V^+ + 0.3V) \sim (V^- - 0.3V)$

输出短路持续时间

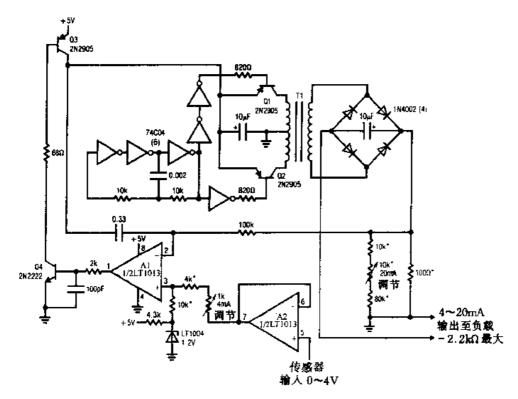
无限

存储温度

- 65 ~ 150℃

工作温度

LTC1047C


0 ~ 70℃

引线焊接温度(10s)

300℃

电参数(V_S = ±5V)

参 数	测试条件	单位	最小	典型	最大
输入失调电压	T _A = 25 ℃	μV		±3	± 10
平均輸入失调电压温源		μV/°C		± 0.01	± 0.05
长期失调漂移		nV/√月		100	
输入偏置电流	T _A = 25℃	pA pA		±5	± 300
输人失调电流	T _A = 25℃	pA pA		± 10	± 60 ± 150
输 人噪声电压	0.1Hz ~ 10Hz 0.1Hz ~ 1Hz	μV_{p-p} μV_{p-p}		3.5 0.8	
输入噪声电流	f = 10Hz	fA∕√Hz		1.5	
共模抑制比	$V_{CM} = V^- \sim +2.7V, T_A = 25^{\circ}C$	dB B	120 105	130	
电源抑制比	$V_S = \pm 2.375V \sim \pm 8V$	dB	105	122	
大信号电压增益	$R_{\rm L} = 100k$, $V_{\rm OUT} = \pm 4V$	dB	120	150	
最大输出电压波动	$R_{L} = 10k$ $R_{L} = 100k$	v v	+4.8/4.9	+4.3/-4.8 ±4.95	
 转换速率	$R_L = 100k$, $C_L = 50pF$	V/µs		0.2	
增益带宽积		kHz		200	
电源电流/放大器	无负载 25℃≤TA≤70℃ 无负载 0℃≤TA≤25℃	μ Λ μ Λ		60 80	150 275
	T _A = 25°C	Hz		680	

注:电路变送器的精度为 12 位。* 1%薄膜电阻,T1 为 PICO - 31080。[T1013 见说明。图 3-78 装有 5V 电源的 4~20mA 电流电路变送器

3.3 传感器信号调节应用电路

应变计信号调节电路

用途:用于力和压力的计量。

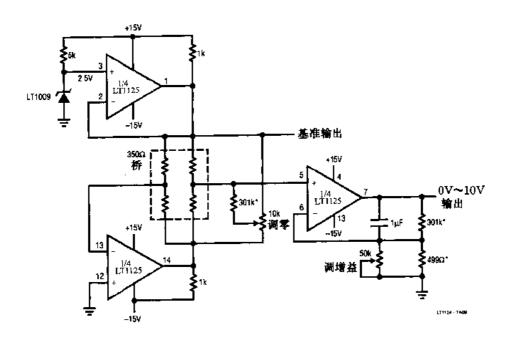
LT1124/LT1125型低噪声高速精密双/四运放

LT1124 为双运放,LT1125 为四运放、高性能、高增益、高转换速率,宽带宽。主要用于应变计放大电路。

特点:低噪声:2.7nV/√Hz(典型值)

4.2nV/√Hz(最大值)

转换速率:4.5V/us(典型值)


增益带宽乘积:12.5MHz(典型值)

高电压增益:5×10 (最小值)

每个放大器电流:2.75mA(最大值)

共模抑制比:112dB(最小值)

电源抑制比:116dB(最小值)

注;* RN60C 薄膜电阻 图 3-79 具有桥激励的应变计信号调节器

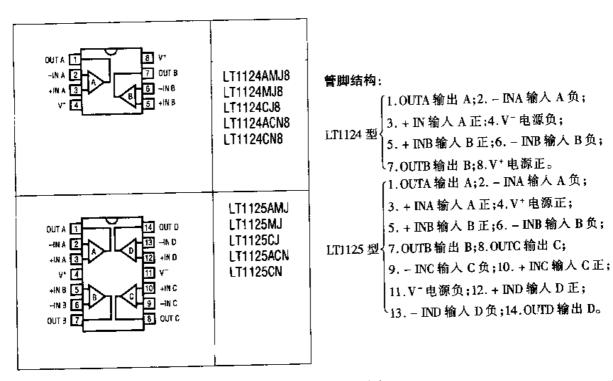


图 3-80 管脚结构图(顶视)

最大绝对额定值

电源电压 22V

输入电压 等于电源电压

输出短路持续时间 无限 ± 25mA 引线焊接温度(10s) 300℃

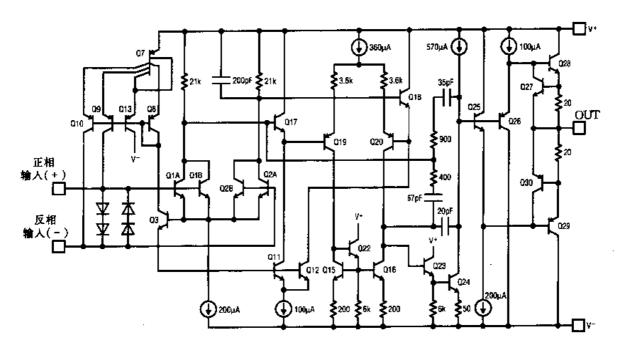


图 3-81 电路原理图

工作温度

LT1124AM/LT1124M

LT1125AM/LT1125M

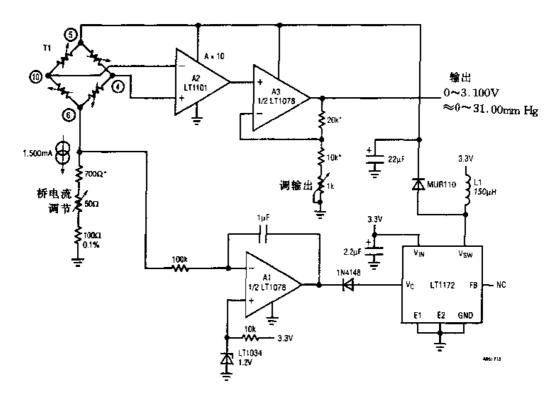
- 55 ~ 125℃

LT1124AC/LT1124C

LT1125AC/LT1125C

-40 ~ 85℃

存储温度

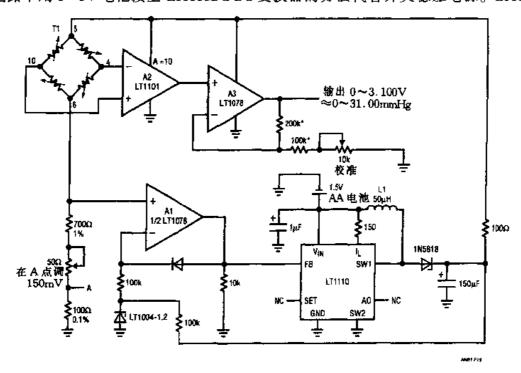

- 65 ~ 150°C

电参数($V_S = \pm 15V, -40\% \le T_A \le 85\%$)

符 号	参 数	测试条件	单位	LT1124AC LT1125AC			LT1124C LT1125C			
ia 3	~ ~		, .	最小	典型	最大	最小	典型	最大	
v _{os}	输入失调电压	LT1124 LT1125	μV μV		40 45	140 160		50 55	200 240	
$\frac{\Delta V_{\mathrm{OS}}}{\Delta T_{\mathrm{emp}}}$	平均输入失调电压温源		μ V /°C		0.3	1.0		0.4	1.5	
I_{0S}	输人失调电流	LT1124 LT1125	nA nA		15 15	40 50		17 17	55 65	
$I_{\rm B}$	输入偏置电流		пA		± 15	± 50		± 17	± 65	
V _{CM}	输入电压范围		v	± 11.4	± 12.2		±11.4	± 12.2		
CMRR	共模抑制比	$V_{\rm CM} = \pm 11.4 \text{V}$	dB	107	124		101	121		
PSRR	电源抑制比	$V_{\rm S} = \pm 4 \text{V} \sim \pm 18 \text{V}$	dB	111	124		106	121		
Avol	大信号电压增益	$R_{L} \ge 10 \text{k}\Omega$, $V_{0} = \pm 10 \text{V}$ $R_{L} \ge 2 \text{k}\Omega$, $V_{0} = \pm 10 \text{V}$	V/μV V/μV	3.5 1.2	12.0 3.2	_	2.2 0.8	12.0 2.3		
Vout	最大输出电压波动	$R_1 \geqslant 2k\Omega$	v	± 12.5	± 13.6	·	± 12.0	± 13.6		
SR	转换速率	$R_1 \geqslant 2k\Omega(\text{Note } 6)$	V/µs	2.4	3.9		2.1	3.9		
Is	每个放大器电流		mA		2.4	3.25		2.4	3.25	

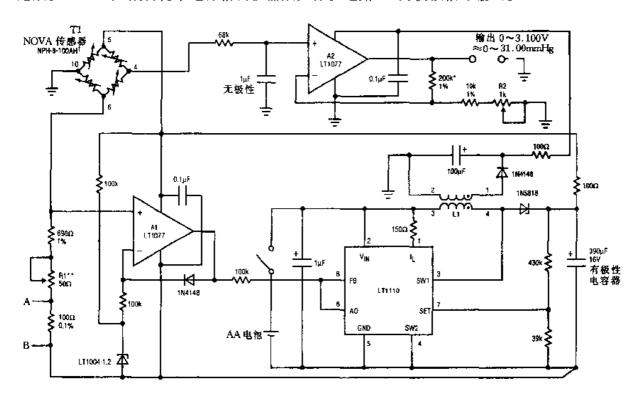
大气压力传感器信号调节电路

用途:用于大气压计量和高度测量。



注: 1%薄膜电阻,T1 为传感器 NPH-8-100AH L1 为 TOKO262-LYE~0095K 图 3-82 单电源大气压力传感器信号调节电路

电路中的 T1 为传感器,LT1078 是微功耗、单电源、精密双运放,LT1101 是微功耗、单电源

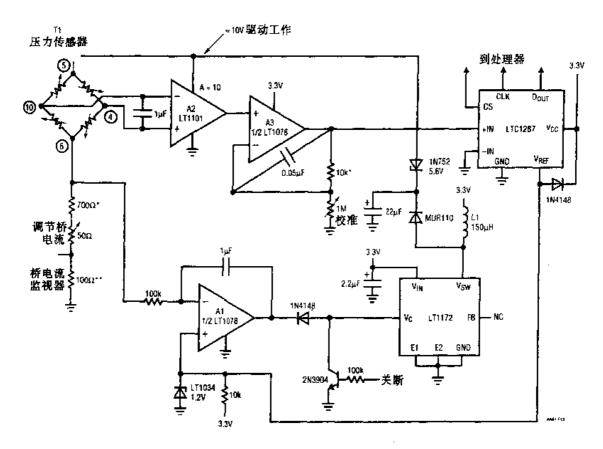

精密仪器放大器,LT1172 是 1.25A、100kHz 高效开关稳压器。电路 A3为模拟输出。

电路中用 1-5V 电池接至 LT1110DC-DC 变换器的方法代替开关稳压电源。LT1110 是微

注:*1%薄膜电阻,L1 为线圈 CTX50~1,Tl 为压力传感器 NPH~8~100AH。 图 3~83 大气压力传感器信号调节电路

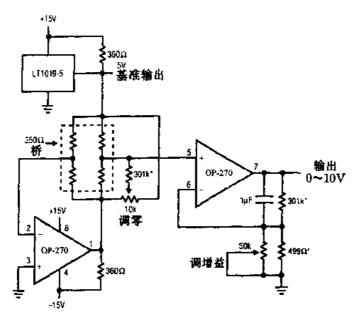
功耗可调式 DC-DC 变换器,固定输出 5V 和 12V,工作在高频。LT1078 是微功耗单电源精密双运放。LT1101 是微功耗单电源精密仪器放大器。电路 A3 为模拟信号输出。

注; *每个传感器要求选择标称值; * * 调节 R1 使在 A 和 B 点之间电阻上加 150mV; T₁, LUCAS NOVA 传感器, NPH - 8 -- 100AH; L1 线圈 CTX50 - 1。


图 3-84 内装 1.5V 电池的大气压力传感器信号调节电路

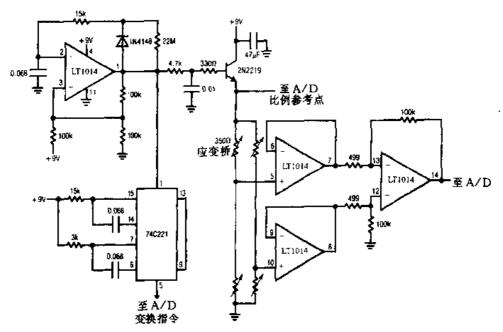
电路中的 LT1077 是单电源微功耗精密运算放大器。LT1110 是微功耗 DC-DC 可调电压变换器,固定输出为 5V 和 12V,工作在高频。6kΩ 传感器 T1 要求精确的 1.5mA 激励,需要一个相对高的电压驱动。当 A1 为正输入时,通过监视器在 T1 的回路中串联电阻上跨接电压降检测 T1 的电流。通过 1.2V LT1004 基准,固定 A1 的负输入。A1 的输出给 LT1110 电压变换器的偏置电压 1.5V。

图 3-85 电路中的 T1 是压力传感器, A1 和 A3 是运放, A2 是仪器放大器, LT1172 是 1.25A100kHz 的高效开关稳压电源, LTC1287 是 3V 单片 12 位数据采集系统。


本电路是对大气压力计传感器提供合适的激励电压的一种型式。6kΩ 传感器 T1 要求精确的 1.5mA 激励,需要一个相对高的电压驱动。通过串联在 T1 回路电阻 100Ω 上压降 A1 检测 T1 的电流。A1 的输出偏置 LT1172 开关稳压器的工作点,降低 DC 电压,达到 T1 的驱动电压和 A2 的电源电压。T1 的回路电流由 6 脚输出,经地、LT1034 和 A1 输入形成回路,建立1.2V 基准。这可提供 10V 驱动电压,并可减小功耗。开关电源 LT1172 提供足够电压,满足 T1 的电流要求。A2 和 A3 提供信号放大,LTC1287A/D 变换器给出 12 位数字输出。A2 是一个自举电路,能断开传感器电源。

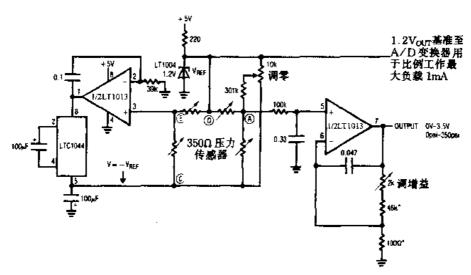
在实际工作中,电路提供 12 位已校准的环境大气压力。校准时,在检测点,调节桥电流,使在串联电路检测电阻 100Ω上压降为 0.1500V。这时 T1 的电流为生产厂规定值。然后调节 A3 放大器校准电阻(1MΩ 电位器),使电路的数字输出对应已知的环境大气压力。

注: *1%薄膜电阻, * *0.1%薄膜电阻,T1 的型号为 NPH - 8 - 100AH 图 3 - 85 3.3V 电源,数字输出式大气压力计信号调节器


桥激励应变计信号调节电路

注: *RN60C 薄膜电阻, OP - 270 为低噪声精密运放, LT1019 - 5 为精密基准电路。

图 3-86 具有桥激励的应变计信号调节器电路


9V 电池应变计信号调节电路

注:电路为 9V 电池应变计信号调节计,采样电路给出低平均工作电流 650 μ A。由于 $\Delta V/\Delta T$ 高阶跃变化,4.7k Ω 和 0.01μ F 构成的 RC 网络用于保护应变桥,防止长期漂移。

图 3-87 装有 9V 电池的应变计调节电路

应变计信号调节电路

LT1013/LT1014 型运放电路

用途:用于应变信号调节、热电偶放大、4~20mA电流电路调节和多种检测电路。

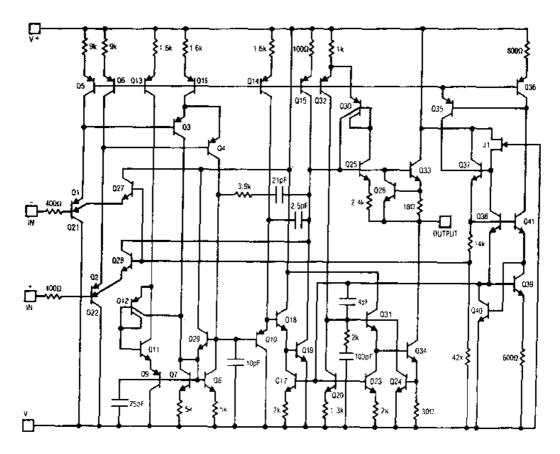


图 3-89 1/2 LT1013/1/2 LT1014 原理图

特点:LT1013 为双精密运放,LT1014 为四精密运放。单电源工作,输入电压含地,输出变化含地。失调电压最大为 $150\mu V$,温漂最大为 $2\mu V/ ^{\circ}$,失调电流最大为 0.8nA,负载电流 5mA 时的增益为 $1.5\times10^{\circ}$,负载电流 17mA 时的增益为 $0.8\times10^{\circ}$,0.1Hz 至 10Hz 时的噪声电压为 $0.55\mu V_{P-Po}$

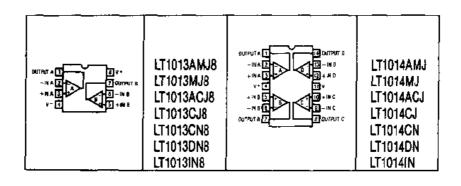


图 3-90 管脚图(顶视)

管脚说明:

最大绝对额定值

电源电压

 $\pm 22V$

差分输入电压

± 30V

输入电压

等于正电源电压

5V 以下负电源电压

输出短路持续时间

无限

存储温度

-65 ~ 150°C

引线焊接温度(10s)

300°C

工作温度

LT1013AM/LT1013M/LT1014AM/LT1014M

- 55 ~ 125℃

LT1013AC/LT1013C/LT1013D/LT1014AC

LT1014C/LT1014D

0 ~ 70℃

LT10131/LT1014I

-40 ~85℃

电参数($V_S = \pm 15V$, $V_{CM} = 0V$, $T_A = 25$ °C)

				LT	1013AM	/AC	LT1013C/D/I/M		
符号	参 数	测试条件	単位	LT1014AM/AC			LT1014C/D/L/M		
				最小	典型	最大	最小	典型	最大
		LT1013	μV	-	40	150	_	60	300
V_{cs}	输入失调电压	LT1014	μV	_	50	180	_	60	300
		LT1013D/1, LT1014D/1	μV	-	-	-	_	200	800
	长期输入失调电压稳定性		μV/Mo.	_	0.4	<u></u>		0.5	
I_{06}	输入失调电流		пA		0.15	0.8		0.2	1.5
I_{B}	输入偏置电流		nA	-	12	20		15	30
e	输人噪声电压	0.1Hz ~ 10Hz	μV_{P-P}		0.55		<u>-</u>	0.55	_
	输人噪声电压密度	$f_o \approx 10 \text{Hz}$	nV∕√Hz	_	24	_	_	24	_
e _n	一	$f_{\rm o} \approx 1000 {\rm Hz}$	nV/√Hz	_	22	-	_	22	-
i _n	输入噪声电流密度	$f_o \approx 10 \text{Hz}$	pA∕√H₂	_	0.07			0.07	
	差分 输入电阻		MΩ	100	400	-	70	300	-
	- 供 - 共模		GΩ :	-	5	-	_	4	_

电参数

 $(V_{\rm S} = \pm 15 \text{V}, V_{\rm CM} = 0 \text{V}, T_{\rm A} = 25 ^{\circ}\text{C})$

•				LT	1013AM	/AC	LT1013C/D/1/M LT1014C/D/1/M		
符号	参 数	单位	条件	LT	1014AM	/AC			
		<u> </u>	<u> </u>	最小	典型	最大	最小	典型	最大
		V/µV	$V_0 = \pm 30V$, $R_L = 2k$	1.5	8.0	_	1.2	7.0	_
A_{VOL}	大信号电压增益	V/µV	$V_0 = \pm 10 V, R_L = 600 \Omega$	0.8	2.5	-	0.5	2.0	_
	*A 1 .L IT ## FF	v		+ 13.5	+ 13.8	_	+ 13.5	+ 13.8	_
	输入电压范围 	v		- 15.0	- 15.3	_	- 15.0	- 15.3	_
CMRR	共模抑制比	dB	$V_{CM} = +13.5V, -15.0V$	100	117	-	97	114	
PSRR	电源抑制比	dB	$V_{\rm S} = \pm 2V \sim \pm 18V$	103	120	~	100	117	_
	通道分离度	dB	$V_0 = \pm 10V$, $R_L = 2k$	123	140	-	120	137	_
V_{OUT}	輸出电压波动	V	$R_L = 2k$	± 13	± 14	-	± 12.5	± 14	
•	转换速率	V/µs		0.2	0.4	_	0.2	0.4	
I_{S}	电源电流	mA	前放	T -	0.35	0.50	-	0.35	0.55

				LT	013AM	/AC	LT10	013C/D	/L/M
符号	参数	条 件	单位	LTI	014AM	/AC	LT1014C/D/I/M		
			<u> </u>	最小	典型	最大	最小	典型	最人
		LT1013	μV	-	60	250	_	90	450
V_{∞}	输入失调电压	LT1014	μV	-	70	280	_	90	450
		LT1013D/I, LT1014D/I	μV	_	-	-	[-	250	950
I_{08}	输入失调电流		nA	Ī -	0.2	1.3	-	0.3	2.0
I _B	输入偏置电流		nA	_	15	35		18	50
$A_{ m VOL}$	大信号电压增益	$V_O = 5mV - 4V, R_L = 500\Omega$	V/μV	<u> </u>	1.0	-	_	1.0	_
			v	+3.5	+3.8	-	+ 3.5	+3.8	_
			v	0	-0.3	-	0	-0.3	-
$\overline{V}_{\mathrm{OUT}}$	輸出电压摆幅	输出低 无负载	mV	_	15	25		15	25
		輸出低 600Ω 对地	mV	İ –	5	10	_	5	10
		输出低] mV	-	220	350	_	220	350
	J	輸出高	v	4.0	4.4	-	4.0	4.4	-
			v	3.4	4.0	-	3.4	4.0	-
$I_{ m S}$	电源电流	前故	mA	_	0.31	0.45	_	0,32	0.50

生产厂家:LINEAR TECHNOLOGY

3.4 传感器接口应用电路

AD22050 单电源传感器接口放大电路

用途:用于压力传感器、应变计、位置指示器、低电平信号源、电路、电流传感和电机控制等领域。

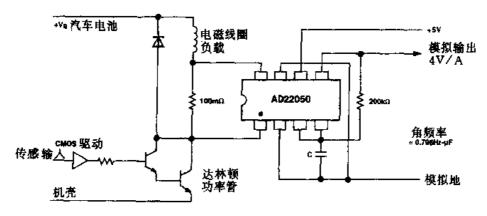


图 3-91 电流传感器接口电路

AD22050 放大器

AD22050 是一个单电源放大器,放大并通过低通滤波器的小的差动电压,典型值为 100mV (FS),增益为 40。电源电压: 3.0V~36V。输入电压最高为+24V,具有较好的共模抑制比,这是由输入端专用的电阻衰减器完成的,激光修正后可达最高的差动平衡。电路包括任选低通

滤波器和增益调节电路。

特点:乘 20 增益挡可从 x 1 ~ x 160 改变;输入共模电压从低于地至 6 x (V_S – 1V)均适用;输出电压 20mV ~ (V_S – 0.2)V;1,2,3 端低通滤波器可用;差动输入电阻 400kΩ;驱动 1kΩ 负载 4V,用电源电压 5V;有瞬变电压保护;峰值输入电压(40ms)60V;反向电源保护为 – 34V;工作温度范围为 – 40 ~ 125 $^{\circ}$ 。

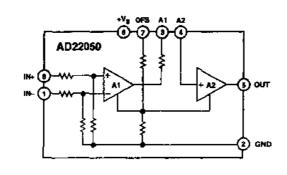


图 3-92 电路功能方块图

-N 1 4 6 +N -N 1 0 E +N GND 2 AD22050N 7 信置 GND 2 AD22050R 17 信置 A1 3 6 +Vs A1 3 18 +Vx A2 4 8 OUT A2 4 15 OUT

管脚说明:

- 1. IN 输入负; 2 GND 地; 3. A1 放大器; 4. A2 放大器 5. OUT 输出; 6. + Vs 电源正;
- 7. OFFSET 失调; 8. + IN 输入正

图 3-93 管脚结构图(顶视)

最大绝对额定值

电源电压 3.0~36V

峰值输入电压(40ms) 60V

反向电源保护 - 34V

工作温度 -40 ~ 125℃

存储温度 - 60 ~ 150℃

技术参数($T_A = 25\%$, $V_S = 5V$, $V_{CM} = 0V$)

参 数	符号	条作	单位	最小	典型	最大
输人(脚 1、8)	CMD		<u> </u>			
+ 共模范围	+ CMR	$T_{\rm A} \approx {\rm T_{MIN}} \sim {\rm T_{MAX}}$	V			+ 24
- 共模范围	- CMR	$T_A = T_{MIN} \sim +85^{\circ}C$	V	-1.0		
共模抑制比	CMRR _{1F}	f≤10H2	$d\mathbf{B}$	80	90	
共模抑制比	CMRR _{HF}	f = 10kHz	dB	60	75	
共模输入电阻	$R_{\rm INCM}$	Pin 1或 Pin 8~Pin 2	$k\Omega$	200	250	300
电阻匹配	RMATCH		%		±0.5	
差分輸入电阻	RINDIFF	Pin 1 ~ Pin 8	kΩ	350	450	
前置放大器						
闭环增益	$G_{\scriptscriptstyle{\mathrm{CL}}}$			9.7	10.0	10.3
输出电压范围(脚 3)	$V_{\rm o}$	}	V	+0.01		+4.8
输出电阻	R _o		kΩ	97	100	103
偷出缓冲器			_			
闭环增益	$c_{c_{\mathrm{L}}}$	$R_{\text{LOAC}} \geqslant 10 \text{k}\Omega$		1.94	2.0	2.06
输出电压范围	$v_{\rm o}$	$T_{\rm A} = T_{\rm MIN} \sim T_{\rm MAX}$	V	+0.02		+4.8
输出电阻(脚分)	R_0	$V_Q > 0.1 V_{dc}$	Ω		0.2	

参 数	符号	条件	单位	最小	典型	最大
系统	G	V ₀ ≥0.1V _{de}			20.0	20.1
增益 	6	$T_{A} = T_{MIN} \sim T_{MAX}$		19.9	20.0	20.1
工作温度范围	$V_{\rm os}$	A = 1 MIN ~ 1 MAX	_m v	19.8	0.03	20.2
失调电压	v os			-1	0.03	i
工作温度范围		$T_{\rm A} = T_{\rm MIN} \sim T_{\rm MAX}$	mV	- 3		3
中刻度失调(脚 7)定标	OFS			0.49	0.50	0.51
输人电阻		pin 7 ~ pin 2	kΩ	2,5		3.0
短路输出电流	$I_{\rm OSC}$	$T_A = T_{\text{MIN}} \sim T_{\text{MAX}}$	mA	7	11	25
– 3dB 带宽	BW_{-3dB}	$V_{\rm O} = +1 V_{\rm de}$	kHz	20	30	
转换速率	SR		V/μs		0.2	
噪声光谱密度	N_{SD}	f = 100 Hz - 10 kHz	$\mu V / \sqrt{Hz}$		0.2	
电源						
工作范围	v_s	$T_{\rm A} = T_{\rm MIN} - T_{\rm MAX}$	v	3.0	5	36
静态电源电流	I _s	$T_{\rm A} = +25^{\circ}{\rm C}$, $V_{\rm S} = +5{\rm V}$	μΑ		200	500
温度						
工作温度	T _{OP}		°C	- 40		+ 125
封装						
塑封 DIP(N-8)				1	AD22050	N
塑封 SOIC(R-8)					AD22050	R

AD22057 型单电源传感器接口放大电路

用途:用于电流传感、电机控制、加速度传感器、压力传感器、位置标志传感器、应变传感器和其他低电平信号源电路。

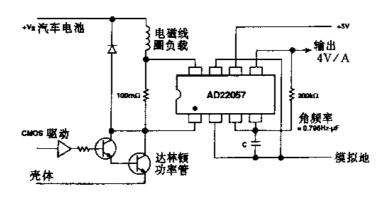


图 3-94 电流传感器典型应用接口电路

AD22057 放大器

AD22057 是一个单电源差分放大器。放大通过低通滤波器输入小的差动电压。电源电压 3~36V。输入电压范围从低于地到+24V。本电路用 5V 电源,具有较好的共模抑制比。这是由输入端专用的电阻衰减器完成的。电阻网络经激光修正后可达最高差动平衡。具有低的失调电压和低失调电压温漂,增益长期稳定性好。电路包括任选低通滤波器和增益调节。

特点:增益从×1~×160 可变;在整个温度范围内的输入失调电压为±2mV;低的增益长期漂移和失调电压;输入共模电压范围为地至6×(V_S-1V);输出电压为20mV~($V_S-0.25$) V:1,2,3端低通滤波器可用;精确的中间量程;差动输入电阻为400k Ω ;驱动负载 $1k\Omega$ 电阻上

加压 4V;有瞬变电压保护;峰值输入;反向电源保护为 - 34V;工作温度范围为 - 40 ~ 125℃。

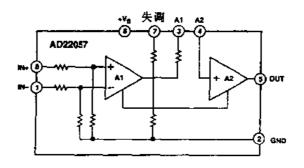


图 3-95 电路功能方块图

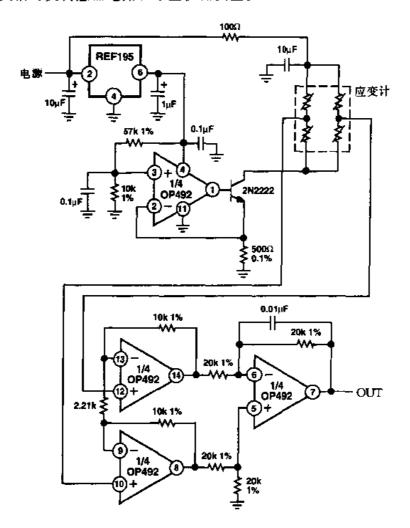
技术参数($T_{\rm A}=25\%$, $V_{\rm S}=5{\rm V}$, $V_{\rm CM}=0{\rm V}$, $R_{\rm L}=10{\rm k}\Omega$)

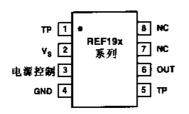
参数	符 号	· 条 件	单位	最小	典型	最大
输人(脚 1,8)	21-			1		
正共模电压	+ CMR		v			+ 24
负共模电压	- CMR	$T_A = T_{\text{MIN}} \sim +85^{\circ}\text{C}$	l v	-1.0		
共模抑制比	CMRR _{LF}	f≤10Hz	dB	80	90	
共模抑制比	CMRR _{HF}	f = 1 kHz	dB	80	90	
共模输入电阻	R_{INCM}	Pin 1 或 Pin 8 ~ Pin 2	kΩ	180	240	300
电阻匹配	RMATCH		%		0.5	
差分输入电阻	R _{INDEF}	Pin 1 ~ Pin 8	kn	280	400	
前置放大器	_					
打环增益	$G_{\mathbf{GL}}$		V/V	9.7	10.0	10.3
會出电压范围(脚3)	$v_{\rm o}$		v	+0.01		+4.8
自出电阻	R_0		kΩ	97	100	103
企业经济		B - 1010				
· · · · · · · · · · · · · · · · · · ·	G_{CL}	$R_{\rm LOAD} \geqslant 10 \text{k}\Omega$	V/V	1.94	2.0	2.06
命 出电压范围	$V_{\rm o}$		l v	+0.02		+4.8
偷出电阻(脚5)	R _O	$V_0 \geqslant 0.1 \text{V dc}, I_0 < 1 \text{ mA}$	Ω		2.0	
全系统		V ₀ ≥0.1V _d	57 G4			
曾益	G	- w	V/V	19.9	20.0	20. I
曾益漂移		$T_{A} = T_{\text{MIN}} \sim T_{\text{MAX}}$	ppm/°C	-62.5		+ 62.5
拿 入失调电压	v_{∞}		mV	- 1	0.03	1
卡调漂移		$T_{\rm A} = T_{\rm MIN} \sim T_{\rm MAX}$	μV/°C	- 12.5		+ 12.5
P量程(脚 7)标定	OFS		V/V	0.49	0.50	0.51
命人电阻		Pin 7 ~ Pin 2	kΩ	2.5	3.0	
豆路输出电流	$I_{ m OSC}$		mA	7	11	25
-		$T_{A} = T_{MIN} - T_{MAX}$	mA.	5		27
- 3dB 帯宽	BW _ 3dB	$V_0 = +1 V_{de}$	kHz		30	
传换速率	SR		V/µs		0.2	
P 声光谱密度	N_{SD}	$f = 100 \text{Hz} \sim 10 \text{kHz}$	μV/√Hz		0.2	
1.源抑制比	PSR	$V_s = 5V, V_0 = 1V \sim 4.2V$	1.			
i		$V_8 = 24V$, $V_0 = 1V \sim 22V$	1			
		$T_{\rm A} = T_{\rm MiN} \sim { m T}_{\rm MAX}$	17.77			20.0
· 阿电压对电极电压变化	Offset		μV/V			0.05
3 並以 电	Gain		%/V	<u> </u>	·	
]旗						
「作电压范围	v_{s}	$T_{A} = T_{MIN} \sim T_{MAX}$	V	3	5	36
争态电源电流	I_{S}	$T_{\rm A} = +25^{\circ}{\rm C}$, $V_{\rm S} = +5{\rm V}$	μA	:	200	500
作温度范围	TOP		°C	- 40		+ 105
装 封 DIP(N = 8) 封 SOIC(SO = 8)					AD220 AD220	

3.5 传感器其他应用电路

传感器与 REF19X 系列精密低输出电压基准电路

用途:用于灵活可变传感器电路和小型仪器测量。




图 3-96 应变传感器电路

电路中 REF19X 系列基准能与低电源电压运算放大器组成应变计电路。电路中 REF195 用低压电源供放大器工作,作为应变计驱动电路的一端,另一端基准通过改变电路元件值来完成。桥差动电压通过运算放大器进行调节放大。

REF19X 系列微功耗低输出电压精密基准源

REF19X 系列为精密基准电压源,从电源提供稳定的输出电压,工作温度范围宽。

特点:初始精度:最大为±2mV;温度系数:最大为5ppm/℃;低电源电流:最大为45μA;低下降电压;负载调整率:4ppm/mA;电压调整率:4ppm/V;高输出电流:30mA;有短路保护。

管脚说明:

1、5.TP 工厂测试;2.Vs 电源;

3.SLEEP电源控制;

4.GND 地;6.OUT

7、8.NC 不连接。

图 3-97 管脚图(顶视)

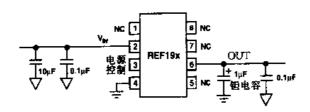


图 3-98 基本连接电路

输入端用旁通网络 $10\mu F/0.1\mu F$,输出端用旁通网络 $1\mu F/0.1\mu F$ 。1.5.7.8. 脚不连。如果 SLeep(静止)不要求,脚 <math>3 应与 V_{IN} 相连。

最大绝对额定值

电源电压

18V

输出短路持续时间

无限

存储温度

- 65 ~ 150℃

工作温度

-40 ~85℃

结温

- 65 ~ 125℃

引线焊接温度

300℃

REF195 技术参数(V_S = 5.10V, T_A = 25℃)

参 数	符号	条件	单位	最小	典型	最大
输出电压初始精度 "E"级 "F"级 "G"级	<i>V</i> ₀	I _{OUT} = OmA	V V V	4.998 4.995 4.990	5.0	5.002 5.005 5.010
电压调整率 "E"级 "F和 G"级	$\Delta V_{\rm O}/\Delta V_{\rm IN}$	$5.10V \le V_{\$} \le 15V$, $I_{OUT} = 0$ mA	ppm/V ppm/V		2 4	4 8
负载调整率 "E"级 "F和 G"级	$\Delta V_{0}/\Delta V_{10AD}$	$V_{\rm S} = 6.30 \text{V}, 0 \le I_{\rm OUT} \le 30 \text{mA}$	ppm/mA ppm/mA		2 4	4 8
下降电压	$V_{\rm S} - V_{\rm O}$	$V_{\rm S} = 5.50 \text{V}, I_{\rm L} = 10 \text{mA}$ $V_{\rm S} = 6.30 \text{V}, I_{\rm L} = 30 \text{mA}$	v v	i		0.50 1.30
长期稳定性	ΔV_{0}	1000h 在 + 125℃	mV		2	
噪声电压	e _N ·	0.1Hz~10Hz	μV_{P-P}		50	

REF195 技术参数($V_s = 5.15V_s - 40\% \le T_s \le 85\%$)

参 数	符号	条件	单 位	最小	典型	最大
温度系数 "E"级 "F"级 "G"级	TCV₀/°C	I _{OUT} = OmA	plom√.c blom√.c blom/.c		2 5 10	5 10 25
电压调整率 "E"级 "F和 G"级	$\Delta V_{\rm O}/\Delta V_{\rm IN}$	$5.15V \le V_S \le 15V$, $I_{OUT} = 0$ mA	ppm/V ppm/V		5 10	· 10 20
负载调整率 "E"级 "F和 G"级	$\Delta V_{0}/\Delta V_{L}$	$V_{\rm S} = 6.30 \text{V}, 0 \le I_{\rm OUT} \le 25 \text{mA}$	ppm/mA ppm/mA		5 10	10 20
下降电压	$V_{\rm S}$ – $V_{\rm O}$	$V_{\rm S} = 5.50 \rm V$, $I_{\rm L} = 10 \rm mA$ $V_{\rm S} = 6.30 \rm V$, $I_{\rm L} = 25 \rm mA$	v v			0.50 1.30
SLEEP 脚 輸入高电平 輸入高电平 輸入低电平 輸入低电平	V _H I _H V _L I _L		V μ A V μA	2.4		- 5 0.8 - 5
电源电流 低电源电流 断电型电流		无负载 无负载	μΑ μΑ			45 15

生产厂家: ANALOG DEVICES

电压/频率变换电路

用途:用于输入为0~5V输出为100Hz~1MHz的变换电路。

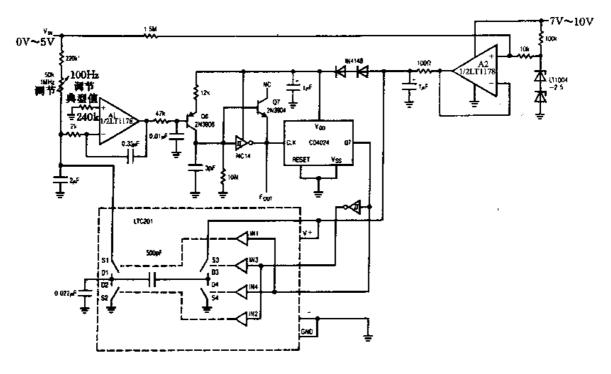


图 3-99 徽功耗 100Hz 至 1MHz 的电压/频率变换器

传感器 RCV420 型精密 4~20mA 电流接收电路

用途,用于过程控制、工业控制、工厂自动化和数据采集等领域。

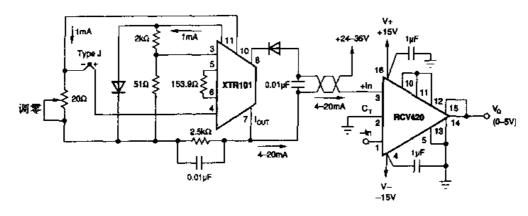


图 3-100 热电偶变换电路

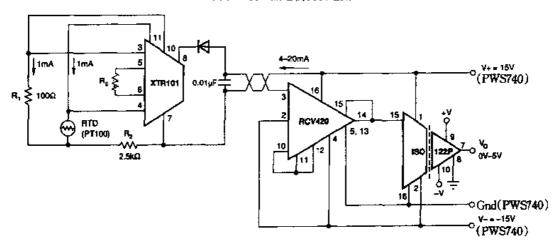


图 3-101 RTD 隔离 4~20mA 变换电路

RCV420 型 4~20mA 电流回路接收器

RCV420是一个电流回路接收器,它可将 4~20mA 的输入电流转换成 0~5V 的输出电压。本电路包含高精度运算放大器、单片精密电阻网络和 10V 精密基准。RCV420 的精度为 0.1%,共模抑制比为 86dB,输入电压范围为 ± 40V。

最大绝对额定值

电源电压	± 22 V
输入电流,连续	40mA
共模输入电压,连续	± 40V
输入电流,瞬时0.1s	250mA,1%占空比
引线焊接温度(10s)	300℃
输出短路到公共端	连续
工作温度	- 55 ~ 125 °C
存储温度	- 65 ~ 150°C

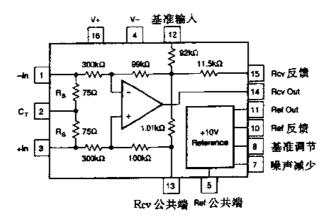


图 3-102 RCV420 电路功能方块图

光二极管用于光吸收测量电路

用途:用于对样品光吸收率的测量仪表。

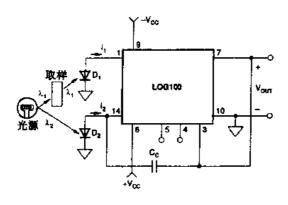


图 3-103 光吸收率测量电路

电路由对数放大器、光源和光敏二极管组成。样品的吸收率是 $A=\log\frac{\lambda_1}{\lambda_2}$, 如果 $\lambda_2=\lambda_1$, D_1 和 D_2 匹配,则 $A \propto K \log\frac{I_1}{I_2}$ 。

LOG 100 精密型对数和对数比率放大器

LOG100 是对数和对数比率放大器集成电路

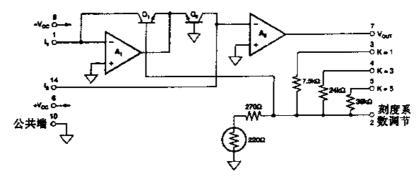
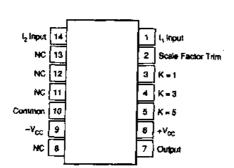



图 3-104 电路功能方块图

电路输出 $V_{OUT} = K \log \frac{I_1}{I_2}$

量程系数与引脚连接对应表

K,V/十进制数	连 接
5	5到7
3	4到7
1.9	4和5到7
1	3到7
0.85	3和5到7
0.77	3和4到7
0.68	3、4和5到7

管脚说明:

1. l_1 输入 1; 2. Scale Factor Frim 刻度系数调节; 3. (K=1)4. (k=3) 5. (k=5) 放大; 6. + V_{CC} 电源正; 7. out put 输出; 8、II、I2、I3. NC 不连接; 9. - V_{CC} 电源负; I0. Common 公共端; I4 I_2 In put I_2 输入。

图 3-105 管脚图(底视)

最大绝对额定值

电源电压

 $\pm 18V$

内部功耗

600mW

输入电流

10miA

输入电压范围

± 18V

存储温度

-40~85℃

引线焊接温度(10s)

300℃

结温

175°C

技术参数(T_A = 25℃, V_{CC} = ± 15V)

电参数

	, AA , /-	LOG100JP				
参 数	单位	最小	典型	最大		
·····································						
失调电压						
固有	mV		±0.7	±5		
付温度变化	μV/°C		± 80			
肩置电流						
固有	pA [1	5 ⁽⁵⁾		
付温度变化	1		两倍/10℃			
唤声 电压	μV_{me}		3			
噪声电流	pA _{tme}		0.5			

参数		LOG100JP		
<i>→</i> x x	单 位	最小	典型	最大
AC 特性				
$3dB$ 响应 $,I_2=10\mu A$				
lnA	kHz		0.11	
1μΑ	kHz		38	
10μΑ	kHz		27	
1mA	kHz		45	
阶跃响 应				
増加				
1μA ~ 1mA	μв		. 11	
100nA ~ 1μA	118		7	
10nA ~ 100nA	ho s		110	
滅小				
lmA ~ 1μA	μ s		45	
1μA ~ 100nA	μ s	•	20	
100nA ~ 10nA	με		550	
输出特性		·		
满量程输出	v	± 10		
额定输出	1			
电压	V	± 10		
电流	mA	±5		
电流限				
正	mA		12.5	
负	mΛ		15	
阻抗	Ω		0.05	
海		l		
额定电压	VDC		± 15	
工作电压范围	VDC	± 12		± 18
静态电流	mA		±7	± 9
且度花围				-
特定	°C]	0		+ 70
工作	°C	- 25		+ 85
存储	٠ <u>c</u>	-40		+ 85

传感器 MPY100 型倍乘分压器线性化电路

用途:用于传感器线性化电路。

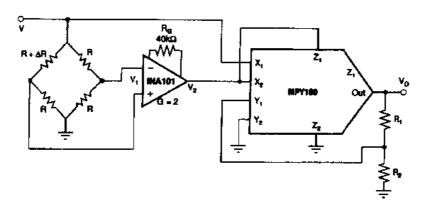


图 3-106 传感器桥线性化电路

电路中的 V 应当尽可能大,使分压器的误差减至最小,但 V \leq [10 + (20 $R/\Delta R$)], V_2 应保持在 MPY100 的输入电压额定范围内。

$$V_1 = \frac{V}{2} \left(\frac{1}{1 + \frac{2R}{\Delta R}} \right), V_2 = V \left[\frac{1}{1 + \frac{2R}{\Delta R}} \right], V_0 = 5 \left(\frac{R_1 + R_2}{R_2} \right) \frac{\overline{\Delta R}}{R}$$

MPY100 型分压器

MPY100是分压器,用于传感器线性化电路。差动输入方式,低噪声电压为 $90\mu V_{mis}$ (10Hz ~ 10kHz 范围内),宽工作温度范围。

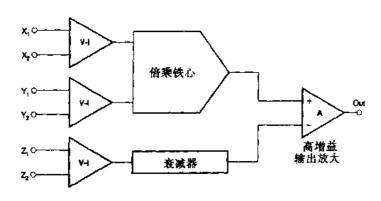
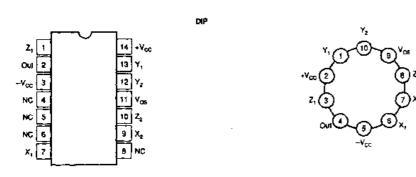



图 3-107 功能方块图

注, V_{OS}调节选择, V_{OS}脚可接地。不用的输入脚全部接地。 图 3-108 管脚图(顶视)

最大绝对额定值

电源电压 $\pm 20V$ 内功耗 500mW 差动输入电压 $\pm 40V$ 输入电压范围 ± 20V 存储温度 $-65\% \sim +150\%$ 工作温度 -55°C ~ +125°C 引线焊接温度 300℃ 结温 150°C

管脚说明

DIP 封装:

1,10.Z₁,Z₂ 输入;7,9.X₁,X₂ 输入; 13、12.Y₁,Y₂ 输入;3-V_{CC}电源; 4,7,5.6.8.NC不连接;2.OUT 输出; 11.V_{CS}调节选择;14.+V_{CC}电源 TO-100 1、10.Y₁、Y₂ 输入;3.8.Z₁,Z₂ 输入; 6,7.X₁,X₂ 输入;2.+V_{CC}正电源; 5.-V_{CC}负电源;4.OUT 输出; 9.V_{CS}调节选择。

参 数	单.位		MPY100A			MPY100B/C			MPY100S		
> XX	T 10	最小	少 型	最大	最小	典型	最大	最小	典型	最大	
多路开关特性									-	1	
转移函数		<u>(X</u>	$\frac{1 - X_2)(Y_1 - Y_1)}{10}$	$\frac{2}{2} + Z_2$		*/*	,		*		
总误差	~ TDD					1			•		
固有 对温度变化	%FSR/°C		± 0.017	± 0.05	;	±0.008/0.008	±1.0/0.5 ±0.02/0.02			±0.5	
对温度变化 对电源变化	% FSR/°C % FSR/%		± 0.05			*/*			±0.025	±0.0	
单个误差	701510 %		10.00			*/*		ļ	*	}	
输出失调 固有	_m v	1	± 50	± 100		± 10/7	= 50/25		±7	± 50	
对温度变化	mV∕℃		±0.7	± 2.0		±0.7/0.3	$\pm 2.0/\pm 0.7$	}			
对温度变化 对电源变化	mV/℃ mV/%		± 0.25			+/*			±0.3	± 0.7	
量程系数误差 固有	ev Den						,	ļ			
对温度变化	% FSR % FSR∕℃		± 0.12 ± 0.008			*/* */*			*		
对温度变化 对电源变化	% FSR/°C % FSR%		.0.05						± 0.008		
非线性	W I SAW	!	±0.05	1 1		*/*	ĺ		*		
X 输入 Y 输入	% FSR % FSR		± 0.08 ± 0.08			*/*			*		
馈通			±0.00			*/*	1	1	*	1	
X 输入 Y 输入	mV_{P-P} mV_{P-P}		100		ļ	30/30			30 *		
对温度变化	mV _{P−P} /°C		0.1			*/*		1	*		
对温度变化 对电源变化	mV _{P-P} /°C			<u> </u>					0.1		
分压器特性	mV _{P-P} /%		0.15			*/*	•		*	 	
			$10(Z_0 - Z_1)$	_							
转移函数		ĺ .	$\frac{10(Z_2 - Z_1)}{(X_1 - X_2)} + Y$	(i	ĺ	*/*			*		
总误差	% FSR		±1.5]		± 0.75/0.35		ĺ	± 0.35		
	% FSR % FSR		±4.0 ±5.0	[$\pm 2.0/1.0$ $\pm 2.5/1.0$			±1.0 ±1.0		
——————— 平方特性							-				
转移函数			$\frac{(X_1 - X_2)^2}{10} + Z_2$,		*/*			*		
总误差	% FSR		±1.2		Ī	±0.6/0.3			± D.3		
平方根特性		<u></u>			-	20.070.0		- -	10.5		
转移函数		+ -	$\sqrt{10(Z_2 - Z_1)} +$	X ₂		*/*			*		
总误差	% FSR		± 2			± 1/0.5			±0.5		
AC 特性											
小信号带宽 %幅度误差	kHz kHz		550 70			*/*			*		
%(0.57°)矢量误差	kHz		5			*/*		- 1	*		
功率带宽 转换速率	kHz V/μs		320 20	;	1	*/*			*		
建立时间	μs		2			*/*			*		
过载恢复	μэ		0.2		+	*/*			*		
食入特性		1									
输入电压范围 额定工作	v	± 10		_	/*						
最大绝对值	v	± 10		± V _{CC}	′ *		*/*			*	
输入电阻 输入偏置电流	ΜΩ μΑ		10 1.4			*/*			# *		
	μп		1.4						<i>"</i>		

42. #%	M /-		MPY100A			MPY100	B/C		MPY100S	
参数	单 位	最小	典型	最大	最小	典型	最大	最小	典型	最大
输出特性 额定输出 电压 电流 输出电阻	V mA Ω	± 10 ± 5	1.5		*/* */*	*/*	:	**	*	
输出噪声电压 fo = 1Hz fo = 1kHz 1/f 角頻率 f _B = 5Hz ~ 10kHz f _B = 5Hz ~ 5MHz	μV/ √Hz μV/ √Hz Hz μV rms mV rms		6.2 0.6 110 60 1.3			*/* */* */*			* * *	
电源要求 额定电压 工作范围 静态电流	VDC VDC mA	±8.5	± 15 ± 5.5	± 20	*/*	*/*	*/*	*	*	*
温度花图 特定 工作范围 存储	J.	- 25 - 55 - 65		+ 85 + 125 + 150	*/*		*/* */* */*	- 55 *		+ 125

注:*表示与 MPY110A 的参数相同。

传感器 DIV100 型模拟分压器电路

用途:用于传感器和桥线性化电路。

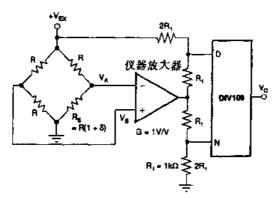


图 3-109 传感器桥线性化电路

电路中的桥代表传感器,只有一个有效臂,差动输出电压 VIA:

$$V_{\text{BA}} = V_B - V_A \, \frac{- \, V_{\text{EX}\delta}}{2(2 + \delta)} \label{eq:VBA}$$

有效臂电阻的变化呈非线性,利用上述电路可使桥线性化。放大器转换差动输出为单端电压,驱动分压器。电压分压器分为分子和分母电压:

$$N = \frac{-V_{EX} \delta R_{IN}}{(2R_1 + 3R_{IN})(2 + \delta)};$$

$$D = \frac{2V_{EX}R_{1D}}{(2R_1 + 3R_{1D})(2 + \delta)},$$

式中 R_{IN} = DIV100 分子输入电阻

R_{ID} = DIV100 分母输入电阻

用 DIV100,转移函数得到:

$$V_{\rm O} = 10 {\rm N/D} = \frac{(2R_1 + 3R_{\rm ID})(R_{\rm IN}\delta)10}{(2R_1 + 3R_{\rm IN})(2R_{\rm ID})}$$

简化后

$$V_0 = -5\delta$$

注:N是分子输入电压

D是分母输入电压 $V_0 = 10 \text{N/D}$ 是 DIV100 的转移函数

10 是内部比例系数

如果分压器的输入电阻相等,桥的非线性即可消除,则电路的输出取决于激励电压。

DIV100 型模拟分压器

DIV100 是精密模拟分压器,其精度为 0.25%,用于传感器桥的线性化。

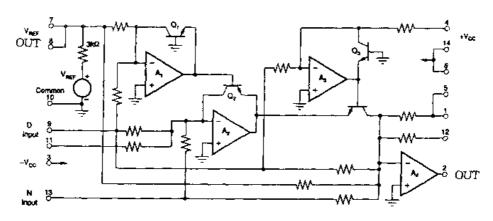


图 3-110 功能方块图

1			1
+V _{cc}	0 14	10	Gain Error Adjust
Numerator (N) Input	O 13	20	Cutput
Output Offset Adjust	0 12	30	-V _{cc}
N Input Offset Adjust	0 11	4 0	D (nput Offset Adjust
Common	O 10	50	Internally Connected to Pin 1
Denominator (D) Input	0 9	60	Internally Connected to Pin 14
Reference Voltage	0 6	70	Internally Connected to Pin 8

管脚说明:

- 1.增益误差调节;2.Out 输出;3. Vcc电源负;
- 4.D输入偏置调节;5.内连至脚 1;
- 6.内连至脚 14;7.内连至脚 8;8.基准电压;
- 9.分母输入;10.公共端;11.N输入偏置调节;
- 12.输出偏置调节;13.分子输入;
- 14. + V_{CC}电源正。

图 3-111 管脚图(底视)

最大绝对额定值

电源电压

 $\pm 20V$

内部功耗

600 mW

输入电压

 $\pm 20V$

存储温度

-40℃ ~ +85℃

工作温度

- 25°C ~ 85°C

引线焊接温度(10s)

300°C

输出短路持续时间

无限

结温

175℃

电参数

参 参	· 数	单位		DIV100HP		DIV100JP			DIVI00KP		
	X — —	単位 [最小	典型	最大	最小	典型	最大	最小	_典型	最大
转移函数		[<u> </u>		, <u>-</u>			$V_0 = 10N/1$	D		· , - 	
精度 总菌有 对温度变化 对电源变化 预热至额定特性	ሂ	%FSO/°C %FSO/°C %FSO/% min		0.7 0.02 0.06 0.15 5	$ \begin{array}{c} 1.0 \\ 0.05^{(2)} \\ 0.2^{(2)} \end{array} $		0.3	0.5		0.2	0.25
AC 特性 小信号带宽 0.5%幅度误差 0.57°矢量误差 功率带宽 转换速率 建立时间 过载恢复		kHz kHz Hz kHz V/µs µs µs		350 15 1000 30 2 15 4			* * * * * * *			* * *	
输人特性 输入电压范围 分子 分母 输入电阻		V V kΩ	± 10 ± 10	25		*	. *		* *	*	
输 满 医 电 电 流 电 电 液 正 4		V V mA	± 10 ± 10 ± 5	15	20(2)	*	*	:	*	*	
负 輸出噪声电压 f _B = 10Hz ~ 10kH D = + 10V D = + 250mV	lz	mA μV rms mV rms	<u>-</u> <u>-</u>	370 1	23 ⁽²⁾		# *	<u>-</u>		*	
基准电压特性 输出电压 固有 对电源系数 溢度电阻		V μV/V ppm/°C kΩ	6.5(2)	6.8 ±25 ±50 3	7.1(2)	*	* *	*	*	* * *	*
- 电额 工		VDC VDC mA mA	± 12	± 15	± 20 7 ⁽²⁾ 10 ⁽²⁾	*	* *	* *	*	*	* *
 温度范围 特定 工作 存储		333	0 - 25 - 40		+ 70 + 85 + 85	* *	_	* *	*		*

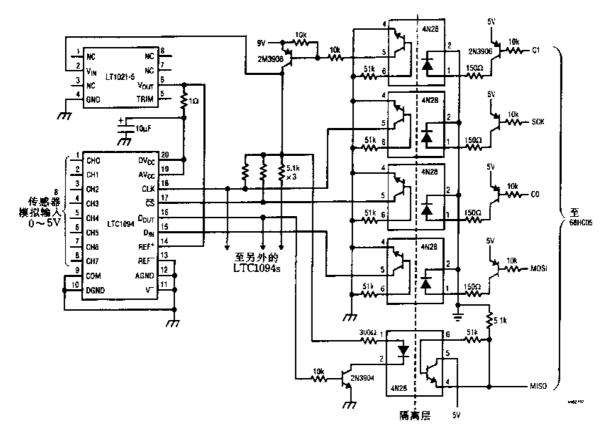
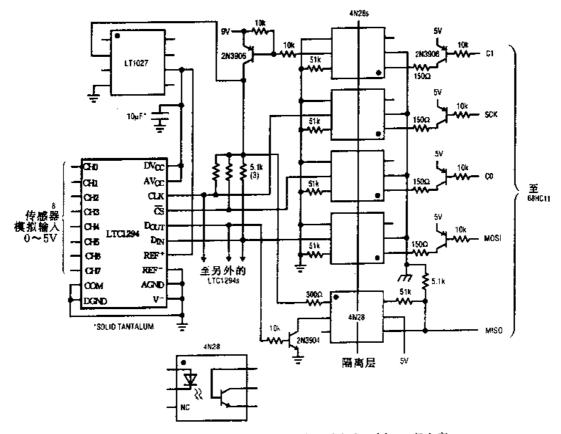
注: * 表示和 DIV100HP 的参数相同。

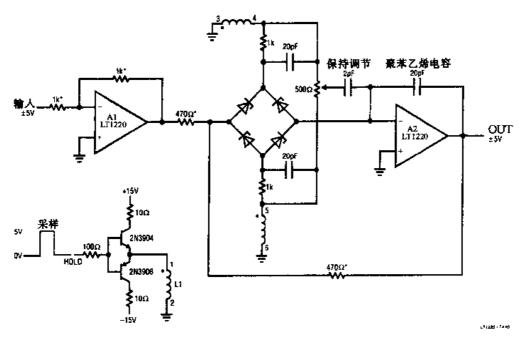
生产厂家:BURR-BROWN

光隔离传感器数据采集电路

用途:用于采集传感器输出信号(0~5V)的电路。

电路为小功耗串行 10 位数据采集系统,光隔离电压为 500V。电路中的 LT1021 -5 为 5V 精密基准源,LTC1094 为 8 通道 10 位串行 1/0 数据采集系统。


图 3-112 光隔离数据采集系统

注:微功耗,5000V 光隔离电压,多通道 12 位数据采集系统(每 2 秒存取一次)。* 钽电容图 3-113 光隔离 12 位数据采集系统

采样/保持电路

用途:用于数据采集电路和 A/D 变换电路

注:*1%薄膜电阻,LIPE-2229×1:1:1,桥二极管型号为 IN57i1 图 3-114 8 位 100ns 采样和保持电路

LT1220 型高速运算放大电路

用途:用于 8、10 和 12 位数据采集电路、宽带放大、视频和射频应用领域。

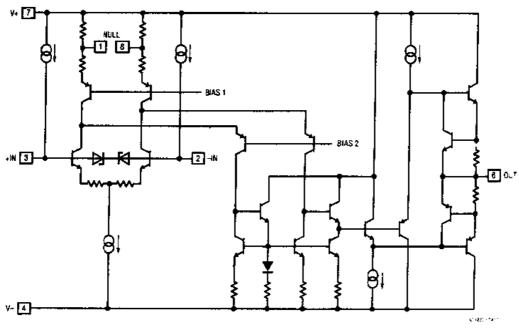
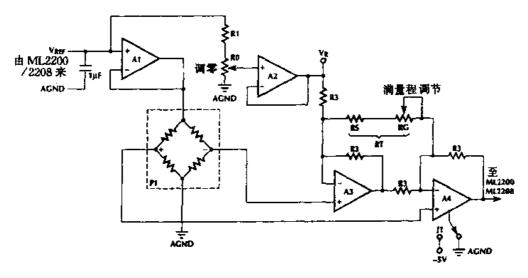



图 3-115 LTI220 电路原理图

生产厂家:LINEAR TECHNOLOGY

ML2200/2208 型传感器数据采集电路

用途:用于数据采集和自动控制等领域。

注: P_1 为压力传感器 $SC \times J5DNC$, $0 \sim 15psid$ (差压), R_2 为 $100k\Omega$, $R_1 \setminus R_0$ 为 $10k\Omega$, R_8 为 $1.25k\Omega$, RG 为 500Ω 。当 $J_1 = AGND$ 时,输出电压为 $0 \sim 2V$; 当 $J_1 = -5V$ 时,输出电压为 $\pm 2.5V$ 。

ML2200 6800 ę sv VMA Z5 AVCC 地址译码 ALE DVCC AG-AZ AB-A13 ٧, R/W 節 44 **¢**2 D0-D7 CHO+ D0-D7 (不用)→ 088 CH1+ INT INQ RESET 4 差劲模拟 輸人通道 RESET CH2+ **KCLK** →(不用) CH2-ÇLK CH3+ 후째 보 CH3-5YNC DGND AG

图 3-116 压力传感器输入 ML2200/2208 电路

图 3-117 ML2200 与 6800 pP 接口电路

ML2200/2208 型 12 位 + 符号位数据采集电路

ML2200/2208 数据采集外围设备是单片 CMOS 数据采集子系统电路。这些外围设备有一

个输入多路开关、一个可编程增益放大器、一个 2.5V 基准和一个具有采样和保持的 12 位加符号 A/D 变换器。还有通用 8 位微机接口。ML2200/2208 包括一个可编程处理器、数据缓冲和极限报警电路。ML2200 有一个 4 通道差动输入多路开关,ML2208 有一个 8 通道单端输入多路开关。

特点:分辨率为 12 位 + 符号位;转换时间(含 S/H采集)最大为 31.5 µs;采样保持采集时间最大为 2.3 µs;非线性误差最大为 ± 3/4LSB 和 ± 1LSB;低谐波失真 0.01%;无丢失码;自校—在时间和温度范围内保证精度;耐压大于电源电压绝对值(7VI;内部电压基准为 2.5V ± 2%;四个差动或 8 个单端输入通道;数据缓冲(8 字节数据 RAM);可编程极限报警;8 位微处理器接口一中断,DMA 或通讯;16 位定时器用于可编程转换速率;标准密封 40 引脚 DIP 型封装。

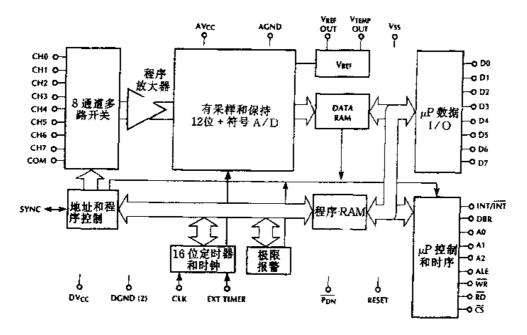


图 3-118 系统方块图

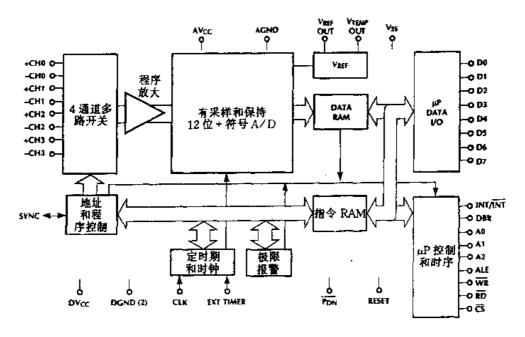
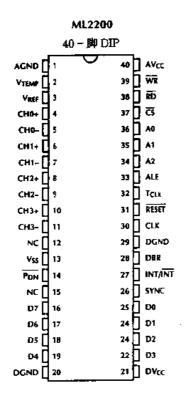



图 3-119 ML2200 电路方块图

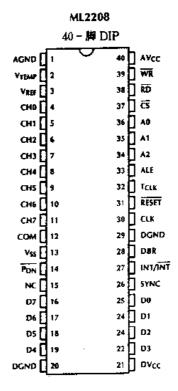


图 3-120 管脚图(顶视)

管脚说明

编号	名称	说 明	编号	名称	说明
1	AGND	模拟地	27	INT	中断输出
2	V _{TEMP}	输出电压与温度衰减成比例	28	DBR	数据缓冲读出
3	VREF	内基准电压输出	29	DGND	数字地
4 - 11	CH	模拟输入	30	CLK	时钟输入
12	NC	ML2200 不连接	31	RESET	复位
	COM	ML2208 负公共端	32	TCLK	外定时器
13	V_{ss}	负电源	33	ALE	地址锁存使能
14	$\overline{\mathbf{P}_{DN}}$	P _{DN} =0 时电源停止输入	34	A2	地址 2
15	NC	不连接	35	Al	地址1
16 – 19	D7, D6, D5, D4	双向数据位	36	A0	地址 0
20	DGND	数字地	37	□ CS	片 选
21	$\mathrm{DV}_{\mathrm{cc}}$	数字电源	38	RD	读出
22 - 25	D3, D2, D1, D0	双向数据位	39	WR	写人:
26	SYNC	同步	40	AV _{CC.}	正模拟电源

最大绝对额定值

电源电压(AV_{CC}和 DV_{CC}) 6.0V 负电源电压(V_{SS}) -6.0 模拟输入电压 V_{SS}-V_{REF}电压 V_{SS}-每个数字输入电流 ± 10r 模拟输入电流 ± 20r 存储温度 -65

6.0V -6.0V V_{SS} - 7V ~ AV_{CC} + 7V V_{SS} - 7V ~ AV_{CC} + 7V ± 10mA ± 20mA -65 ~ 150°C 功耗 25℃时

引线焊接温度(10s)

工作条件

工作温度

ML2200BCP, ML2200CCP, ML2200DCP

ML2208BCP, ML2208CCP, ML2208DCP

电源电压(AVcc和 DVcc)

负电源电压(Vss)

ΙW

260℃

 $T_{\text{Min}} \leq T_{\text{A}} \leq T_{\text{Max}}$

0~70°C

 $0 \sim 70 \, ^{\circ}$ C

 $4.5V_{DC} \sim 6.0V_{DC}$

 $-4.5V_{DC} \sim 6.0V_{DC}$

生产厂家: MICRO LINEAR

应变计数据采集电路

用途:用于力和压力的测量

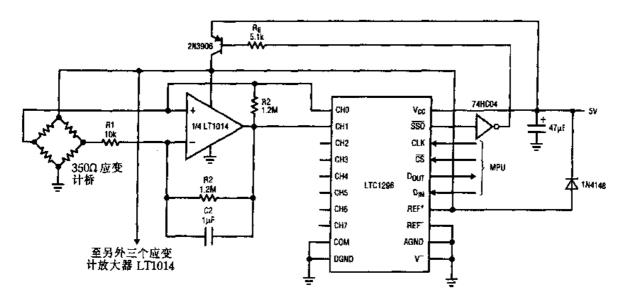


图 3-121 应变计桥 12 位数据采集系统

电路中3500 应变计桥信号经放大器 LT1014 放大,输入到 LTC1296CHI 数据采集系统的通道 1,采集后的信号输出到 MPU 计算机控制电路。

LTC1293/LTC1294/LTC1296 单片数据采集系统

LTC 1296 是 12 位单片数据采集系统,内有电行 I/O A/D 变换器。用 LTCMOS 开关电容工 艺完成 12 位或 11 位 + 符号位的双极性 A/D 变换。输入多路开关能构成单端或双端输入。采样保持包含在全部单端输入通道。LTC1293/LTC1294/LTC1296 在空载时能降低功耗。LTC1296 含有一个系统降压输出脚,它能用来降低外电路的功耗,如输入多路开关前的信号调节电路。不需要外部硬件,电行 I/O 通信用于大部分 MPU 电行口和全部 MPU 并行 I/O 口。

特点:LTC1296 软件编程可完成单/双极性变换,差动/单端输入,MSB一首位或 MSB/LSB 数据系列功耗降低,内置采样和保持电路,单电源 5V 或双电源 ± 5V 工作,直接四线接口至大部分 MPU 串行口或全部 MPU 并行口,通过信息速率最大为 46.5kHz,系统有降低电压输出功

能(LTC1296),转换时间在工作温度范围内最大为 12µs,低电源电流为 6.0mA。

CHO T 15, Vcc CH1 2 13 CLK CH2 3 14 05 CH3 4 13 0out CH4 5 12 Din CH5 6 11 Veef COM 7 10 AGND DGND 8 9 V	LTC1293BCS LTC1293CCS LTC1293DCS	CHO I IS Voc CH1 Z IS CLK CH2 3 I4 65 CH3 I DOUT CH4 IS IS DN CH5 I II VREF COM I II AGND OGNO I II V	LTC1293BMJ LTC1293BIN LTC1293CMJ LTC1293CIN LTC1293DMJ LTC1293DIN LTC1293BIJ LTC1293BCN LTC1293CIJ LTC1293CCN LTC1293DIJ LTC1293DCN
CHO 1 20 DVoc CH1 2 19 AVoc CH2 3 19 CLK CH3 4 17 CS CH4 3 19 COUT CH5 6 19 Din CH6 7 14 REF CH7 6 22 AGNO DGND 100 11 V	LTC1294BCS LTC1294CCS LTC1294DCS	CHO 1 20 0VCC CH1 2 19 AVCC CH2 3 18 CLK CH3 4 17 65 CH4 5 16 0 0017 CH5 6 15 01 AEP CH6 7 14 REP CH7 8 13 REF COM 9 12 AGND DGMO 10 11 V	LTC1294BMJ LTC1294BIN LTC1294CMJ LTC1294CIN LTC1294DMJ LTC1294DIN LTC1294BIJ LTC1294BCN LTC1294CIJ LTC1294CCN LTC1294DIJ LTC1294DCN
CHO 1 2 20 Vcc CM1 2 19 550 CM2 3 10 CLK CM3 4 17 C5 CM4 5 6 COUT CM5 6 COUT CM6 7 44 REF CM7 8 REF COM 8 12 AGNO DGND 110	LTC1296BCS LTC1296CCS LTC1296DCS	CHO 1 20 Voc CH1 2 19 550 CLK CH2 3 GE CLK CH3 4 17 55 CH4 5 GE CDUT CH5 6 T3 ARF CH7 6 T3 ARF COM 9 12 AGND DGND 10 11 V	LTC12968MJ LTC1296BIN LTC1296CMJ LTC1296CIN LTC1296BIJ LTC1296BCN LTC1296BIJ LTC1296BCN LTC1296CIJ LTC1296CCN LTC1296DIJ LTC1296DCN

图 3-122 管脚图(顶视)

管脚说明

编号	名 称		说 明	
1-6	CH0 - CH5	模拟输入		
7	сом	公共端		
8	DGND	数字地		
9	V	负电源		
10	AGND	模拟地		
11	V _{REF}	基准输入		
12	D _{IN}	数据输入		
13	D _{OUT}	数字数据输出		
14	īcs	芯片选择输入		
15	CLK	时钟		
16	V _{CC}	正电源		

编号	名称	说	明
1-8	CHO - CH7	模拟输入	
9	COM	公共端	
10	DGND	数字地	
11	ν-	负电源	
12	AGND	模拟地	
13,14	REF⁻, REF⁺	基准输入	
15	$\mathbf{D_{IN}}$	数据输入	
16	D_{OOT}	数字数据输出	
17	<u>cs</u>	芯片选择输入	
18	CLK	时钟	
19,20	AV_{CC} , DV_{CC}	正电源	

LTC1296

编号	名称	说 明	
1 – 8	CHO - CH7	模拟输入	<u> </u>
9	COM	公共端	
10	DGND	数字地	
11	V-	负电源	
12	AGND	模拟地	
13,14	REF⁻, REF⁺	基准输入	
15	Din	数据输入	
16	Dour	数字数据输出	
17	│	芯片选择输入	
18	CLK	时钟	
19	<u>sso</u>	系统降压输出	
20	Vcc	正电源	

12V
6V 至地
$(V^{-}) - 0.3V \sim V_{\rm OC} + 0.3V$
$-0.3V \sim 12V$
$-0.3V \sim V_{\rm CC} + 0.3V$
500mW
0 ~ 70℃
– 40 ~ 85 °C
- 55 ~ 125 °C
-65 ~ 150°C
300℃

LTC1293/4/6 技术参数

变换器和多路开关参数

 $(V_{CC} = 5V, V_{REF}^+ = 5V, V_{REF}^- = 0V, V^- = 0V$ 用于单极性, -5V用于双极性)

A #L		NA 12-	LT	1293/4	/6B	LTC	1293/4	/6C	LTC	C1 29 3/4	1/6D
参 数		单位	最小	典型	最大	最小	典型	最大	最小	典型	最大
偏置误差		LSB	1		±3.0			± 3.0			±3.0
线性误差		LSB			±0.5			±0.5			± 0.75
增益误差		LSB	Ţ		±0.5			± 1.0			±4.0
最大分辨率,保证不丢失码		位	İ		12			12			12
模拟和 REF 输入范围		v	<u> </u>		(V	V^-) $\sim 0.05 \text{V} \sim \text{V}_{CC} + 0.05 \text{V}$					
通道通漏电流	通道通=5V	μA			± 1			±1			±1
	通道通=0V	μA			± l			± 1			±\$
通道断漏电流	通道通 = 5V	μ A	T		± 1			± 1			±1
	通道通=0V	μΑ			± 1			±1			±1

交流参数

 $(f_{GLK}=1\,\mathrm{MHz},V_{CC}\simeq5\mathrm{V},V_{REF}^+=5\mathrm{V},V_{REF}^-=0\mathrm{V},V^-=0\mathrm{V}$ 用于单极性, $-5\mathrm{V}$ 用于双极性)

_] :	LTC1293/4/6E	l
				LTC1293/4/6C		
符号	参 数		单位]	LTC1293/4/61	1
	4	Ì		最小	典型	最大
f_{CLK}	时钟频率	$V_{\rm CC} = 5 \rm V$	MH2.	0.1	<u> </u>	1.0
t _{SMPL}	模拟输入采样时间	. "	时钟周期		2.5	
t_CONV_	转换时间		时钟周期		12	
	it Cit lier a text		1 000 160	21 CLK		
$t_{\rm CYC}$	总周期时间]	周期	+ 500ns		
t _{dD0}	延迟时间,CLK↓至 Dour数据有效		ns		160	300
t _{dis}	延迟时间,CS↑至 Dour高		ns		80	150
t _{en}	延迟时间,CLK↓至 Dour便能	$V_{\rm CC} = 5V$	ne		80	200
t _{hDl}	保持时间,在 CLK↓之后 D _{IN}		ns	50		
t _{hDO}	在 CLK √ 之后,时间输出数据继续	有效	ns		130	
t _f	Dour下降时间		ns		65	130
t,	D _{OUT} 上升时间		na	<u> </u>	25	50
WHCLK	CLK 高时间	$V_{\rm CC} = 5 \text{V}$	пв	300		
WULK	CLK 低时间	$V_{\rm oc} = 5 \mathrm{V}$	ns	400		
$t_{ m saDI}$	建立时间,在CLK↑前 D _{IN} 稳定	$V_{\rm QC} = 5 \text{V}$	ns	50		
t _{eu} (∑S	建立时间,在CLK↑前CS↓	$V_{CC} = 5V$	118	50		
 १ _{नस} ट्ड	在转换时,CS高时间	$V_{\rm OC} = 5 \text{ V}$	пв	500		
t _{≈LŪS}	在数据转移时CS低时间	$V_{\rm OC} = 5 \text{V}$	时钟周期	21		
e <u>.550</u>	延迟时间,CLK↓至SSO↓		ns		750	1500
di-350	延迟时间, CS ↓ 至SSO ↑		ns		250	500
	输入电容 模	拟输入通道通	p ł r [100	
$C_{\rm IN}$	模	拟输入通道断	Ì		5	
	数	字输入	}		5	

数字和直流电参数 $(f_{CLX}=1 \text{MHz}, V_{CC}=5 \text{V}, V_{REF}^+=5 \text{V}, V_{REF}^-=0 \text{V}, V^-=0 \text{V}$ 用于单极性, -5 V用于双极性)

符号	参数	条件	单位	-	LTC1293/4/6B LTC1293/4/6C	
		最小	LTC1293/4/6D 典型	最大		
V_{1H}	高电平输入电压	V _{CC} = 5.25 V	1. v	2.0		
V _{IL}	低电平输入电压	$V_{\rm OC} = 4.75 \text{V}$	v		· <u> </u>	0.8
l _m	高电平输人电流	$V_{\rm IN} = V_{\rm CC}$	μΑ			2.5
I _{II} ,	低电平输人电流	$V_{\rm IN} = 0 \text{V}$	μA		·	-2.5
V_{OH}	高电平输出电压	$V_{\rm CC} = 4.75$, $I_0 = -10$ mA $I_0 = 360\mu$ A	v	2.4	4.7	
$V_{\rm OL}$	低电平输出电压	$V_{\rm CC} = 4.75 \text{V}, I_0 = 1.6 \text{mA}$	v		<u>-</u>	0.4
I _{oz}	高 2 态輸出漏电流	$V_{\text{OUT}} = V_{\text{CC}}$, $\overline{\text{CS}}$ 高 $V_{\text{OUT}} = 0$ V, $\overline{\text{CS}}$ 高	μА		· · · · · · · · · · · · · · · · · · ·	3 - 3
I _{SOURCE}	输出源电流	$V_{OUT} = 0$ V	mA	·	- 20	
I _{SINK}	輸出沉电流	$V_{OUT} = V_{CC}$	mA		20	
Icc	正电源电流	CS高	mA		6	12
I _{cc}	正电源电流	TS高 LTC1294BC, LTC1294CC 电源 LTC1294DC, LTC1294BI 下降 LTC1294CI, LTC1294DI,	·		5	10
		CLK 关断 LTC1294BM,LTC1294CM。 LTC1294DM	μА		5	15
I _{REF}	基准电流	CS商	μА		10	50
1-	负电源电流	CS高	μΑ	· · ·	1	50
OURCE.	SSO潔电流	$V_{\overline{880}} = 0 \text{V}$	mA	0.8	1.5	
SINKS	SSO沉电流	$V_{\overline{SSO}} = V_{CC}$	mA.	0.5	1.0	_

生产厂家:LINEAR TECHNOLOGY

第四章 光传感器基本应用电路

光传感器具有体积小、寿命长、无触点和抗于扰性强等优点,可用来代替继电器、变压器和 斩波器等部件。可用于隔离线路、主动被动开关、数模转换、逻辑电路、长线传输、过流保护、高 压控制、电平匹配和线性放大等领域;还可用于光接收发射、无接触检测、物体有无、运动方向、 转速和光电计量以及自动控制、光探测、伺服系统、机器人、定位换向、限位、鉴别、料位检测、标 记检测、尺寸控制、安全防护、报警和计算机输入接口等领域。

4.1 EG&G 光电变换应用电路

硅光二极管应用电路

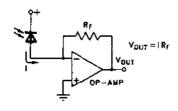
硅光二极管应用在许多不同类型的电路中,现在应用较多的范围有:

照像一光度表,自动快门控制,自动聚焦,照像闪光控制。

医学一CAT(射线管)扫描,血氧量计,血液微粒分析。

汽车一车前小灯光,黄昏黎明弱光检测,气温控制,阳光检测。

通信一光纤链路,光通信,光遥控。


安全设备一烟雾检测,火焰监测,安全检查设备,如机场 X 射线检测,预报警防护系统。

工业一条型码扫描,光笔,亮度控制,编码器,位置传感器,测量仪器,复印机调色浓度控制。

特点:低价格的可见光和近红外光检测器。在超过7至9倍光强度时,输出光电流线性好,响应时间快,噪声低。

可见光和近红外光源均适用,如 LED,氖灯,荧光灯,白炽灯,激光,弧光源和太阳光等。

典型应用电路

注: OP-AMP 运算放大器 图 4-1 基本跨导运放电路

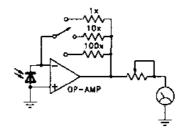


图 4-2 光度表(有三个灵敏度)电路

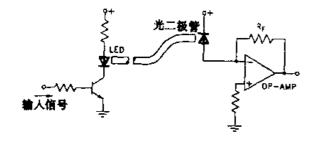


图 4-3 光纤链路

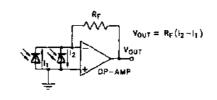


图 4-4 平衡电路

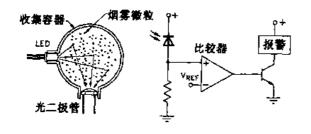


图 4-5 烟雾检测器电路

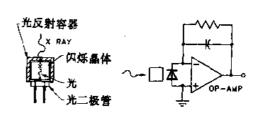


图 4-6 CAT(X 射线检测)电路

图 4~7 脉冲监测(指尖探头)电路

硅光二极管应用集成电路

用途:照像一光度表,自动快门控制,自动聚焦,照像闪光控制。

医疗--CAT 扫描,X射线探测,血氧计,血液成份分析。

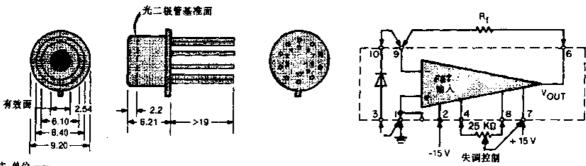
交通一头灯遮光器,弱光探测,气候控制(日光探测器)。

安全仪器—烟感探头,火烟监测,安全仪器(机场 X 射线),闯入警告(安全系统)。

工业一条型码扫描器,光笔,亮度控制,编码器,位置传感器,勘测仪器,复印机的墨粉浓度。

HUV 系列(1100BG;1100BQ;2000B;4000B)集成电路

特点:内装低噪声放大器


壳体可接地

放大器有屏蔽

有效面积大

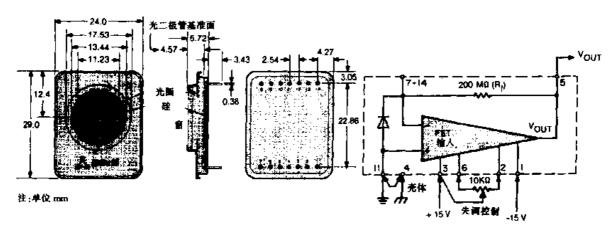
光谱范围宽

HUV - 1100BQ(BG)

注:单位 man

- 注:1. 25kΩ 电位器用于调节失调电压
 - 2. 尺寸单位是 mm
 - 3. 窗口至有效面距离是 1.98mm

HUV - 2000B

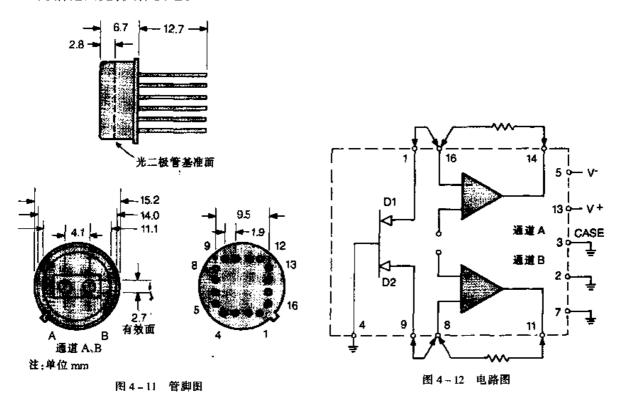

图 4-8 管脚和电路图

- 注:1. 其他 R₄ 值按要求提供
 - 2. 用 1pF 电容与 R, 并联,可减少增益波动
 - 3. 尺寸单位是 mm

HUV - 4000B

图 4-9 管脚和电路图

- 注:1. 其他 Ri 值按要求提供
 - 2. 必要时用 lpF 电容与 R. 并联, 减小增益波动
 - 3. 尺寸单位是 mm


图 4-10 管脚和电路图

技术参数(工作数据和特性(在 23℃),光二极管(0V 偏压),放大器(±15V)]

参 数	单 位	HUV – 1100BQ	HUV – 2000B	HUV - 4000B
有效面积	mm²	5.1	23.4	100
光谱范围	nm	185 ~ 1150	185 ~ 1150	185 - 1150
响应性(在 900nm)	$10^6 \text{V/W}, R_t = 200\text{M}$	130	130	130
响应性(在 254nm)	$10^6 \text{V/W}, R_f = 200\text{M}$	28	28	28
响应性(在 200nm)	$10^6 \text{V/W}, R_t = 200 \text{M}$	16	16	16
頻率响应(– 3dB)	Hz	DC ~ 1100	DC ~ 1100	DC ~ 1100
噪声电压(在 20Hz)	$\mu V / \sqrt{Hz}$	4	9	9
噪声等效功率	pW/\sqrt{Hz}	0.03	0.07	0.07
噪声等效功率	pW/√Hz	0.14	0.32	0.32
噪声等效功率	p₩/√ Hz	0.25	0.56	0.56
开环增益	105	2	4	4
偏置电流	pA(在 25℃)	30	15	15
失调电流	pA	3	5	5
失调电压	mV	3	3	3
失调电压温漂	μ V /°C	5	10	10
输出电阻	Ω	250	500	500
转换速率	V/µs	12	0.5	0.5
电源电压	v	±5~ ±18	± 12 ~ ± 18	± 12 ~ ± 18
电源电流	mA(在 25℃)	5	2.2	2.2
功耗	mW(在25℃)	150	30	30
工作温度	l °C	0~70	0 ~ 70	0 ~ 70

HUV 双系列(2525BG)集成电路

特点:双通道光电二极管。内装低噪声放大器、放大器有屏蔽。 光谱范围宽,壳体接地。

管脚说明:

1. DI 阳极

2. 通道 A(+输入)

3. 壳体

4. 公共阴极

5. - V 电源

6. 空

7. 通道 B(+输入)

8. 通道 B(- 输入)

9. DZ 阳极

10. 空

11. 通道 B 輸出

12. 空

13. + V 电源

14. 通道 A 輸出

15. 空

16. 通道 A(-輸入)

技术参数(工作数据和特性(在 23℃),光二极管(0V 偏压),放大器(±15V)〕

参 数	单 位	最小	典 型	最大
有效面积	mm²(每通道)		5.7	
光谱范围	лm	250		1100
响应性(900mm)	$10^6 \text{V/W}, R_f = 200\text{M}$		130	
响应性(250mm)	$10^6 \text{ V/W}, R_f = 200 \text{ M}$		28	
并联电阻	MΩ	100	500	
交扰	%(在 633mm)			1
频率响应(-3dB)	Hz	DC	1100	
噪声电压(在 20Hz)	$\mu ext{V} / \sqrt{ ext{Hz}}$		2	
等效噪声功率	pW/√Hz		0.03	
等效噪声功率	pW∕√Hz		0.14	
开环增益	10 ⁵		t	
偏置电流	fA(在25℃)		800	
失调电压	μV			500
失调电压温漂	μ V /℃			15
输出电阻	Ω		100	
转换速率	V/µs	1	2	
电源电压	v	± 5	±15	± 18
电源电流	mA		5	9
功耗	mW	50	150	324
工作温度	જ	0		70

HTE 系列(2100BQ,2104BQ)集成电路

特点:低噪声放大器。有效面积大,内装热敏电阻和反馈电阻。热电冷却,壳体接地。 最大绝对额定值:

TE 冷却电流:1.4A

检测器正向电流:3mA

TE 冷却电压:2.0V

检测器反向电流:0.1mA

放大器电压;±15V 热敏电阻功耗:0.5W 存储温度: -40~60℃ 壳体工作温度: -20~60℃

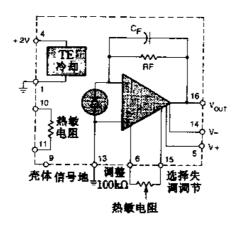


图 4 - 13 HTE 原理图 技术参数[工作数据和特性(在 23℃),光二极管(0V 偏压),放大器(±15V),TE 冷却器(+2V)]

参 数	单 位	HTE – 2100BQ	HTE – 2104BQ
有效面积	mm²	5.1	23.4
响应性(在 900nm)	$10^8 \text{V/W}, R_f = 10^9 \Omega$	6.0	6.0
响应性(在 254nm)	$10^{8} \text{V/W}, R_{f} = 10^{9} \Omega$	1.5	1.5
工作带宽	Hz	0 ~ 20	0 ~ 20
噪声电压(峰 – 峰)	mV(内部温度 + 23℃)	0.20	0.20
噪声电压(峰 - 峰)	mV(内部温度 – 15℃)	0.05	0.05
等效噪声功率	fW/√Hz(-15°C)	14	14
最小可检测功率	pW(在 900nm, 15℃)	33	33
最小可检测功率	p W (在 254nm, - 15℃)	130	130
输出失调电压	mV(内部温度+23℃)	±3.5	± 6.5
备出失调电压	mV(内部温度 - 15℃)	± 0.1	± 0.1
开环增益	106	1	1
阘置电流	fA(内部温度+23℃)	150	150
失调电流	pA(内部温度 + 23℃)	1.1	1.1
失调电压温源	μV/°C	20	20
會出电阻	Ω	100	100
运放电源电压	v	±5~ ±18	±5~ ±18
运放电源电流	mA(在±15V)	1	1
令却电源电压	v	2	2
冷却电源电流	A	1	1
工作温度	℃	- 40 ~ 60	- 40 ~ 60

HAD 系列(1100A)集成电路

特点:内有高速放大器、放大器有屏蔽。光谱范围宽, 壳体接地。失调零控制, 有效面积大。

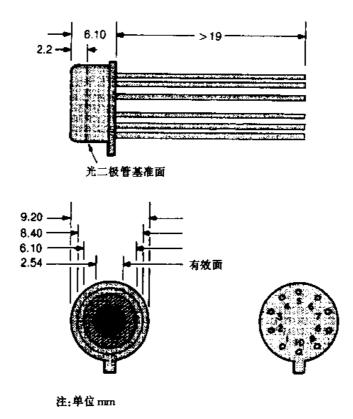


图 4-14 管脚图

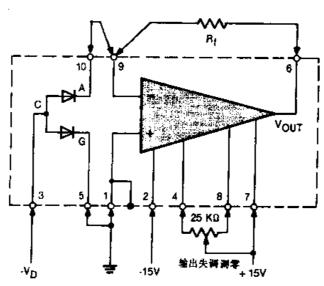


图 4-15 电路图

- 注:1. 图中尺寸单位是 mm
 - 2. 25kΩ用于失调调节控制

技术参数[工作数据和特性(在 23℃),光二极管(-100V 偏压),放大器(±15V)]

参 数	单 位	最 小	典 型	最大
有效面积	mm²	-	5.1	
光谱范围	nm	400		1150
响应性	10^3 V/W,在900nm, $R_f = 10$ k Ω	4	. 5	
响应性	10^3 V/W, \pm 633nm, R _f = 10kΩ	2.5	3	
频率响应(-3dB)	MHz		5	
噪声电压(在 lkHz)	nV∕√Hz		25	
等效噪声功率	pW/\sqrt{Hz} , $R_i = 10k\Omega$		5	
等效噪声功率	pW/\sqrt{Hz} , $R_f = 10k\Omega$		8	
开环增益	104	5	20	
偏置电流	pA		30	
失调电流	pA.		3	
失调电压温漂	μ V /°C		5	
輸入阻抗	$10^{12}\Omega$		1	
輸出阻抗	Ω		80	
斜率转换速率	V/μ _B		50	
上升时间	ns , R_f = $10 k\Omega$		70	
电源电压	v	±5	± 15	± 18
电源电流	mA		5	10
功耗 .	mW .		150	300
工作温度	°C	0		70
存储温度	°C	- 55		125
輸出短路电流	mA		15	
失调电压	mV		3	10

DFA 系列(DFA - × × × ×)集成电路

特点:内有低噪声放大器,壳体接地,放大器有屏蔽,有效面积大,内设干扰滤波器,光谱范 围宽。

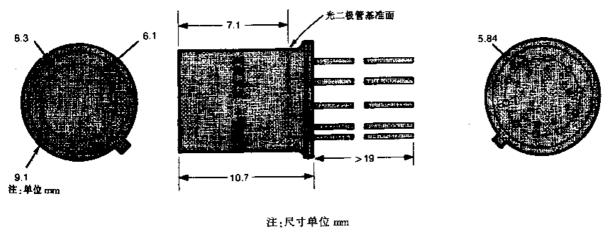
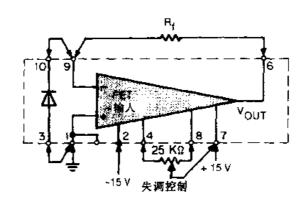



图 4-16 管脚图

注:1.25kΩ 用于失调电压调节 图 4-17 电路图

技术参数[工作数据和特性(在 23℃),光二极管(0V 偏压),放大器(±15V)]

参 数	单 位	最 小	典型	最大
有效面积	rum²		9.9	
光诸范围	nra	250		1100
响应性(在 900nm)	$10^6 \text{V/W}, R_f \approx 200 \text{M}\Omega$		54	
响应性(在 633nm)	$10^6 \text{V/W}, R_f \approx 200 \text{M}\Omega$		36	
响应性(在 250nm)	$10^6 \text{V/W}, R_i = 200 \text{M}\Omega$		6	
频率响应(-3dB)	Hz	DC	1100	
噪声电压(在 20Hz)	$\mu V / \sqrt{Hz}$ $R_f = 200 M\Omega$		4	
等效噪声功率(900nm)	p W /√ Hz		0.07	
等效噪声功率(633nm)	pW/√Hz		0.11	
等效噪声功率(250nm)	p₩/√ H z		0.67	
开环增益	105		2	1
偏置电流	pA		30	
失调电流	pA		3	
失调电压温源			5	
输出电阻	Ω		250	} 1
转换速率	V/μs		12	
电源电压	v	± 5	± 15	± 18
电源电流	mA(在±15V)		5	
功耗	mW(在±15V)		150	ļ
工作温度	°C	0		60
失调电压	mV) 3	

F系列(FND-100,FND-100Q)集成电路

特点:有效面积大 响应性高 光谱范围宽 上升和下降时间小 等效噪声功率低 隔离光二极管芯片

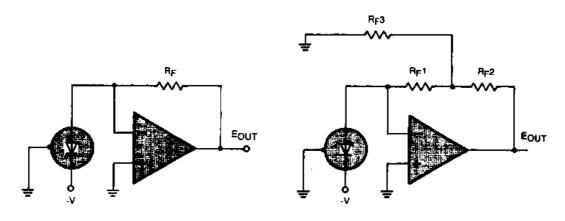
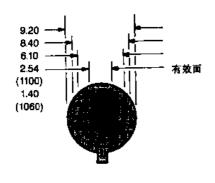
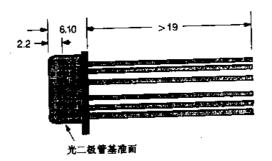


图 4-18 推荐工作电路

图中 $R_{\rm F} = F_{\rm F1} + R_{\rm F2} + \frac{R_{\rm F1} \times R_{\rm F2}}{R_{\rm F3}}$


技术参数[工作数据和特性(在 23℃),典型特性(在 90V 偏压)]


参 數	单 位	最小	典 型	最大			
有效面积	run²		5.1				
光谱范围	nm	400	1150	1150			
		200(FND - 100Q)		1150			
响应性	A/W(在 850nm)	0.5	0.6				
带宽	MHz(接 50Ω)		350				
上升时间	ns(接 50Ω)		< 1				
工作电压	v	0		100			
击穿电压	ν,	125	150				
电容	рF		8.5	10			
暗电流	nA		10	25			
串联电阻	Ω		20				
噪声电流	fA∕√Hz(在1kHz)		60	90			
等效噪声功率	pW∕√Hz		0.10	0.18			
响应线性度	%			1			
工作温度							
FND - 100	€C	- 55		125			
FND - 100Q	℃	- 55		7Ó			
封装型式							
FND - 100Q		TO - 5					

HFD 系列(1060,1100)集成电路

特点:600V/µs 转换速率放大器。

电压和温度稳定性好,放大器有屏蔽,壳体接地,工作电压低,光谱范围宽。

注:单位 🚌

图 4-19 管脚图

图 4-20 电路图(直接反馈)

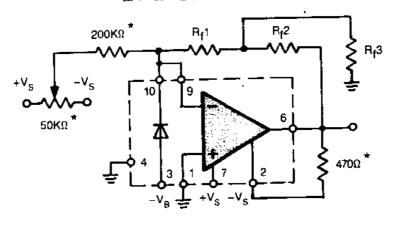


图 4-21 电路图(T形反馈)

注:* 为推荐电阻值,电源线上要求连接高通滤波器

管脚说明:

- 1 电源地(+輸入)
- 2 V 电源
- 3 V偏压(阳极)
- 4 壳体地
- 5 空

- 6 输出
- 7 + V 电源
- 8 至
- 9 反相输入(-输入)
- 10 阴极

技术参数[工作数据和特性(在 23℃),光二极偏压(-15V),放大器(±15V)]

参 数	单位	最小	典 型	最大
有效面积	mm²(HFD - 1060)		1.5	
有效面积	mm ² (HFD – 1100)		5.1	
响应性(在 900nm)	10^4V/W , $R_{\rm f} = 100 \text{k}\Omega$	5	6	
响应性(在 633nm)	10^4V/W , $R_i = 100 \text{k}\Omega$	3.5	4	
频率响应(-3dB)	MHz	DC	35	
噪声电压	$\mu V_{\rm RMS}, R_{\rm f} = 100 { m k}\Omega$		700	!
最小可检测功率	$10 \text{nW} (850 \text{nm}), R_{\text{f}} = 100 \text{k}\Omega$		1.2	
最小可检测功率	$10 \text{nW} (633 \text{nm})$, $R_I = 100 \text{k}\Omega$		1.3	
开环增益	$R_{L} \geqslant 150\Omega$		300	
偏置电流	μ A	į	5	
失调电流	μA		3	
失调电压	mV	•	2	
失调电压温漂	μV/°C		5	
输出电阻	Ω		10	
转换速率	$V/\mu s$	300	•	600
电源电压	į v	±5		± 12
电源电流	mA	8		14
功耗	m W	80	220	336
工作温度	i g	0	i	70

DTC 系列应用电路

用途:双波长功率表和双色温度测量

注:单位 mm

特点:双波长检测,并行输出,Si/Si 或 Si/InGaAs 夹层。

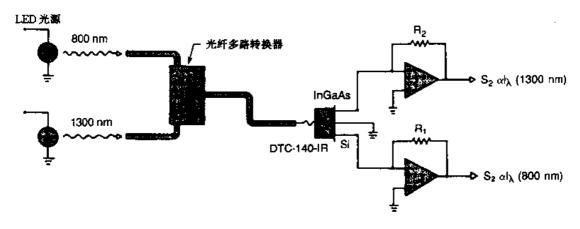



图 4 - 22 DTC - 140 和 DTC - 140-IR 管脚图

注: I_x 是规定波长光的强度 图 4-23 双波长表

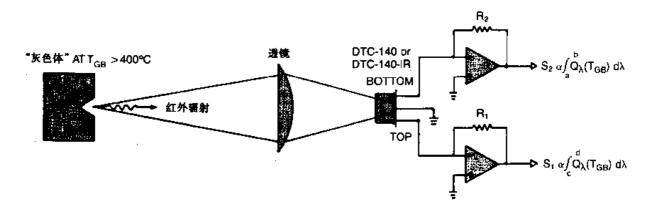
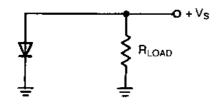


图 4-24 双色温度传感器


注:1.a-b是二极管底的光谱范围,c-d是二极管顶的光谱范围。

- 2. Q₄(T_{GB})是每单位波长从灰色体来的光子流量
- $3.\frac{S}{S_1}$ 比用于决定灰色体温度 T_{CB} (除发射或绝对信号电平外)

技术参数[工作数据和特性(在 23℃),光二极偏压(0V)]

参数	単位	DTC - 140		DTC 140-IR	
		顶二极管	底二极管	顶、极管	底二极管
材料		Si	Si	Si	InGaAs
有效面积	nun²	9,9	9.9	9.9	7.1
有效面直径	mm	3.5	3.5	3.5	3.0
光谱范围	nm	400 ~ 1100	950 ~ 1100	400 ~ 1100	950 ~ 1700
响应性(在 900mm)	ÆW	0.60	0	0.60	0
向应性(在 1040nm)	A/W	0.25	0.15	0.25	0.35
阿应性(在 1550nm)	A/W			i	0.60
电容	pF	300	300	300	1800
并联电阻	Ω	50M	50M	50M	50k
等效噪声功率(峰值,lkHz)	pW/\sqrt{Hz}	0.033	0.133	0.033	0.960
向 应线性度	%	1	1	1	1
温度					
向应系数(900mm)	%/°C	+0.03		+0.03	
向应系数(1040nm)	%/°C	+1	+1	+ 1	0.02
向应系数(1550nm)	%/°C				0
中联电阻系数	%/°C	- 12	- 12	- 12	- 10
封装型式		TO - 5		TO - 5	

光二极管基本应用电路

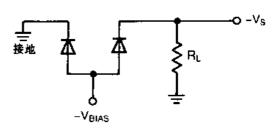


图 4-25 光二极管电阻负载电路

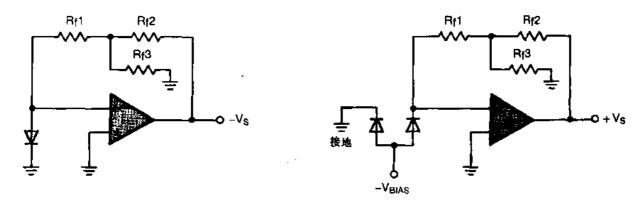


图 4-26 光二极管运算放大器 T 形反馈电路

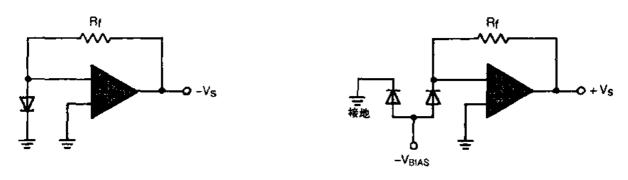


图 4-27 光二极管运算放大器直接反馈电路

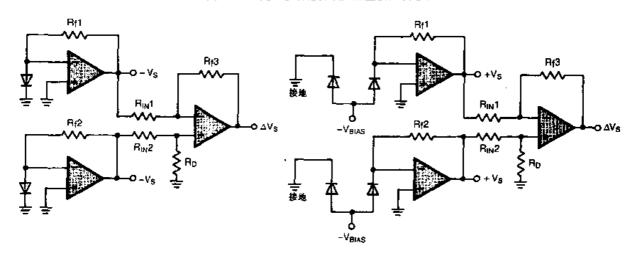


图 4-28 光二极管差分放大器电路

LED 模拟光耦合器电路

LED 模拟光耦合器由固态电源(光发射二极管 LED)和 CdS 光电阻或光电池组成。

用途:用于自动增益控制,听觉限制和压缩,DC隔离,无噪开关,光线断路器,SCR和晶闸管驱动,线性隔离,逻辑接口。

特点:输入至输出的隔离电压高,动态范围宽。适用于 AC 或 DC,适用单、双电源输出。驱动电流和电压低,导通电阻小。

LED 模拟光耦合器性能对比表

型号	动态范围	暗电阻	温度系数	响应速率	光变化影响
VIL2C1	80dB	100ΜΩ	极高	极快	极大
VII.2C2	63dB	IMΩ	低	慢	小
VTL2C3	72dB	10ΜΩ	极低	极慢	极小
VII.2C4	72dB	400kΩ	高	快	大
VII.5CI	100dB	50MΩ	极高	极快	极大
VTL5C2	69dB	1ΜΩ	低	慢	小
VT1.5C3	75dB	10ΜΩ	极低	极慢	极小
VII.5C3/2	71dB	10ΜΩ	极低	极慢	极小
VTL5C4	72dB	400kΩ	高	快	大
VT5C4/2	68dB	400kΩ	髙	快	大
VTI.5C6	88dB	100ΜΩ	低	慢	小
VII.5C7	75dB	1ΜΩ	中等	中等	中等
VTL5C8	80dB	10ΜΩ	低	慢	小
VTI.5C9	112dB	50MΩ	极高	极快	极大
VTL5C10	75dB	400kΩ	高	快	*

VTI.2C3,2C4 的结构及特性

最大绝对额定值

最大存储和工作温度:

芯片功耗:

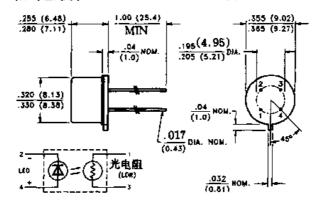
LED 电流:

LED 反向击穿电压:

LED 正向压降(在 20mA):

最小隔离电压,70%相对湿度:

~ 40 ~ 75℃


100mW(每上升 30℃, -2.22mW/℃)

40mA(每上升 30℃, -0.9mA/℃)

3.0V

2.0V(1.65V 典型)

500V 峰值

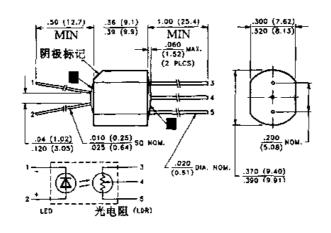
注:单位英寸(mm) 图 4-29 封装结构图

输出芯片电容:

芯片电压:

输入输出耦合电容:

5.0 pF


300V(VTL2C3),70V(VTL2C4)

2.0pF

光电参数(在 25℃)

			輸出	出电阻			响应时间		
型号	型号 导通电阻 输入电流 暗匹配	导通电阻		- 美断电阻	斜率	动态范围	接通至	关断至	
		光匹配	, , , , , o an	#-1 -1-	93 /64 163 154	63 % R _{ON}	100 kΩ		
VTL2C3	1mA 40mA	50kΩ 1kΩ	- 2kΩ	10ΜΩ	21	72dB	2.5ms	35ms	
VTL2C4	1mA 40mA	1.5kΩ 50Ω	10001	400kΩ	14.7	72dB	6.0ms	1.5s	

VTL5C3/2,5C4/2 的结构及特性

注:单位英寸(mm) 图 4-30 封装结构图

最大绝对额定值

最大存储和工作温度:

芯片功耗:

LED 电流:

LED 反向击穿电压:

LED 正向压降(在 20mA):

输出芯片电容:

芯片电压:

输入至输出耦合电容:

- 40 ~ 75℃

175mW,每升高 30℃: - 3.9mW/℃

40mA,每升高30℃:-0.9mA/℃

3.0V

2.0V(1.65V 典型值)

5pF

100V(VTL5C3/2),30V(VTL5C4/2)

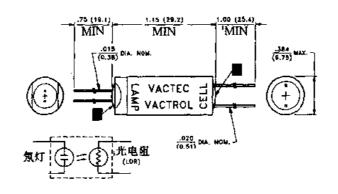
0.5pF

光电参数(在25℃)

			响应时间						
型号		导通电阻			斜率	动态范围	接通至	关断至	
	输入电流 暗匹配 光匹配	光匹配) 美断电阻	种争	912°11111	63% R _{ON}	100kΩ		
VIL5C3/2	lmA	55kΩ	_	10ΜΩ 19	10	71dB	2.0	50	
VIII(1)/2	40mA	2kΩ	3kΩ			/10.6	3.0ms	50ms	
V115C4/2	1mA	1.5kΩ	_	4001.0	5.2	60 m	4.0		
¥ (13)(4/2	10mA	150Ω	500Ω	400kΩ	8.3	68dB	6.0ms	1.5s	

氖灯模拟光隔离电路

氖灯模拟光隔离电路由一个氖灯泡和光电阻组成。


用途:光线断路器、电话振铃检测、SCR和晶闸管的驱动。

特点:输入至输出的隔离电压高,纯电阻输出。适用于 AC 或 DC,可用单双电源输出,转换特性变化范围宽,驱动电流小。

氖灯模拟光耦合器性能比较表

型 号	导通	导通电阻		温度系数	响应速率	光变化影响	
42 5	0.1mA	1.0mA	一 暗电阻	温皮 示敦	啊应逐争	元变化影啊	
VTL3B18	12kΩ		50MΩ	极高	极快	极大	
VTL3B19	-	800Ω	50MΩ	极高	极快	极大	
VTL3B29	- !	700Ω	1ΜΩ	低	慢	小	
VTL3B39	- 1	3.9 kΩ	10MΩ	极低	极慢	极小	
VTL3B48	12kΩ	-	IMΩ	高	快	大	
VTL3B49	-	250Ω	IMΩ	高	换	大	

VTL3B39,3B49 的结构和特性

注;单位英寸(mm) 图 4-31 封装结构图

最大绝对额定值

最大存储和工作温度:

- 40 ~ 75℃

芯片功耗:

175mW,每升高 25℃: -3.5mW/℃

壳体功耗:

550mW

芯片电压:

250V(VTL3B39),100V(VTL3B49)

最小隔离电压(相对湿度 70%):

2500V 峰值,60Hz

氖灯击穿电压:

75 ~ 135V

氖灯维持电压:

70V

最小电源电压

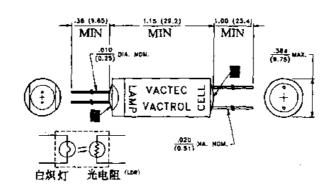
60VAC

光电参数(25℃)

			响应时间						
			导通电阻						
型号 灯泡输入 DC AC	灯泡輸入				美断电阻	接通至 63%R _{ON}	美断至 100kΩ		
	AC	暗匹配	光匹配						
	电流	电压	限制电阻						
VT L 3B39	-	120V	27kΩ	4kΩ	6kΩ	40250	5ms		
V 117979A	2.0 mA	_	-	2kΩ	3kΩ	10ΜΩ		35ms	
7TT 2D40	-	120V	27kΩ	130Ω	160Ω	1160		500	
/TL3B49	3B49 2.0mA	_	-	120Ω	135Ω 1ΜΩ		5ms	600ms	

白炽灯模拟光耦合器电路

白炽灯模拟光耦合器由一个白炽灯泡和一个光电阻组成。


用途:DC隔离、无噪开关、自动增益控制、SCR和晶闸管驱动。

特点:输入至输出隔离电压高,纯电阻元件输出,适用于 DC 或 AC,单或双电源输出,转换特性范围宽,导通电阻低,输入波形 RMS 值检测。

白炽灯模拟光耦合器性能比较表

型号		导通电阻		*** d+ #**	MI HE SE W.		ale sale de Ed such	
4. 5	灯泡电压	灯泡电流		暗电阻 !	温度系数	响应 速率 	光变化影响	
VTL3A14	6.0V	40mA	160Ω	50ΜΩ	极高	极快	极人	
VIL3A17	12V	40mA	160Ω	50MΩ	极高	极快	极大	
VIL3A24	6.0V	40mA	350Ω	IMΩ	低	慢	亦	
VIL3A25	10V	14mA	600Ω	1ΜΩ	低	慢	小	
VII.3A27	12V	40mA	90Ω	1ΜΩ	低	慢	小	
VTL3A35	10V	14mA	3.0kΩ	10ΜΩ	极低	极慢	极小	
VTL3A37	12V	40mA	300Ω	10ΜΩ	极低	极慢	极小	
VTL3A44	6.0V	40mA	55Ω	1ΜΩ	髙	快	大	
VTL3A47	12V	40mA	40Ω	1ΜΩ	高	快	大	

VTL3A17/27/37/47 的结构和特性

注:单位英寸(mm) 图 4-32 封装结构图

最大绝对额定值

最大存储和工作温度:

-40 ~75℃

壳体功耗:

550mW

最小隔离电压:

2500V_{PK},60Hz

芯片功耗:

175mW,每升高 25℃: -3.5mW/℃

芯片电压:

100V(VTL3A17,3A47),200V(VTL3A27),250V(VTL3A37)

光电参数(25℃)

			輸出电阻			响应	应时间	
E4 D		 导通	i电阻			接通至 63%R _{ON} 25ma 80ms		
型号	灯	·———————— 輸入	ný pr Al	ν.α 	关断电阻		关断至 100kΩ	
	电压	电流	暗匹配	光匹配				
VTL3A17	12V	40mA	50Ω	160Ω	50MΩ	25ms	150ms	
VTL3A27	12V	40mA	90Ω	150Ω	1ΜΩ	80ms	400ms	
VTL3A37	12V	40mA	150Ω	300Ω	10ΜΩ	50ma	150ms	
VTL3A47	12V	40mA	25Ω	40Ω	IMΩ	25ms	900ms	

模拟光隔离器的典型应用电路

模拟光隔离器(AOIs)由光源(灯或 LED)和光控电阻(LDR 或光电池)组成。

特点:输入与输出隔离电压高,纯电阻元件输出,可实现单或双电源输出,适用于 AC 或 DC。输入至输出动态范围宽,驱动电流小,导通电阻低,关断电阻高。

用途:直流隔离,ACC电路中反馈元件,听觉限制和压缩,无噪开关,SCR和触发三极管驱动,逻辑接口,放大器的远程控制,光线断路器,无噪电位计,电话振铃探测器,入射波形 RMS 值探测等。

典型应用电路

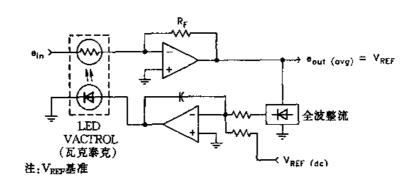


图 4-33 自动增益控制电路

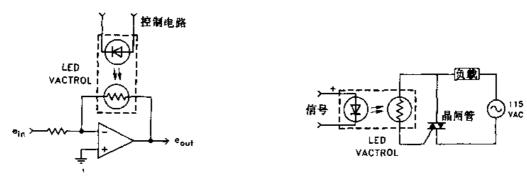


图 4-34 遥控增益控制电路

图 4-35 晶闸管驱动电路

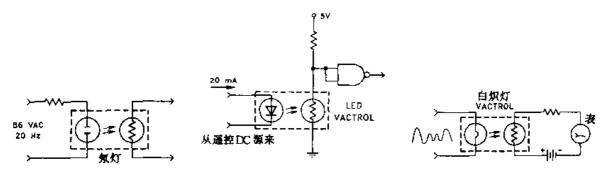


图 4-36 电话振铃检测电路

图 4-37 无噪声开关/逻辑接口电路

图 4-38 输入波 RMS 值的测量电路

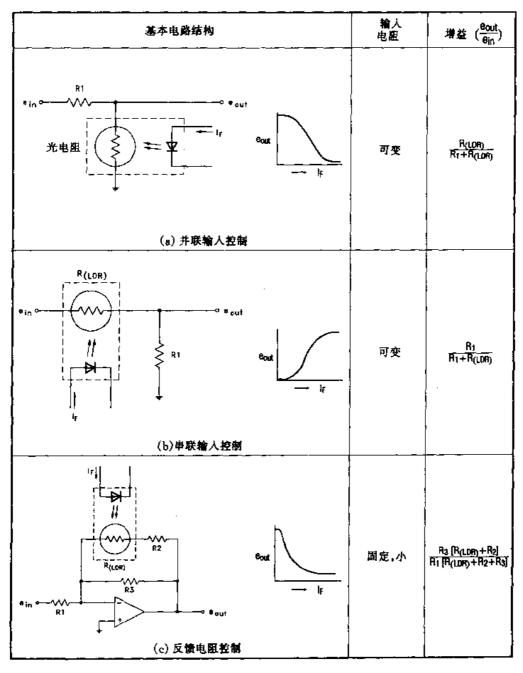
基本电路结构

并联输入电路

在图 4-39(a)中, AOI 作为并联元件使用,在 $I_F=0$ 时, LDR 的阻值非常高,因此 $e_{out}=e_{in}$ 。 当 I_F 流人 LED 时, AOI 的输出电阻降低,拉下输出电压。因 LDR 不能驱动成零电阻,所以 R_1 应选择为所希望的最大衰减值。

例如用 VTL5C4 元件,最大导通电阻为 200Ω ,在 $I_{\rm F}=10{\rm mA}$ 时,要求 $R_{\rm I}$ 为 6100Ω ,具有 $30{\rm dB}$ 电压衰减(产生 1000:1 功率比)。实际衰减比要大,因为 $10{\rm mA}$ 时,导通电阻典型值是 125Ω 。当 $I_{\rm F}$ 最大值小于 $10{\rm mA}$ 时,要得到同样的衰减比所需的串联电阻值必须大。

串联输入控制电路


图 4-39(b)中,AOI 作为串联元件使用,在 $I_F = 0$ 时, $e_{out} = 0$, 加在 LDR 两端的最大电压是 e_{in} ,随 I_F 增加而减小。

运放反馈电阻控制电路

在运算放大器中,AOI 可用做输入或反馈电阻。图 4-39(c)是用于并联固定反馈电阻的情况。在增益最大时,反馈接近开路条件。在开环状态,电路变为不适用并被锁定。并联电阻 R_3 设定在放大器的最大增益和具有稳定的 DC 输出电压,与 AOI 串联的电阻 R_2 使电路具有最小增益。如 $R_2=R_3$,则对增益为 1 的放大器进行补偿,因此电路增益不小于 I。在 LDR 上的最大电压是 $e_{\rm out}$,如果要求最小失真,则 $e_{\rm out}$ 应保持在 1V 以下。

运算放大器输入电阻控制电路

在图 4-39(d)中,运算放大器用 AOI 做输入电阻使用,串联一个固定电阻,可限制最大增

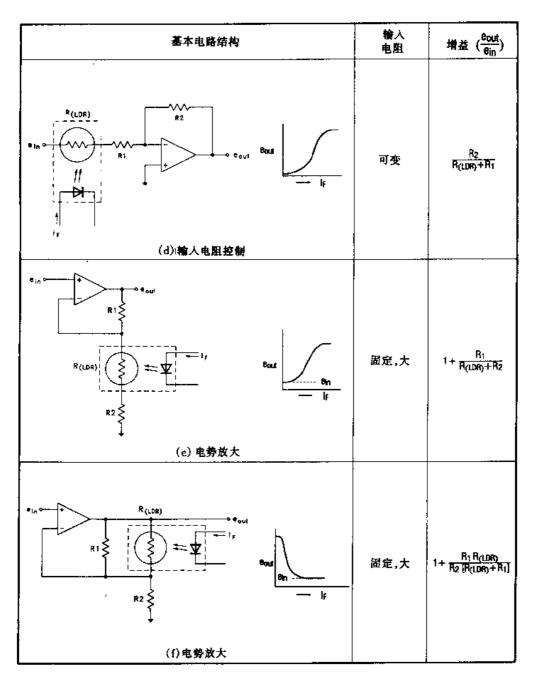


图 4-39 基本电路

益,预防前级过载。

放大器中的应用电路

在图 4-39(e)中,电路要求电阻与 AOI 串联。图 4-39(f)中电路要求电阻与 AOI 并联。 AOI 用于放大电路中的增益控制电路,电阻用来限制最大增益。

开关电路

在开关电路中, AOI 代替机械开关, 在输入电路中, LDR 初始电阻高, 使放大器的增益接近为零。通过改变 LED 的正向电流, 使 LDR 上的电阻变化, 阻值降低, 放大器的增益变化近似于指数变化, 使放大器饱和导通。图 4-40 是由开关电路扩展成的矩阵开关, 表示 3×3, 点数不限制。矩阵控制通常用于定位遥控, 通过控制 LED 的直流电流, 可以用开关控制手动电位器和计算机。

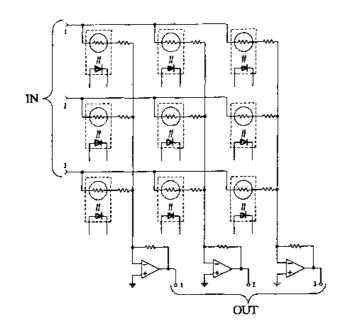


图 4-40 开关矩阵电路

矩阵开关还可用于简单通断门电路、多通道信号控制、一般电路和比例调节电路等场合。

门电路

音频声控门电路应用如图 4-41 所示。电路由下列 5 个基本部分组成: 阀门调节电路、高AC 增益级电路、全波整流电路、LED 驱动器电路和电控电压分压器电路。当信号低于阈值电平时, AOI 和 R_{10} 组成的电压分压器具有最大衰减。当信号超过阈值电平时, 电压分压器允许信号全通过。电路工作原理如下: 阈值电位器将一部分信号送至高增益 AC 放大器, 放大器由 A_1 、电阻 R_2 和 R_3 以及电容 C_1 组成。放大后的信号通过二极管 D1 和 D2 进行全波整流,同时 A2 运放将负半周反相,整流器对 C_2 充电,用于释放时间的控制,驱动晶体管 Q_1 的基极和 LED 驱动器。阈值电压是整流二极管的正向压降、 R_6 两端的电压降、 Q_1 的 V_{BE} 和 LED 的 V_F 之和。本电压约为 $2.5 \sim 3.0 V$,放大器输入阈值电压 $2.5 \sim 3.0 W$ 。

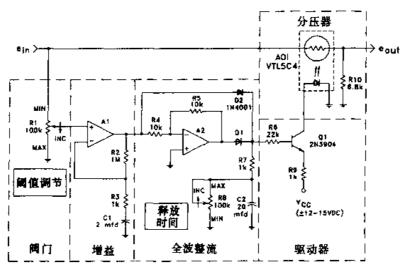
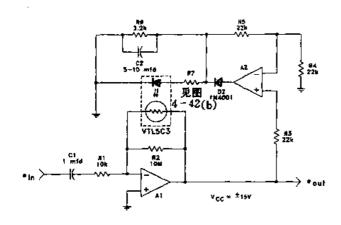



图 4-41 音频声控门电路

限幅器电路

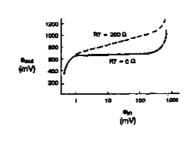


图 4-42(a) 峰值检测压缩器

图 4-42(b) 输出特性

在电路中用 AOI 非线性器件,不会引起失真和产生噪声。电路要完成一个限幅器或压缩器的功能。当信号大时,必须有低的增益;当信号小时,必须有高的增益。增益调节可在宽动态范围内压缩成一个恒定信号。在处理其他信号时,信号输出需要保持一个常数。如图 4-42(a)电路中,当输入电压在 50~60dB 范围内变化时,输出保持一个恒定电平。放大器 A₁ 工作在反相放大状态,其增益为:

$$e_{\rm out}/e_{\rm in} = R_{\rm LDR}/R_{\rm I}$$

反馈电阻是一个 LDR 和一个 $10M\Omega$ 的关断电阻。在 LED 为 5mA 时,最小导通电阻为 5000Ω ; LDR 关断时,电阻大于 $10M\Omega$, R_2 限制最大增益。 A_1 开路时无信号输入, A_2 工作在高输入阻抗整流器,用于驱动 LED。

峰值检测电路

图 4-43 是一个具有恒定带宽的峰值传感检测电路。为了保证输入信号有同样的带宽范

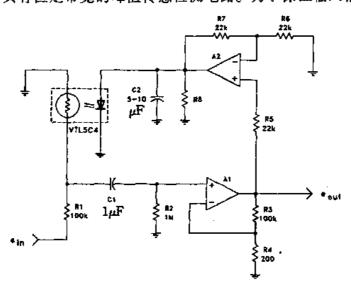
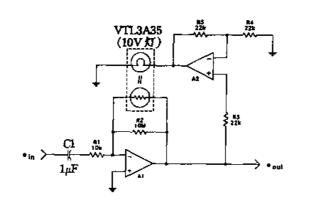



图 4-43 具有恒定带宽的峰值检测电路

围,放大器增益为500,电压分压器范围为1000:1。AOI变为低电阻,使电路工作在一个宽范围。A₁ 是高输入阻抗放大器。当输入电压高时,可用一个低增益放大器。A₂ 放大器用来驱动 LED。

RMS传感检测电路

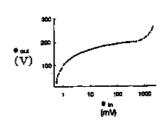


图 4-44(a) RMS 检测电路

图 4-44(b) 输出特性

图 4-44(a)是 RMS 检测电路,对于复杂波形,峰值用 RMS 值替代不易实现。在有些情况下,电路输出如图 4-44(b)限制一定范围可以较好选择。电路中的灯用 AC 或 DC 电源工作均可,输出不是常数,但灯电压曲线和电压放大曲线的一致性好。

扬声器功率限幅器

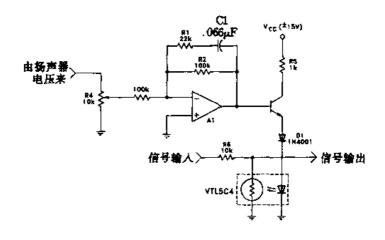


图 4-45 具有频率补偿的扬声器功率限幅器

图 4-45 是用限幅器来减小低频功率的电路。在 200Hz 以下,电路限制阈值电压。在低频时,放大器 A1 的增益为 1。放大器在 25Hz 时启动,增益为 6dB/倍频程;在 100Hz 时关断。R4 电位器用于调节阻抗匹配。Q1 的 V_{BE} , D_1 的正向压降和 LED 的电压和设定阈值电压,电压约 2.8V(峰值)或 2.0V(RMS)。A0I 用于衰减信号电压。

自动增益控制电路

图 4-46 表示一个自动增益控制(AGC)电路。电路由三部分组成;可变增益放大器、全波

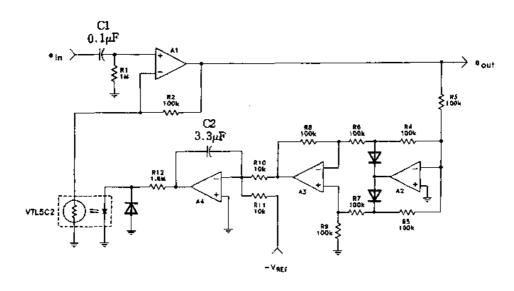


图 4-46 具有电调节点的自动增益控制电路

有源整流器和一个加法放大器。可变增益放大器由 A1 和 AOI 的 LDR 电阻控制的增益电位器 组成,放大器的增益为:

$$G = 1 + R_2 / R_{IDR}$$

放大器 A_2 与 D1、D2 及电阻 R_3 、 R_4 和 R_5 构成全波整流器。 A_2 是直流输出。运放 A_3 和电阻 R_6 、 R_7 、 R_8 和 R_9 构成全差分放大器。运放 A_4 是一个积分器。

电控可编程增益电路

图 4-47 为用于放大器的电控可编程增益控制电路。AOI 具有一个中心抽头接地的 LDR,一边接信号通道,一边接控制环路。信号放大器由运放 A1、电阻 R_3 、增益调节电阻 R_2 和 输入电阻 R_5 组成。放大器的增益为:

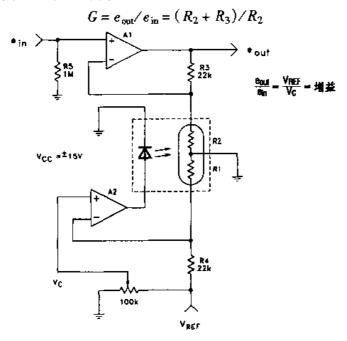


图 4-47 电控可编程增益电路

控制环路由运放 A2 和电阻 R1、R4 组成,电路用于调节 LED 的电流。

$$V_{\rm REF}/V_{\rm C} = (R_1 + R_4)/R_1$$

如设定 $R_3 = R_4$, $R_1 = R_2$

则

$$e_{\rm out}/e_{\rm in} = V_{\rm REF}/V_{\rm C}$$

或

$$e_{\rm out} = e_{\rm in} (V_{\rm REF}/V_{\rm C})$$

式中 $V_C =$ 控制电压,其工作电压限制: $0 < V_C < V_{RMF}$ 。

生产厂家:EG&G 公司(北京办事处)

4.2 西门子(SIEMENS)光电变换应用电路

通用光耦合电路

SFH640型 5.3KV 高集发击穿电压光耦合电路

用途:用于工业控制、隔离电路、办公设备及通讯领域。

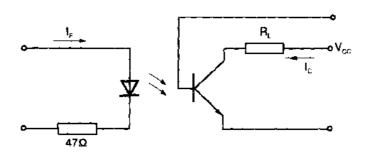


图 4-48 电路图

管脚说明:

1.阳极,2.阴极,3.空,4、发射极,

5.集电极,6.基极。

图 4-49 管脚图

开关参数($I_{\rm C} = 2$ mA, $R_{\rm L} = 100\Omega$, $T_{\rm A} = 25$ °C, $V_{\rm CC} = 10$ V)

多 数	符号	单位	数 值
接通时间	t _{ON}	μs	5
上升时间	t_{R}	128	2.5
关断时间	toff	μ ε	6
下降时间	ι_{F}	μs	5.5

SFH640 型光耦合器

特点:在 IF=10mA, VCE=10V 时, CTR(电流传输比):SFH640-1,40~80%;SFH640-2,63

$\sim 125\%$; SFH640 $- 3,100 \sim 200\%$.

与正向电流有良好的线性关系;CTR下降率低;集发击穿电压高; $BV_{CER} = 300V$;耦合电容小;高共模瞬变抗干扰能力。

最大额定值:

发射器:反向电压: 6V; DC 正向电流: 60mA; 浪涌正向电流 $(t_p \le 10\mu s)$; 2.5A; 总功耗: 100mW。

检测器:集发电压:300V;集基电压:300V;发基电压:7V;集电极电流:100mA;总功耗:300mW。

封装:发射器和检测器之间的耐压:5300VDC;隔离电阻($V_{\rm IO}=500$ V, $T_{\rm A}=25$ °C); $\geq 10^{12}\Omega$;存储温度: $-55\sim150$ °C;工作温度: $-55\sim100$ °C;结温:100°C,引线焊接温度(10s,离焊面 ≥ 1.5 mm);260°C。

技术参数(TA=25℃)

参 数	符号	測试 条件	单位	最小	典型	最大
发射器						
正向电压	$V_{\mathbf{F}}$	$I_{\rm F} = 10 { m mA}$	v		1.1	1.5
反向电压	V_{R}	$I_{\rm R} = 10 \mu {\rm A}$	v	6		
反向电流	$I_{ m R}$	$V_{\rm R} = 6 \rm V$	μΑ		0.01	10
输出电容	Co	$V_{\rm H} = 0 \text{V}$, $f = 1 \text{MHz}$	рF		25	1
热阻 	R _{thJA}		K/W		750	
金 測器						
电压	ŀ		}			ļ
集发	BV_{CER}	$I_{\text{CE}} = 1 \text{mA}$, $R_{\text{RE}} = 1 \text{M}\Omega$	v	300		-
发基	BV_{EBO}	$I_{\rm EB} = 10 \mu {\rm A}$	v	7		
电容	€ _{CE}	$V_{\text{CE}} = 10\text{V}, f = 1\text{MHz}$	рF		7	
	C _{CB}	$V_{\rm CB} = 10 \text{V}$, $f = 1 \text{MHz}$	pF		8	
	$C_{\rm EB}$	$V_{\rm EB} = 5 \rm V$, $f = 1 \rm MHz$	рF	1	38	
热阻	R_{ihJA}		K/W		250	
対装						
耦合电容	c _c		pF		0.6	
耦合传输比	l		!			
SFH640 - 1	I _C /I _F	$I_{\rm F} = 10 \text{mA}$, $V_{\rm CE} = 10 \text{V}$	%	40		80
		$I_{\rm F} = 1 \mathrm{mA}$, $V_{\rm CE} = 10 \mathrm{V}$		13	30	
SFH640 - 2	$I_{ m C}/{ m I}_{ m F}$	· · · · · · · · · · · · · · · · · · ·	%	63		125
		$I_{\rm F}=1{ m mA}$, $V_{\rm CE}=10{ m V}$		22	45	
SFH640 - 3	$I_{\rm C}/{ m l}_{\rm F}$	$I_{\rm F} = 10 {\rm mA}$, $V_{\rm CE} = 10 {\rm V}$	%	100		200
		$I_{\rm F}=1{ m mA}$, $V_{\rm CE}=10{ m V}$		34	70	
集发饱和电压						
SFH640 - 1	V _{Œset}	$I_{\rm F}$ = 10mA, $I_{\rm C}$ = 2mA	v		0.25	0.4
SFH640 - 2	V_{Object}	$I_{\rm F} = 10 {\rm mA}$, $I_{\rm C} = 3.2 {\rm mA}$	V		0.25	0.4
SFH640 - 3	$V_{\mathcal{C}_{\mathbf{E}_{ed}}}$	$I_{\rm F}=10{ m mA}$, $I_{\rm C}=5{ m mA}$	v		0.25	0.4
集发漏电流	ICER	$V_{\rm CE} = 200 \mathrm{V}$, $R_{\rm BE} = 1 \mathrm{M}\Omega$	пА		1	100

SFH6941T型低电流输入小型光耦合电路

用途:用于通讯和仪器仪表等领域。

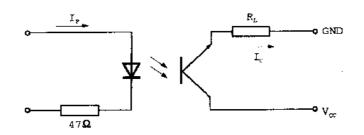


图 4-50 耦合器电路图

开关参数

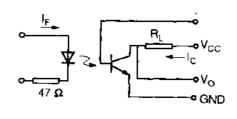
	符号	测试条件	单位	数值
接通时间	t _{un} ,	$I_{\rm F} = 2 {\rm mA}$		3
上升时间	f,	$R_{\rm L} = 100\Omega$		2.6
关断时间	$t_{ m off}$	$T_{\rm A} = 25$ C	3	2,8
下降时间	t _f	$V_{\rm CC} = 5 \text{ V}$		2.8

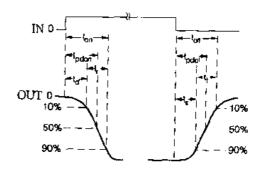
SFH6941T 由四通道小型光耦合器组成。适于高密度封装的 PCB 应用。

特点:低电流输入;高 CTR,150%;对正向电流 CTR 有好的线性;CTR 下降率小;集发电压高, $V_{\text{CEO}}=70\text{V}$;耦合电容低;高共模瞬变抑制能力;

最大绝对额定值:

发射器:反向电压:3V;DC 正向电流:5mA;浪涌正向电流(10秒):100mA;总功耗:10mW。 检测器(硅晶体光三极管):集发电压:70V;发集电压:7V;集电极电流:10mA;集电极浪涌 电流(1ms):20mA;总功耗:20mW。


封装:发射器和检测器之间的隔离电压:2500VDC;隔离电阻($V_{10} = 500$ V, $T_A = 25$ °C): 10^{11} Ω;存储温度: $-55 \sim 150$ °C;环境温度: $-55 \sim 100$ °C;结温:100°C;引线焊接温度(10 秒):260°C。


技术参数(T_A = 25℃)

参数	符号	单位	最小	典型	最大
发射器(红外 GaAS)					
正向电压, I _F = 5mA	$V_{ m F}$	V		1.25	
反向电流, V _R =3V	$I_{\mathbb{R}}$	A		0.01	10
输出电容, $V_R = 0V$, $f = 1MHz$	C _o	рF		. 5	
热阻	R _{thJA}	K/W		1000	
检测器(硅光晶体管)					
集发电压, I _{CE} = 10A	V_{CEO}	V	70		
发集电压, I _{EC} = 10A	$V_{\rm ECO}$	V	7		
电容, V _{CE} = 5V, f = 1MHz	C_{CE}	pF		6	
热阻	$R_{ m thJA}$	K/W		500	
封装					
耦合电容	$c_{\rm c}$	рF		1	

H11D1/H11D2/H11D3 型 5.3kV 光隔离电路

用途:用于通信领域,并可代替继电器进行控制。

(a) 电路

(b) 波形

图 4-51 光耦器电路及波形图

H11D1/2/3 是 BVCFR非常高的光耦合器,用于高阻断电压的 DC 电路和通讯领域。

特点:在 $I_F = 10$ mA, $BV_{CER} = 10$ V 时, $CTR \ge 20\%$; 对正向电流 CTR 有良好的线性; CTR 下降率低; 耦合电容小; 高共模瞬变抑制能力。

最大额定值:

发射器:反向电压:6V;DC 正向电流:60mA;正向浪涌电流(10 秒):2.5A;总功耗:100mW。 检测器:集发电压:H11D1/2,300V,H11D3,200V;集基电压:H11D1/H11D2,300V,H11D3, 200V;发集电压:7V;集电极电流:100mA;总功耗:300mW。

封装:发射器和检测器之间的耐压:5300V;隔离电阻($V_{10} = 500$ V, $T_A = 25$ ℃): $\geq 10^{12}\Omega$;存储温度: $-55 \sim 150$ ℃;工作温度: $-55 \sim 100$ ℃;结温 = 100℃;引线焊接温度(10 秒,离焊面 ≥ 1.5 mm):260℃。

技术参数(TA=25℃)

参 数	符号	测试条件	单位	最小	典型	最大
发射器					1	
正向电压	V_{F}	$I_{\rm F} = 10 { m mA}$	l v	}	1.1	1.5
反向电压	$V_{\mathbf{R}}$	$I_{\rm R} = 10 \mu A$	(v	6	ļ	ĺ
反向电流	$I_{\mathbf{R}}$	$V_{\rm R} = 6V$	μ A		10.0	10,
輸出电容	$c_{ m o}$	$V_{\rm R}=0{ m V}$, $f=1{ m MHz}$	pF		25	
热阻	$R_{\rm thJA}$		K/W		750	I
检测器						
电压	Der	1	1			
集发 H11D1/H11D2	BVCER	$I_{\rm CE} = 1 { m mA}$, $R_{\rm BE} = 1 { m M}\Omega$) V	300		
H11D3		, .aa	V	200		
发基	BV _{EBO}	$I_{EB} = 100 \mu A$	V .	7		
电容	C_{CE}	$V_{\rm CS} = 10 \mathrm{V}, \mathrm{f} = 1 \mathrm{MHz}$	b _E		7	
	CCB	$V_{\rm CB} = 10 \text{V}, f = 1 \text{MHz}$	pF		8	
*b mm	C_{EB}	$V_{KB} = 5V, f = 1MHz$	pF	'	38	
	Rusa	· · · · · · · · · · · · · · · · · · ·	K/W		250	
封装 # 4 4 4 4	c _c				0.6	
耦合电容 传输比	l_c/l_r	$I_{\rm F} = 10 {\rm mA}$, $V_{\rm CF} = 10 {\rm V}$, $R_{\rm BF} = 1 {\rm M}\Omega$	pF %	20	0.6	
17 孤 C. 集发饱和电压	V _{CEsat}	$I_{\rm F} = 10 \text{mA}$, $I_{\rm C} = 0.5 \text{mA}$, $R_{\rm BE} = 1 \text{M}\Omega$	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	20	0.25	0.4
集发漏电流	· ·	1	'	ľ	0.20	0.4
来及哪屯加 H11D1/H11D2	ICER	$V_{\rm CE} = 200 \text{V}$, $R_{\rm BE} = 1 \text{M}\Omega$	l nA	ĺ		100
H11D3		$V_{CE} = 100 \text{ V}, R_{BE} = 1 \text{ M}\Omega$	nA			100
集发漏电流	ICER					
H11D1/H11D2	CER	$V_{\rm CE} = 200 \rm V$, $R_{\rm HE} = 1 \rm M\Omega$, $T_{\rm A} = 100 \rm ^{\circ}C$	μΑ			250
H!1D3	1	$V_{\text{CE}} = 100\text{V}, R_{\text{BE}} = 1\text{M}\Omega, T_{\text{A}} = 100\text{°C}$	μА	l I		250

MOC8111 型光晶体管无基极连接的光耦合器电路

用途:用于两个分离电路之间的信号传输。

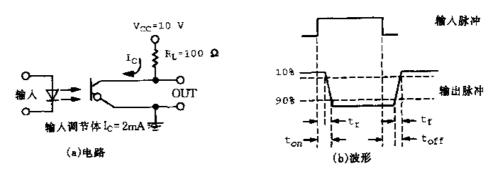


图 4-52 光耦合器电路及波形图

MOC8111 光耦合器由一个 GaAs 红外发射二极管和硅平面光晶体管检测器组成。 特点:电流传输比 20%(最小);无基极端连接,提高了共模干扰抑制;长期稳定性好。 最大额定值($T_A = 25$ °C)

发射器:反向电压:6V;DC 正向电流:60mA;正向浪涌电流(10s):2.5A;总功耗:100mW。 检测器:集发击穿电压:30V;集电极电流:50mA;集电极电流(1ms):150mA;总功耗:150mW。

封装:隔离电压(发射器和检测器之间):5300VAC(有效值);隔离电阻(V_{IO} = 500V, T_A = 25℃):10¹²Ω;存储温度: – 55 ~ 150℃,环境温度: – 55 ~ 100℃;引线焊接温度(离焊接面1.5mm,10秒):260℃。

技术参数:

参数	符号	测试条件	单位	最小	典型	最大
						_
正向电压	V _F	$I_{\rm F} = 10 { m mA}$	v		1.15	1.5
反向漏电流	I_{R}	$V_{\rm R} = 6 \rm V$	A		0.05	10
结电容	C ₁	V=0, $f=1$ MHz	pF		25	
检测器						
集发击穿电压	BV_{CEO}	$I_{\rm C} = 1$ A	v	30		
集发漏电流	I_{CFO}	$V_{\rm CE} = 10 { m V}$	nA		1	50
发集击穿电压	$V_{\rm ECO}$	$I_{\rm E} = 10$ A	V	7		
集发电容	c_{ce}	$V_{\rm CE} = 0 \text{V}$, $f = 1 \text{MHz}$	рF		7	
封装						
集电极饱和电压	VCESAT	$I_{\rm C} = 500 \mathrm{A}$ $I_{\rm F} = 10 \mathrm{mA}$	v		0.15	0.4
集电极输出电流	Ic	$I_{\rm P} = 10 \text{mA}$ $V_{\rm CE} = 10 \text{V}$	mA	2	5	
导通时间	Ton	$V_{CC} = 10V$ $R_{L} = 100\Omega,$	S		7.5	20
	Torr	$I_{\mathbb{C}} = 2mA,$	S		5.7	20

II.221AT/222AT/223AT 型达林顿结构小型表面安装光耦合电路

用涂,用于高密度印刷电路板上的光隔离电路。

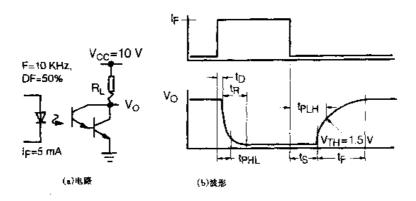


图 4-53 光耦合器电路及波形图

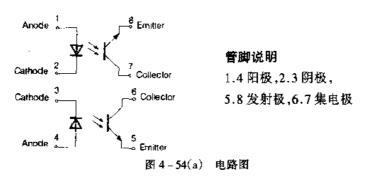
IL221A/222A/223A 是一个高 CTR 的光耦合器,有一个 GaAs 红外发射二极管 LED 发射器和一个硅 NPN 光达林顿晶体管检测器。

特点: $I_F = 1$ mA 时的电流传输比高: IL221AT, 100%; IL222AT, 200%; IL223AT, 500%; 耐压: 2500VAC(有效值)。

最大额定值:

发射器:峰值反向电压:6.0V;连续正向电流:60mA;25℃时的功耗:90mW;25℃以上线性衰减:1.2mW/℃。

检测器:集发击穿电压:30V;发集击穿电压:5V;集基击穿电压:70V;功耗:150mW;25℃以上线性衰减率:2.0mW/℃。


封装:25℃时的总功耗:240mW;25℃以上线性衰减:3.3mW/℃;存储温度: – 55~150℃;工作温度: – 55~100℃;引线焊接时间(10s):260℃。

技术参数

参数	符号	测试条件	単位	最小	典型	最大
发射器						
正向电压	$V_{\rm F}$	$I_{\rm F} = 1 \mathrm{mA}$	v		1.0	1.5
反向电流	I_{R}	$V_{\rm R} = 6.0 \rm V$	μ A		0.1	100
輸出电容	c_{0}	$V_{\rm F}=0{ m V}$	pF		25	
		$f = 1 \text{ MH}_2$				
检测器						
击穿电压						
集发	BV_{CEO}	$I_{\rm C} = 100 \mu {\rm A}$	v ·	30		
发集	BV_{ECO}	$I_{\rm E} = 100 \mu {\rm A}$	v	5		
集基电压	BV_{CBO}	$I_{\rm C} = 10 \mu {\rm A}$))	70		
集发电容	c_{cl}	$V_{C[} = 10V$	pF		3.4	
DC 电流传输比	CTR _{DC}	$I_{\rm F} = 1 \text{mA}$, $V_{\rm OE} = 5 \text{V}$				
П.221 АТ				100		
IL222AT				200		
II.223AT		•		500		
集发饱和电压	V _{CXC set}	$I_{CE} = 0.5 \text{mA}, I_{F} = 1 \text{mA}$	v			1
隔离电压	$V_{\rm 1O}$	t = 1s	VACRMS	2500		
输入到输出的电容	C ₁₀		pF		0.5	
输入到输出的电阻	Rio		GΩ		100	

ILH200 密封型光晶体管双通道光耦合器

用途:用于光隔离电路和 CMOS 至 LSTTL/TTL 的接口电路。

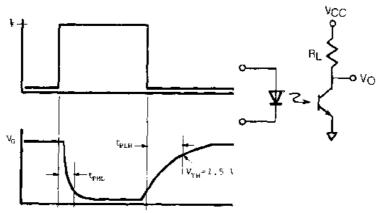


图 4-54(b) 电路及波形图

ILH200 具有高电流传输比和低饱和电压 V_{CE} ,每个通道由一个光发射二极管和一个 NPN 硅光晶体管组成。两个通道封装在一个封装盒中。

特点:在-55~100℃范围内保证电流传输比,在低输入电流时有高的电流传输比,每个封装内有两个隔离通道。

最大额定值

发射器(每通道):反向电压:6.0V;正向电流:60mA;正向峰值电流:1A;功耗:70mW;25℃以上的线性衰减率:0.75mW/℃。

曲型	开关	金数	(T)	 25°C)
74.7	<i>7</i> 170	-	\ I /	 40 41

非饱和开关	符号	测试条件	单位	典型	最大
	td td	1	μs	0.8	2
上升	tr	$V_{\rm OC} = 5 \text{V}$	μв	2	5
存取	ts	$R_{\rm L} = 75\Omega$	μs	0.4	1.5
下降	tf	$I_{\rm F} = 10$ mA	μs	2	5
传输高至低	tpHL !	50% V _{PP}	μs	1	3
传输低至高	ιρLH		μs	1.5	4
饱 和开关	符号	测试条件	单位	典型	最大
延迟	td		με	0.7	2
上升	tr	$V_{\rm CF} = 0.4 \rm V$	μs	1	3
存取	t e	$R_{\rm L} = 1 \text{k} \Omega$	μs	13.5	30
下降	tf	$I_{\rm F} = 10 { m mA}$	με	12	30
传输高至低	tpHL.	$V_{CC} = 5V$, $V_{TH} = 1.5V$	μα	1.4	5
传输低至高	tpLH	""	μs	15	40

技术参数(T_A = 25℃)

多数	符号	測试条件	单位	最小	典型	最大
发射器						
正向电压	$V_{\rm E}$	$I_{\Sigma} = 60 \text{mA}$	(v		1.46	1.7
反向击穿电压	V_{BR}	$I_{\rm R} = 10\mu{\rm A}$	v	6		
反向电流	$I_{\rm R}$	$V_{\rm B} = 6V$	μ A		0.01	10
结电容	c_1	$V_F = 0V, f = 1MHz$	рF		20	
热阻	Rn	1, 01,1	°C/W		220	
检测器	1	-				
集发饱和电压	$V_{\mathrm{CE}(\mathtt{unit})}$	$I_B = 20\mu A$, $I_{CE} = 1 \text{mA}$	v		0.25	0.4
集发漏电流	I_{CEO}	$V_{\rm CE} = 10 \rm V$	пА		5	50
电容	c_{ce}	$V_{\rm CE} = 5V, f = 1 \text{MHz}$	p F		6.8	
热阻	$R_{ m TH}$.5	°C/W		220	!
耦合特性(~55~100℃)					1	
饱和电流传输比	CTR(max)	$I_{\rm F} = 10 {\rm mA}$, $V_{\rm CE} = 0.4 {\rm V}$	%	70	210	250
集发电流传输比	CTR _∞	$I_{\rm F} = 10 { m mA}$, $V_{\rm CE} = 10 { m V}$	%	100	300	450
—————————————————————————————————————						
共模抑制	СМн	$V_{\rm CM} = 500 \ {\rm V_{P-P}}, V_{\rm CC} = 5 {\rm V}, R_{\rm L} =$	V/ps	1000	> 1000	
輸出髙		$1k\Omega$, $I_{\rm F} = 0 { m mA}$.	
共模抑制	CM _L	$V_{\rm CM} = 500 {\rm V_{P,P}}, V_{\rm CC} = 5 {\rm V}, R_{\rm L} =$	V/µ8	1000	> 1000	
輸出高		$1k\Omega$, $I_{\rm F} = 10{ m mA}$	-			
封装电容	Cro	$V_{10} = 0 \text{V}$, I MHz	рF		1.5	
隔离电阻	R_{10}	$V_{10} = 500 \text{VDC}$	Ω	1011	1014	
漏电流,输入至输出	I_{10}	相对湿度;≤50%,	μΑ			10
	,	V ₁₀ 3000VDC,5s				

检测器(每通道): 集发电压: 70V; 发集电压: 7V; 连续集电极电流: 50mA; 功耗: 100mW; 25% 以上的线性衰减率: 1.0mW/%。

封装:输入到输出的耐压:3000VDC;存储温度: -65~150℃;工作温度: -55~125℃;结温:150℃;引线焊接温度(离壳体 1.6mm, 10s):240℃;功耗:350mW;25℃以上的线性衰减率: 3.5mW/℃。

高速光耦合电路

SFH6135/6136 型高速 5.3kV 光隔离电路

用途:用于数据通讯、IGBT驱动器和可编程控制器等领域。

延迟时间($I_F = 16$ mA, $V_{CC} = 5$ V, $T_A = 25$ °C)

参	数	符号	单 位	数值
宣出亚本派出亚	SFH6135($R_L = 4.1 \text{k}\Omega$)	t_{PHL}	he	0.3(≤1.5)
高电平至低电平	SFH6136($R_{\rm L} = 1.9 \text{k}\Omega$)	t _{PHL}	με	0.2(≤0.8)
M do W at at do W	SFH6135($R_L = 4.1 \text{k}\Omega$)	I PHL	hа	0.3(≤1.5)
低电平至高电平	SFH6136($R_{\rm L} = 1.9 \text{k}\Omega$)	[‡] PHIL	μ s	0.2(≤0.8)

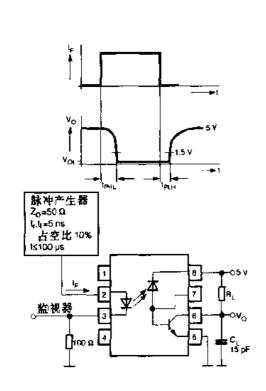


图 4-55 开关电路及波形图

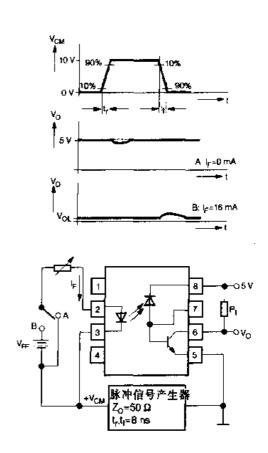


图 4-56 共模干扰抑制电路及波形图

共模干扰抑制 $(V_{CM} = 10V_{PP}, V_{CC} = 5V, T_A = 25 ^{\circ}C)$

参	数	符 号	单位	数 值		
高电平 I _F = 0mA	SFH6135($R_L = 4.1 \text{k}\Omega$)	СМн	V/µs	1000		
时电干 I _f = UmA	SFH6136($R_L = 1.9 k\Omega$)	СМн	V/µs	1000		
Mark W. r. 12 A	SFH6135 ($R_L = 4.1 \text{k}\Omega$)	CM _L	V/µs	1000		
低电平 I _F = 16mA	SFH6136($R_L = 1.9 \text{k}\Omega$)	CM _L	V/µs	1000		

SFH6135/6136 型光耦合电路

特点:可耐测试电压:5300VDC;TTL兼容;高位速率:1M 位/s;高共模干扰抑制能力;带宽 2MHz;集电极开路输出。

最大额定值:

发射器:反向电压:3V;正向电流:25mA;峰值正向电流:50mA;最大正向浪涌电流:1A;热阻:700K/W;总功耗:45mW。

检测器:电源电压: $-0.5 \sim 15V$;输出电压: $-0.5 \sim 15V$;发基电压:5V;输出电流:8mA;最大输出电流:16mA;基极电流:5mA;热阻:300K/W;总功耗:100mW。

封装:

隔离电阻: $T_A = 25$ ℃时, $R \ge 10^{12}\Omega$;存储温度: $-55 \sim 125$ ℃;环境温度: $-55 \sim 100$ ℃;引线焊

接温度(离壳体底部≥0.5mm,10s):260℃。

技术参数

	参数	符号	测试条件	单 位	数值
发射器	正向电压	V_{F}	I _F = 16mA	v	1.5(≤1.7)
	击穿电压	$V_{ m BR}$	$I_R = 10\mu\text{A}$	v	≥3
	反向电流	I_{B}	$V_{\rm B} = 3V$	μΑ	$0.5(\leq 10)$
	输出电容	c_{o}	$V_{\rm B} = 0$ V, $f = 1$ MHz	pF	125
	正向电压温度系数	$\triangle V_{\rm F}/\triangle T_{\rm A}$	$I_{\rm F}=16{ m mA}$	mV∕°C	-1.7
			$I_{\rm F}=16{\rm mA}$, $V_{\rm O}$ 开路		
检测器	电源电流,逻辑低	$I_{\rm CCL}$	$V_{\rm CC} = 15 \text{V}$		150
			$I_{\rm F} = 0$ mA, $V_{\rm O}$ 开路	μΑ	150
	电源电流,逻辑高	I _{CCH}	$V_{\rm OC} = 15 \text{V}$	4	0.01(-1)
			$I_{\rm E} = 16 \mathrm{mA}$	μA	0.01(≤1)
		-	$V_{\rm CC} = 4.5 \text{V}$		
	输出电压;输出低 SFH6135	V_{OL}	$I_0 = 1.1 \text{mA}$	v	$0.1(\leq 0.4)$
	SFH6136	V_{OL}	$I_0 = 2.4 \text{mA}$	v	0.1(≤0.4)
	输出电流,输出高	I_{OH}	$I_{\rm F} = 0 {\rm mA}$	пА	3(≤500)
			$V_{\rm O} = V_{\rm OC} = 5.5 \text{V}$,
			$I_{\rm F} = 0 \text{mA}$.		
	输出电流,输出高	I _{OH}	$V_0 = V_{CC} = 15$ V	μΑ	0.01(≤1)
	御田屯杌,御田向 电流增益	$H_{\rm FE}$	$V_0 = 5V$, $I_0 = 3\text{mA}$		150
1-1-X 11			f = 1 MHz	pF	0.6
封装	耦合电容,输人一输出	C _{IO}	$I_{\rm F} = 16 {\rm mA}$, $V_{\rm O} = 0.4 {\rm V}$,		
	电流传输比 SFH6135	CIR	$V_{\rm OC} = 4.5 \text{V}, T_{\rm A} = 25 ^{\circ}\text{C}$	%	1
	SFH6136	CTR		,-	16(≥7)
			$I_{\rm F} = 16 {\rm mA}, V_{\rm O} = 0.4 {\rm V},$	%	35(≥19)
	电流传输比 SFH6135	CTR	$V_{\rm CC} = 4.5 \text{V}$	%	≥5
	SFH6136	CTR		%	> 15

SFH6315T/6316T/6343T 型高速光耦合电路

用途:用于接收设备、逻辑地隔离和模拟信号地隔离等场合,并可代替脉冲变压器。

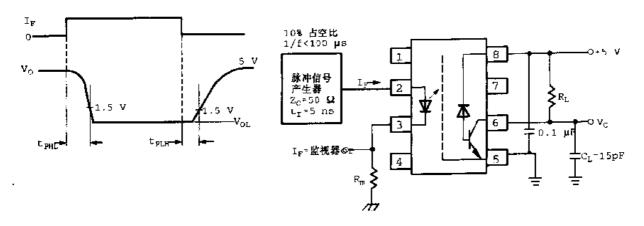


图 4-57 开关测试电路及波形图

SFH6315T/6316T/6343T 型光耦合器

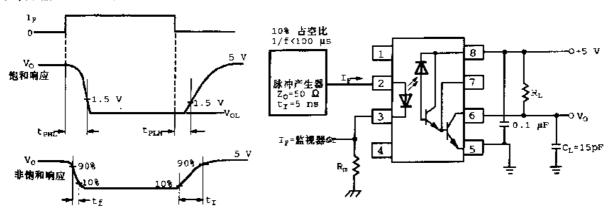
特点:高共模瞬变抗干扰能力:15000V/s;高位速率:1MB/s;TTL兼容;在0~70℃时,保证AC和DC性能;集电极开路输出。

最大绝对额定值:

发射器(GaAIAs):反向电压:3V;DC 正向电流:25mA;浪涌正向电流:1A;总功耗:45mW。 检测器(硅光二极管,晶体管):电源电压: $-0.5 \sim 30V$;输出电压: $-0.5 \sim 20V$;输出电流:8mA;总功耗($T_A = 70$ °C):100mW。

封装:隔离测试电压(发射器和检测器之间):2500VAC_{ms};隔离电阻: $T_A = 25$ ℃时, $R = 10^{12}$ Ω;存储温度: $-55 \sim 150$ ℃;环境温度: $-55 \sim 100$ ℃;结温:100℃;引线焊接温度(离壳体≥1.5mm,10s):260℃。

开关参数


参	数	符号	器件		测试条件	単位	最小	典型	最大
			SFH6315	$T_{\rm A} = 25{\rm C}$	$R_{\rm L} = 4.1 \mathrm{k}\Omega$			0.5	1.5
华岭 亚坦 6	t同 左輪		Т		10 - 3. 1M2			0.3	2.0
传输延迟的 出端到逻辑		t _{PHL}	SFH6316 T	$T_{\Lambda} = 25$ C		s		0.25	0.8
			SFH6343		$R_{\rm L} = 1.9 \mathrm{k}\Omega$			0,2	1.0
			Т						
			SFH6315	T _A = 25C	$R_{\rm L} = 4.1 \text{k}\Omega$			0.5	1.5
传输 延迟时	加工在输		T			_ i			2.0
出端到逻辑		$t_{ m PLH}$	SFH6316 T	$T_A = 25\mathrm{C}$		5		0.5	0.8
		SFH6343		$R_{\rm L} = 1.9 \mathrm{k}\Omega$			0.5	1.0	
			Т	i	<u> </u>				
		SFH6315T	$R_{\rm L} = 4.1 {\rm k}\Omega$	$I_{\mathbf{F}} = \mathbf{0mA}$			1		
			LOW LEAD OF	$T_{\rm A} = 25$ C			_		
在逻辑高明	电平输出	<i>CM</i> _H	SFH6316T	$R_{\rm L} = 1.9 \mathrm{k}\Omega$	$V_{\rm CM} = 10 V_{\rm P-P}$	kV/s		1	
时共模瞬变	抗干扰	I CENT			$I_{\mathrm{F}} = \mathbf{OmA}$				
			SFH6343T	$R_L = 1.9 \text{k}\Omega$	$T_{\rm A} = 25{\rm C}$		15	30	
					$V_{\rm CM} = 1500 V_{\rm P-P}$				
			SFH6315T	$R_1 = 4.1 \text{k}\Omega$	I _F = 16mA			1	
					$T_{\rm A} = 25{\rm C}$!	j		
在逻辑低中	包平输出		SFH6316T	$R_L = 1.9 \mathrm{k}\Omega$	$V_{\text{CM}} = 10 V_{\text{P-P}}$			1	
时共模瞬变	抗干扰	I CM _L I			I _E = 16mA	kV/s			
			SFH6343T	$R_{\rm L} = 1.9 {\rm k}\Omega$	$T_{\rm A} = 25$ C		15	30	
			• • • • • • • • • • • • • • • • • • •	$V_{\rm CM} = 1500 V_{\rm P-P}$	V _{P-P}				

电参数

参 数	符号	器件型号		测试条件		单位	最小	典型	最大
输入正向电压	V _F		$T_A = 25$ °C	$I_{\rm F} = 16$ mA		v		1.6	1.8
输入反向电流	$I_{\rm R}$	 	$V_{\rm R} = 3V$	1		A		0.5	10
输入电容	CIN		$f = 1 \text{MHz}, V_1$	r = 0V		рF		75	
正向电压温度系数	$\frac{\triangle V_{\rm F}}{\triangle T_{\rm A}}$		$I_{\Gamma} = 16 \text{mA}$			mV/°C		-1.7	
电源电流,逻辑低	Ica			/ ₀ = 开路 , V _∞ =		mA		100	
电源电流,逻辑高	l _{ooh}		T _A = 25℃	$I_{\rm F} = 0$ mA, $V_{\rm CC} = 15$ V	'o = 开路,	A		0.001	1
		SFH6315	T _A = 25°C			v		0.15	0.4
		T		$I_0 = 0.8 \text{mA}$					0.5
输出电压,逻辑係	V _{OL}	SFH6316	T _A = 25℃	$I_0 = 3.0 \text{mA}$	$I_{\rm F} = 16 \text{mA}$,				0.4
	T SFH6343	SFH6343		$I_0 = 2.4 \text{mA}$	$V_{\rm CC} = 4.5 \text{V}$	v	•	0.15	0.5
		<u> </u>	$T_{\rm A} = 25$ °C	$V_0 = V_{CC} = 5.5$ Y			•	0.003	0.5
输出电流,逻辑高	I _{OH}		T _A = 25℃	$V_{\rm O} = V_{\rm CC} = 15.0 \text{V}$	$I_{\rm F} = 0 { m mA}$	A		0.01	1
			$T_{\rm A} = 0 - 70^{\circ}{\rm C}$	$V_{\rm O} = V_{\rm CC} = 15.0 \text{V}$					50
晶体管 DC 电流增益	h _{FE}		$V_0 = 5V, I_0 =$	3mA	į			150	
电容(输入—输出)	C10		f = 1MHz			pF		0.4	
	· · · ·	SFH6315	T _A = 25℃	$V_0 = 0.4V$		%	7	16	50
		Т		$V_0 = 0.5 \mathrm{V}$		%0	5	17	
电流传输比	CTR	SFH6316	T _A = 25℃	$V_0 = 0.4V$	$I_{\rm F} = 16 \text{mA},$ $V_{\rm rec} = 4.5 \text{V}$		19	35	80
		T SFH6343		$V_0 = 0.5$ V	$V_{\rm CC} = 4.5 \text{V}$	%	15	36	·

SFH6318T/6319T 型低电流高速光耦合电路

用途:用于逻辑地隔离 - TTL/TTL, TTL/CMOS, CMOS/CMOS, CMOS/TTL; EIA RS232 线接收;低输入电流线接收——长线,共用电话线,电话振铃检测和低电源系统——接地隔离。

注:管脚说明:1、4 空;2. 阳极;3. 阴极;5. 地;6. V_o (集电极输出);7. V_B 基极;8. V_{cc} (电源)。



图 4-59 抗瞬变干扰测试电路和波形图

SFH6318T/6319T 光耦合器

特点:高电流传输比:800%;低输入电流:0.5mA;高输出电流:60mA;TTL兼容, $V_{0L}\approx 0.1$ V。最大额定值:

发射器:反向输入电压:3V;电源和输出电压: V_{CC} (脚 8 – 5), V_{O} (脚 6 – 5),SFH6318T(– 0.5 ~ 7V),SFH6319T(0.5 ~ 18V);低功耗:35mW; 平均输入电流:20mA; 峰值输入电流:40mA(50% 占空比,1ms 脉宽);峰值瞬变输入电流:1.0A。检测器(硅光二极管,光达林顿管):输出电流 I_{O} (脚 6):60mA;发射极—基极间反向电压(脚 5 – 7):0.5V;功耗:150mW;从 25% 起线性减小:2mW/%。

封装:存储温度: $-55 \sim 125$ ℃; 工作温度: $-40 \sim 80$ ℃; 引线焊接温度(10s): 260℃; 结温: 100℃; 环境温度范围: $-55 \sim 100$ ℃; 发射器和检测器测试隔离电压: 2500VAC_{rms}; 隔离电阻: V_{I0} = 500V 和 T_A = 25℃时, R = $10^{12}\Omega$ 。

光电参数($T_A = 0$ $\mathbb{C} \sim 70$ \mathbb{C} , $T_A = 25$ \mathbb{C} 典型值	光电参数(2	`x = 0°C	~70°C,	$T_{A} =$	25℃	典型值)
---	--------	----------	--------	-----------	-----	-----	---

多数	符号	测试条件	单位	器件	最小	典型	最大
电流传输比	CTR	$I_{\rm F} = 1.6 \text{mA}$, $V_{\rm O} = 0.4 \text{V}$, $V_{\rm CC} = 4.5 \text{V}$	%	SFH6318 T	300	1600	2600
· · · · · · · · · · · · · · · · · · ·		$I_F = 0.5 \text{mA}, V_O = 0.4 \text{V}, V_{CC} = 4.5 \text{V}$ $I_F = 1.6 \text{mA}, V_O = 0.4 \text{V}, V_{CC} = 4.5 \text{V}$	%	SFH6319 T	400 500	1600 2000	2600 3500
	V _{OL}	$I_{\rm F} = 1.6 \text{mA}, I_{\rm O} = 4.8 \text{mA}, V_{\rm CC} = 4.5 \text{V}$	v	SFH6318 T		0.1	0.4
输出电压,逻辑低		$I_{\rm F} = 1.6 \text{mA}, I_{\rm O} = 8 \text{mA}, V_{\rm CC} = 4.5 \text{V}$ $I_{\rm F} = 5 \text{mA}, I_{\rm O} = 15 \text{mA}, V_{\rm CC} = 4.5 \text{V}$ $I_{\rm Y} = 12 \text{mA}, I_{\rm O} = 24 \text{mA}, V_{\rm CC} = 4.5 \text{V}$	v	SFH6319 T		0.1 0.15 0.25	0,4 0.4 0.4
66. H. d. W. 100 40 45		$I_{\mathcal{V}} = 0$ mA, $V_{\mathcal{O}} = V_{\mathcal{OC}} = 7$ V	A	SFH6318 T	1	0.1	250
輸出电流,逻辑高 	IOH	$I_{\rm F} = 0$ mA, $V_{\rm O} = V_{\rm CC} = 18$ V	A	SFH6319 T		0.05	100
电源电流,逻辑低	I_{CCL}	$I_{\rm F} = 1.6 \text{mA}, V_{\rm O} = $ 开路, $V_{\rm OC} = 18 \text{V}$	mA	<u> </u>		0.2	1.5
电源电流,逻辑高	$I_{\rm CCH}$	$I_{\rm F}=0$ mA, $V_{\rm O}=$ 开路, $V_{\rm CC}=18{ m V}$	A			0.01	10
<u>橡人正向电压</u>	$V_{ m F}$	$I_{\rm F} = 1.6 {\rm mA}$, $T_{\rm A} = 25 {\rm ^{\circ}C}$	V			1.4	1.7
正向电压温度系数	$\Delta V_{\mathbf{F}}/\Delta T_{\mathbf{A}}$	$I_{\rm F} = 1.6 { m mA}$	mV/C		-	-1.8	
输入电容	$C_{ m IN}$	$f = 1 \text{MHz}$, $V_{\text{F}} = 0$	рF			25	
电阻(輸入一輸出)	R ₁₋₀	$V_{10} = 500 \text{VDC}, T_A = 25 \text{°C}$ $V_{10} = 500 \text{VDC}, T_A = 100 \text{°C}$	Ω			10 ¹² 10 ¹¹	
电容(输入一输出)	$C_{1:0}$	f = 1 MHz	рF			0.6	

开关参数(T_A = 25℃)

参 数	符号	测试条件	单位	器件	最小	典型	最大
传输延迟时间,到输出端逻辑为	$I_{\rm F} = 1.6 \mathrm{mA}$, $R_{\rm L} = 2.2 \mathrm{k}\Omega$		s	SFH6318 T		2	10
低电平	$I_{\rm F}=0.5{ m mA}$, $R_{\rm L}=4.7{ m k}\Omega$ $I_{\rm F}=12{ m mA}$, $R_{\rm L}=270\Omega$	s	SFH6319 T		6 0.6	2.5 1	
传输延迟时间,到输出端逻辑为 高电平	t _{PlH}	$I_{\rm F} = 1.6 {\rm mA}$, $R_{\perp} = 2.2 {\rm k}\Omega$	s	SFH6318 T		2	35
		$I_{\rm F} = 0.5 {\rm mA}$, $R_{\perp} = 4.7 {\rm k}\Omega$ $I_{\rm F} = 12 {\rm mA}$, $R_{\rm L} = 270 \Omega$	s	SFH6319 T		4 1.5	60 7
共模瞬变抗干扰,在输出端逻辑 为高电平	I CM _H ∣	$I_{\rm F} = 0 { m mA}$, $R_{\rm L} = 2.2 { m k}\Omega$ $V_{\rm CM} = 10 V_{\rm P-P}$	V/s			lk	
共模瞬变抗干扰,在输出端逻辑 为低电平	I CM _L	$I_{\rm F} = 1.6 \text{mA}, R_{\odot} = 2.2 \text{k}\Omega$ $V_{\rm CM} = 10 V_{\rm P-P}$	V/s			1k	

SFH6345 型高速 5.3kV 光耦合器电路

用途:用于数据通讯、IGBT驱动器和可编程控制器等领域。

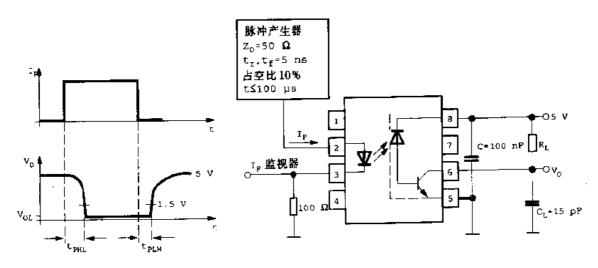


图 4-60 开关电路及波形图

电路波形参数

·					:
参 数	符号	单位	最小	典型	最大
传输延迟时间(高电平—低电平) I _F = 16mA, V _{CC} = 5V, R _L = 1.9kΩ, T _A = 25℃	t _{PHL}	s		0.3	0.8
传输延迟时间(低电平一高电平) $I_{\rm F}=16{\rm mA}, V_{\rm CC}=5{\rm V}, R_{\rm L}=1.9{\rm k}\Omega, T_{\rm A}=25{\rm °C}$	t _{PLH}	s		0.3	0.8

电路波形参数

	参 数	符号	单位	最小	典型	最大
共模瞬变抗干扰(高)	$I_{\rm F} = 0$, $V_{\rm CM} = 1500 \rm V_{\rm P,P}$, $R_{\rm L} = 1.9 \rm k\Omega$, $V_{\rm CC} = 5 \rm V$, $T_{\rm A} = 25 \rm ^{\circ}C$	I CM _H ∣	kV/s	15	30	
	$I_{\rm F} = 16 {\rm mA}$, $V_{\rm CM} = 1500 {\rm V}_{\rm P-P}$, $R_{\rm L} = 1.9 {\rm k}\Omega$, $V_{\rm CC} = 5 {\rm V}$, $T_{\rm A} = 25 {\rm C}$	I CM _L i	kV/s	15	30	<u></u>

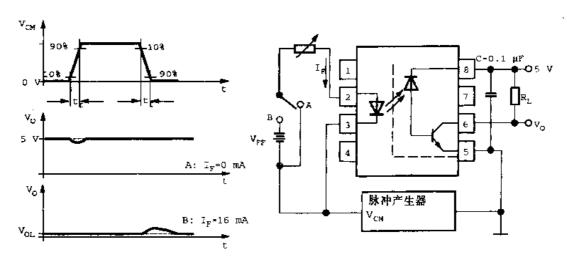


图 4-61 抗共模瞬变干扰及波形图

SFH6345 型光耦合器

特点:高速光耦合,无基极连接;GaAlAs 发射器;有光二极管和晶体管的集成检测器;高数据传输速率:1Mb/s;TTL兼容;集电极开路输出;在 $I_F = 16$ mA、 $V_O = 0.4$ V、 $V_{CC} = 4.5$ V 和 $T_A = 25$ ℃时,CTR 为 19%;CTR 相对正向电流的线性好;场作用不变;耦合电容小;高共模抗瞬变于扰能力,转换速率:15kV/s。

技术参数(T_A = 25℃)

参 数	单位	符号	最小	典型	最大
发射器(IR GaAlAs)		•	· · · · ·		
正向电压, I _F = 16mA	v	$V_{\rm F}$	ĺ	1.6	1.9
反向电流, V _k = 3V	A	I_{R}	"-	0.5	10
输出电容, V _R = 0V, f = 1MHz	pF	C _o		75	
<u>热阻</u>	K/W	R _{thJA}	[700	
检测器(硅光二极管,晶体管)				·	
电源电流逻辑高	A	I_{OCH}			
$I_{\rm F} = 0$, $V_{\rm O}({ m TR})$, $V_{\rm CC} = 15{ m V}$, $T_{\rm A} = 25{ m °C}$	ſ		 	0.01	1
$I_{\rm F} = 0$, $V_{\rm O}$ (并路), $V_{\rm OC} = 15{ m V}$					2
输出电流输出高	A	I_{OH}			
$I_F = 0$, V_0 (开路), $V_{CC} = 5.5$ V, $T_A = 25$ °C	ĺ			.003	0.5
$I_{\rm F} = 0$, $V_{\rm O}$ (开路), $V_{\rm CC} = 15{\rm V}$, $T_{\rm A} = 25{\rm °C}$.01	1
$I_{\rm F} = 0, V_{\rm O}({\it ff} Bh), V_{\rm CC} = 15V$!	50
电容, V _{CE} = 5V, f = 1MHz	pF	$C_{ ext{CE}}$		3	
热阻	K/W	R_{thJA}		300	
封装					
耦合电容	рF	Cc		0.6	
耦合传输比	%	$I_{\mathbb{C}}/I_{\mathbb{F}}$			
$I_{\rm F} = 16 \mathrm{mA}$, $V_{\rm O} = 0.4 \mathrm{V}$, $V_{\rm CC} = 4.5 \mathrm{V}$, $T_{\rm A} = 25 \mathrm{^{\circ}C}$			19	30	
$V_{\rm F} = 16 \mathrm{mA}$, $V_{\rm O} = 0.5 \mathrm{V}$, $V_{\rm OC} = 4.5 \mathrm{V}$			15		
集发饱和电压	v	VoL		0.1	0.4
$I_{\rm F} = 16 \text{mA}$, $I_{\rm O} = 2.4 \text{mA}$, $V_{\rm CC} = 4.5 \text{V}$, $T_{\rm A} = 25 ^{\circ}\text{C}$				j	
电额电流,逻辑低, I _F = 16mA, V _O 开路, V _{CC} = 15V	A	I _{CCL}		80	200

最大绝对额定值:

发射器(GaAlAs):反向电压:3V;DC 正向电流,25mA;浪涌正向电流,1A;总功耗,45mW。 检测器(硅光二极管,晶体管):电源电压,0.5~30V;输出电压 0.5~25V;输出电流,8mA; 总功耗,100mW。

封装隔离;隔离测试电压(发射器和检测器之间):5300VAC_{PK};隔离电阻, $V_{\rm ID}$ = 500V 和 $T_{\rm A}$ = 25℃时,R = $10^{12}\Omega$;存储温度: – 55~150℃;工作环境温度: – 55~150℃;结温:100℃;引线焊接温度(10s):260℃。

6N135/136 型高速 2.5kV 光耦合器电路

用途:用于电路隔离、数据通讯和可编程控制器等领域。

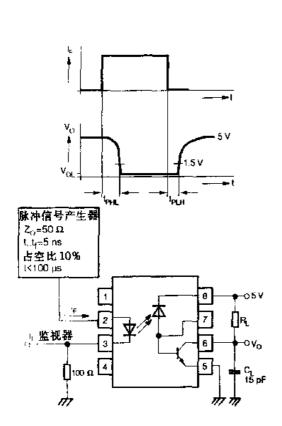
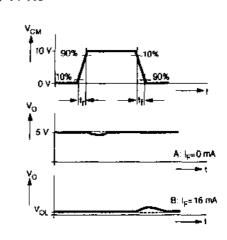



图 4-62 开关电路及波形图

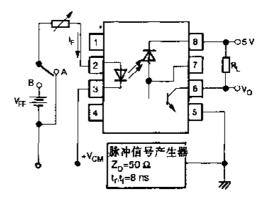


图 4-63 共模干扰抑制电路及波形图

延迟时间($I_F = 16$ mA, $V_{CC} = 5$ V, $T_A = 25$ °C)

	参 数	符号	单位	数值
高电平至低电平	$6N135(R_L=4.1k\Omega)$	t _{PML}	he	0.3(≤1.5)
	$6N136(R_L=1.9k\Omega)$	t _{PHL}	ha	0.2(≤0.8)
低电平至高电平	$6N135(R_L=4.1k\Omega)$	leta.	hra	0.3(≤1.5)
	$6\text{N}136(R_{L}=1.9\text{k}\Omega)$	t _{Fra} .	កែខ	0.2(≤0.8)

共模干扰抑制($V_{\mathrm{CM}} = 10 V_{\mathrm{pp}}, V_{\mathrm{CC}} = 5 \mathrm{V}, T_{\mathrm{A}} = 25 \mathrm{C}$)

	参 数	符号	单位	数值
京中 平 7 . 04	$6\text{N135}(R_1=4.1\text{k}\Omega)$	CM _H	V/µs	1000
高电平 I _F ≈ 0mA	$6N136(R_1=1.9k\Omega)$	СМн	V/µa	1000
低电平 I _F = 16mA	$6\text{N135}(R_{\text{L}}=4.1\text{k}\Omega)$	СМн	V/μs	1000
TWAST. IF = IOMA	$6N136(R_L=1.9k\Omega)$	СМн	V/µs	1000

6N135/136 型光耦合器

特点:隔离测试电压:2500VAC,(分钟);TTL兼容;高传输速率:1Mb/s;高共模干扰抑制能力;带宽:2MHz;集电极开路输出。

技术参数(T_A = 25℃)

参数	测试条件	符号	单位	数值
发射器			-	
正向电压	$I_{\rm F}=16{ m mA}$	$V_{ m F}$	v	1.5(≤1.7)
击穿电压	$I_{\rm R} = 10 \mu {\rm A}$	V _{BR}	v	≥5
反向电流	$V_{\rm R} = 5 { m V}$	I_{R}	μΑ	0.5(≤10)
输出电容	$V_{\rm R}=0{ m V}$, $f=1{ m MHz}$	C _o	pF	125
正向电压温度系数	$I_{\rm F} = 16 { m mA}$	$\cdot \Delta V_{\rm F} / \Delta T_{\rm A}$	աV∕°C	-1.7
检测器				
电源电流	$I_{\rm F}=16{ m mA}$, V_0 开路			
逻辑低	$V_{\rm CC} = 15 \text{V}$	I _{CCL}	μ A	150
电源电流	$I_{\rm F}=0$ mA, V_0 开路			
逻辑高	$V_{\rm CC} = 15 \text{V}$	I _{OCH}	μ A	0.01(≤1)
	$I_{\rm F} = 16 { m mA}$			
输出电压	$V_{\rm CC} = 4.5 \mathrm{V}$	ĺ		
输出低 6N135	$I_0 = 1.1 \text{mA}$	V _{OL}	V	0.1(≤0.4)
6N136	$I_0 = 2.4 \text{mA}$	V _{OL}	v	0.1(≤0.4)
输出电流	$I_{\rm F}=0{ m mA}$,	1	-4	3(≤500)
输出高	$V_0 = V_{CC} = 5.5$ V	I_{OH}	nA	3(≤300)
	$I_{\rm F}={ m OmA}$,			
輸出电流,輸出高	$V_0 = V_{CC} = 15$ V	I _{OH}	μA	0.01(≤1)
电流增益	$V_0 = 5 \text{V}, I_0 = 3 \text{mA}$	H _{FE}	•	150
対装				
耦合电容,输入至输出	$f = 1 \mathrm{MHz}$	c_{∞}	$_{\mathbf{p}}\mathbf{F}$	0.6
电流传输比	$I_{\rm F} = 16 {\rm mA}, V_{\rm O} = 0.4 {\rm V},$	1		
6N135	$V_{\rm CC} = 4.5 \text{V}, T_{\rm A} = 25 \text{°C}$	CTR	%	16(≥7)
6N136		CTR	%	35(≥19)
	$I_{\rm F} = 16 { m mA}$, $V_{\rm O} = 0.5 { m V}$,			
电流传输比	$V_{\rm QC} = 4.5 \rm V$	CTR	%	7.5

最大额定值:

发射器:反向电压:5V;正向电流:25mA;峰值正向电流:50mA;热阻:700k/W;总功耗($T_A \le 70$ °C):45mW。

检测器:电源电压: $-0.5 \sim 1.5$ V;输出电压: $-0.5 \sim 15$ V;发—基电压: 5V;输出电流: 8mA; 最大输出电流: 16mA;基极电流: 5mA;热阻: 300k/W;总功耗($T_A \leq 70$ ℃): 100mW。

封装:

隔离电阻: $T_A = 25 \, \text{℃}$ 时, $R \ge 10^{12} \, \Omega$; 存储温度: $-55 \sim 125 \, \text{℃}$; 工作环境温度: $-55 \sim 100 \, \text{℃}$; 引线焊接温度(离壳体底部 $0.5 \, \text{mm}$, $10 \, \text{s}$): $260 \, \text{℃}$ 。

交流光耦合电路

SFH618A/628A 型 5.3kV 低电流输入光耦合电路

用途:用于通信、工业控制、办公室自动化设备和电池供电设备等场合。

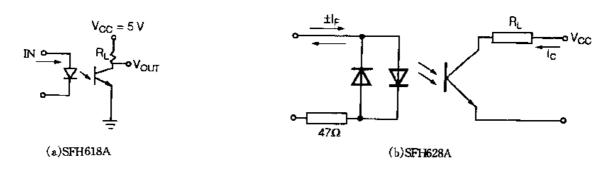


图 4-64 光耦合器电路

SFH618A/SFH628A 型光耦合器

光耦合电路有高电流传输比,低耦合电容和高隔离电压。耦合器由一个 GaAs 红外发射二极管发射器和一个硅平面光晶体管检测器组成。

特点:在 $I_F = 1 \text{mA}$ 和 $V_{CE} = 0.5 \text{V}$ 时有最高的电流传输比;在 $I_F = 0.5 \text{mA}$ 时规定最小的电流传输比;电流传输比的线性度取决于正向电流;电流传输比下降率低;集发电压高: $V_{CE} = 55 \text{V}$;耦合电容小;高共模干扰抑制能力。

最大额定值:

发射器: 反向电压(SFH618A): 6V; DC 正向电流(SFH628A): 50mA; 浪涌正向电流(SFH628A): 2.5A; 总功耗: 70mW。

检测器:集发电压:55V;发集电压:7V;集电极电流:50mA;总功耗:100mW。

封装;发射器和检测器之间的隔离电压;5300VAC(有效值);隔离电阻($T_A = 25$ ℃); ≥ 10^{12} Ω;存储温度: $-55 \sim 150$ ℃;工作环境温度: $-55 \sim 100$ ℃;结温: 100℃;引线焊接温度(10s,离焊接面 1.5mm);260℃。

技术参数

参数	型号	符号	测试条件	单位	最小	典型	最大
发射器							,
正向电压		V _F	$I_{\rm F} = 5 \mathrm{mA}$	v	<u> </u>	1.1	1.5
反向电流	SFH618A	I _R	V _R = 6V			.01	10
输出电容	SFH618A SFH628A	C_0	$V_{\rm R} = 0 \text{V}$, $f = 1 \text{MHz}$	pF	25 45		
热阻		R_{dtJA}		K/W		1070	
检测器							
集发漏电流		Iceo	$V_{\text{CE}} = 10\text{V}$	nA		10	200
电容		Caz	$V_{\text{CE}} = 5\text{V}, f = 1 \text{ MHz}$	рF		7	
热阻		$R_{ m thJA}$		K/W		500	
封装							
	SFH618A - 2		$I_{\rm C} = 0.32 \mathrm{mA}, I_{\rm F} = 1 \mathrm{mA}$			0.25	0.4
	SFH618A - 3	٠,,	$I_{\rm C}=0.5{ m mA}$, $I_{\rm F}=1{ m mA}$	v		0.25	0.4
集发饱和电压	SFH618A - 4	V _{CESAT}	$I_{\rm C} = 0.8 {\rm mA}$, $I_{\rm F} = 1 {\rm mA}$			0.25	0.4
	SFH618A - 5		$I_{\rm C} = 1.25 \mathrm{mA}, I_{\rm F} = 1 \mathrm{mA}$			0.25	0.4
集发饱和电压	SFH628A - 2		$I_{\rm C} = 0.5 {\rm mA}$, $I_{\rm F} = \pm 1 {\rm mA}$	v		0.25	0.4
	SFH628A - 3	V_{CESAT}	$I_{\rm C} = 0.8 {\rm mA}, I_{\rm F} = \pm 1 {\rm mA}$			0.25	0.4
	SFH628A - 4		$I_{\rm C} = 1.25 \mathrm{mA}$, $I_{\rm F} = \pm 1 \mathrm{mA}$			0.25	0.4
耦 合电容		$c_{\rm c}$		рF		0.25	
	SFH618A - 2	1 /1	$I_{\rm F} = 1 {\rm mA}$, $V_{\rm CE} = 0.5 {\rm V}$	et.	63		125
	SFH618A - 2	$I_{\rm C}/I_{\rm F}$	$I_{\rm F} = 0.5 \mathrm{mA}$, $V_{\rm CE} = 1.5 \mathrm{V}$	%	32	75	
	SFH618A - 3	7.77	$I_{\rm F} = 1 {\rm mA}$, $V_{\rm CE} = 0.5 {\rm V}$	ert.	100		200
bit 人 (かねい)	SFH618A - 3	$I_{\rm C}/I_{ m F}$	$I_{\rm F} = 0.5 \mathrm{mA}$, $V_{\rm CE} = 1.5 \mathrm{V}$	%	50	120	
耦合传輸比	SFH618A - 4	T //	$I_{\rm F}=1{ m mA}$, $V_{\rm CE}=0.5{ m V}$	<i>a</i> ,	160		320
	SFH618A - 4	$I_{\mathrm{C}}/I_{\mathrm{F}}$	$I_{\rm F} = 0.5 {\rm mA}$, $V_{\rm CE} = 1.5 {\rm V}$	%	80	200	
	SFH618A - 5	1 /1	$I_{\rm F} = 1 {\rm mA}, V_{\rm CE} = 0.5 {\rm V}$	Cr.	250		500
	SFH618A - 5	$I_{\rm C}/I_{\rm F}$	$I_{\rm F} = 0.5 {\rm mA}$, $V_{\rm CE} = 1.5 {\rm V}$	% .	125	300	
	SFH628A - 2	1 /1	$I_{\rm F}=\pm 1$ mA, $V_{\rm CE}=0.5$ V	Lat.	63		200
耦合传输 比	SFH628A - 2	$I_{\rm C}/I_{\rm F}$	$I_{\rm F} = \pm 0.5 \mathrm{mA}, V_{\rm CE} = 1.5 \mathrm{V}$	%	32	100	
	SFH628A - 3	1.71	$I_{\rm F} = \pm 1 {\rm mA}, V_{\rm CE} = 0.5 {\rm V}$	a/-	100		320
	SFH628A - 3	$I_{\mathbb{C}}/I_{\mathbb{F}}$	$I_{\rm F} = \pm 0.5 \text{mA}, V_{\rm CE} = 1.5 \text{V}$	%	50	160	
	SFH628A - 4	1.71	$I_{\rm F} = \pm 1 \text{mA}, V_{\rm CE} = 0.5 \text{V}$	· ·	160		500
	SFH628A - 4	$I_{\rm C}/I_{\rm F}$	$I_{\rm F} = \pm 0.5 \mathrm{mA}, V_{\rm CE} = 1.5 \mathrm{V}$	%	80	250	

SFH628 型 5.3kV 低电流 AC 输入光耦合电路

用途:用于工业控制、办公室自动化设备、电路隔离、通信和在线监测等领域。

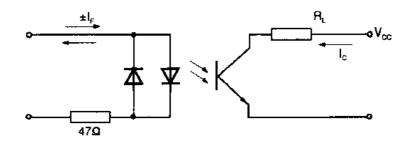


图 4-65 电路图

电路开关时间($V_{CC} = 5V$, $I_C = 2\text{mA}$, $R_L = 100\Omega$, $T_A = 25$ °C)

参数	符号	单位	数 值
接通时间	t _{ON}	με	6.0
上升时间	t _R	μз	3.5
关断时间	topp	μ5	5.5
下降时间	t _F	μs	5.0

SFH628型光耦合器

光耦合器由两个 GaAs 光红外 LED 和一个硅平面光三极管组成。

特点:在 $I_F = 1$ mA 时有极高的电流传输比;在 $I_F = 0.5$ mA 时,规定最小电流传输比;正向电流有好的线性电流传输比;电流传输比下降率低;集发电压高 $V_{CE0} = 55V$;输入至输出的隔离电压:5300V;AC 输入有双向 GaAs 红外发射器;耦合电容小;高共模瞬变抑制能力。

最大额定值:

发射器:DC 正向电流: ± 50 mA; 浪涌正向电流($t_p \le 10 \mu s$): 2.5A; 25 ℃时的总功耗: 70mW。 检测器: 集发电压: 55V; 发集电压: 7V; 集电极电流: 50mA; 集电极浪涌电流($t_p \le 10 \mu s$): 100mA; 总功耗: 150mW(在 25 ℃时)。

封装:发射器和检测器之间的隔离电阻($V_{10} = 500$ V, $T_A = 25$ ℃): $\geq 10^{12}\Omega$;存储温度: $-55 \sim 150$ ℃;工作温度: $-55 \sim 100$ ℃;结温: 100℃;引线焊接温度(10s,离焊面 > 1.5mm 处): 260℃。技术参数($T_A = 25$ ℃)

	符号	测试条件	单 位	数 值
发射器			- "	
正向电压	$V_{\rm F}$	$I_{\rm F} = \pm 5 {\rm mA}$	v	±1.1(≤1.5)
输出电容	c_{o}	$V_{\rm R} = 0 \text{ V}$, $f = 1 \text{ MHz}$	рF	45
热阻	$R_{\rm hJA}$		K/W	750
检测器				
集发电压	V_{CEO}	$I_{CE} = 10\mu\text{A}$	\mathbf{v}	≥55
发集电压	V_{CEO}	$I_{\rm EC} = 10\mu{\rm A}$	v	≥7
电容	CŒ	$V_{\text{CE}} = 5\text{V}, f = 1 \text{ MHz}$	ρF	7
热 阻	R _{thJA}		K/W	500
封装				
耦合电容	$c_{\rm c}$		рF	0.25
耦合传输比			•	
SFH628 - 2	$I_{\rm C}/I_{\rm F}$	$I_{\rm F}=\pm 1{\rm mA}$, $V_{\rm CE}=0.5{\rm V}$	%	63 - 200
		$I_{\rm F} = \pm 0.5 {\rm mA}, V_{\rm CE} = 1.5 {\rm V}$	%	100(≥32)
SFH628 - 3	I_0/I_p	$I_{\rm F} = \pm 1 \text{mA}, V_{\rm CE} = 0.5 \text{V}$	%	100 - 320
		$I_{\rm F} = \pm 0.5 \mathrm{mA}, V_{\rm CE} = 1.5 \mathrm{V}$	%	160(≥50)
SFH628 - 4	$I_{\rm C}/I_{\rm F}$	$I_{\rm F} = \pm 1 \text{mA}, V_{\rm CE} = 0.5 \text{V}$	%	160 - 500
		$I_{\rm F} = \pm 0.5 {\rm mA}, V_{\rm CE} = 1.5 {\rm V}$	%	250(≥80)
集发饱和电压	•			
SFH628 - 2	V _{CEunt}	$I_{\rm C}=0.5{\rm mA}, I_{\rm F}=\pm 1{\rm mA}$	v	0.25(≤0.4)
SFH628 - 3	V _{CEeot}	$I_{\rm C} = 0.8 {\rm mA}, I_{\rm F} = \pm 1 {\rm mA}$	V	0.25(≤0.4)
SFH628 - 4	VCEast	$I_{\rm C} = 1.25 \mathrm{mA}, I_{\rm F} = \pm 1 \mathrm{mA}$	v	$0.25 (\leq 0.4)$

SFH620A 型 5.3kV 交流输入光耦合电路

用途:用于工业控制、办公室自动化设备和信号传输电路等领域。

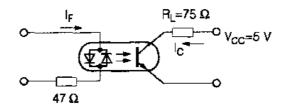


图 4-66 线性工作电路图

 $I_{\rm F} = 10 \,\mathrm{mA}$, $V_{\rm CC} = 5 \,\mathrm{V}$, $T_{\rm A} = 25 \,\mathrm{^{\circ}\!C}$

多 数	符号	单 位	数值
负载电阻	R _L	Ω	75
接通时间	£ _{ON}	μs	3.0
上升时间	f _R	με	2.0
关断时间	$t_{ m OFF}$		2.3
下降时间	t_{F}	he	2.0
截止頻率	F _{CO}	kHz	250

SFH620A型光耦合器

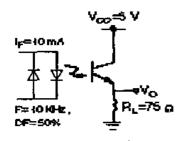
光耦合器由 GaAs 红外发射二极管发射器和硅平面光晶体管检测器组成。

特点:高电流传输比,在 10mA 时; $40 \sim 320\%$;在 1mA 时;45%;电流传输比下降率低;电流传输比的线性度取决于正向电流;集发电压高, $V_{\text{CEO}} = 70\text{V}$;饱和电压低;快速开关时间;耦合电容小;高共模干扰抑制能力。

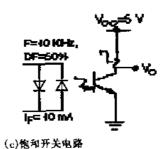
最大绝对额定值:

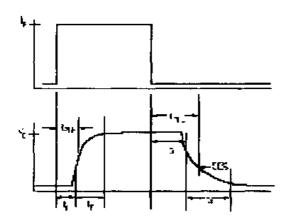
发射器;反向电压:6V;DC 正向电流: ±60mA;浪涌正向电流(tp≤10μs): ±2.5A;总功耗: 100mW。

检测器:集发电压:70V;发集电压:7V;集电极电流:50mA;总功耗:150mW。

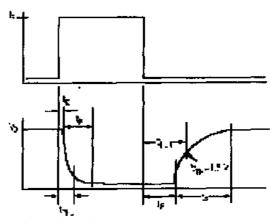

封装:发射器和检测器之间的隔离电压:5300VAC(有效值);隔离电阻(V_{IO} = 500V, T_{A} = 25℃): \geq 10¹²Ω;存储温度: \sim 55 \sim 150℃;工作环境温度: \sim 55 \sim 100℃;结温:100℃;引线焊接温度(10s,离焊接面 \geq 1.5mm 处):260℃。

技术参数


多数	符号	测试条件	单位	数值
发射器				
正向电压	$V_{\mathbf{F}}$	$I_F = \pm 60 \text{mA}$	v	1,25(≤1.65)
输出电容	c_{o}	$V_{\rm R} = 0 \text{V}, f = 1 \text{MHz}$	рF	50
热阻	Rada		K/W_	750
检测器				
电容	C _{CE}	$V_{\text{CE}} = 5 \text{V}, f = 1 \text{MHz}$	pF	6.8
热阻	RibJA		K/W	500
封装				
集发饱和电压	V _{CESAT}	$I_{\rm F} = 10 {\rm mA}, I_{\rm C} = 2.5 {\rm mA}$	v	0.25(≤0.4)
	$c_{\rm c}$		рF	0.2


双通道 ILD620/620GB 型 AC 输入光晶体管耦合电路 四通道 ILQ620/620GB 型

用途:用于工业自动控制、高压测试设备和隔离电路等领域。



(a)非饱和开关电路

(b)非饱和开关电路的被形

(d)饱和开关电路的波形

非饱和开关时序

参 数	符号	测试条件	单位	-数值
导通时间	$T_{\rm ON}$		tre	3.0
上升时间	$I_{\rm R}$	$I_F = \pm 10 \text{mA}$	128	20
关断时间	t _{OFF}	$V_{\rm OC} = 5 \text{V}$	με	2.3
下降时间	t _F	$R_{\rm L} = 75\Omega$	με	2.0
传输时间,高至低	t _{PHL}	50% V _{PP}	μs	1.1
传输时间,低至高	t _{PLH}		μs	2.5

饱和开关时序

参数	符号	测试条件	单位	数值
导通时间	Ton	ļ .	μя	4.3
上升时间	I_{R}	$I_{\rm F} = \pm 10 { m mA}$	ļμB	2.8
关断时间	t _{OFF}	V _{CC} = 5 V	μв	2.5
下降时间	t _F	$R_{\rm L} = 1 k\Omega$	με	11
传输时间,高至低	$t_{ m PHL}$	$V_{\rm TH} = 1.5 \rm V$	μB	2.6
传输时间,低至高	tPIH		με	7.2

图 4-67 开关电路及波形图

ILD/Q620 和 ILD/Q620GB 是多通道输入光晶体管耦合器,用反向并联的 GaAs 红外 LED 发射器和高增益硅光晶体管组成每个通道。

特点:在 I_F = ± 5mA 时的电流传输比(CTR), ILD/Q620;50%, ILD/Q620GB;100%;在 I_F = ± 1mA 时的饱和电流传输比(CTR_{SAT}), ILD/Q620;60%, ILD/Q620GB;30%;高集发电压: BV_{CEO} = 70V;耐压:7500VAC_p(1秒);4420VAC_{RMS}(1min)。

最大绝对额定值:

发射器: 正向电流: \pm 60mA; 浪涌电流: \pm 1.5A; 功耗: 100mW; 25 $\mathbb C$ 以上的衰减率: 1.3mW/ $\mathbb C$ 。

检测器: 集发击穿电压: 70V; 集电极电流: 50mA; 集电极电流(<1ms): 100mA; 功耗: 150mW; 25 ∞ 以上的衰减率: 2mW ∞ 。

封装: 功耗 ILD/620GB: 400mW; 25℃以上的衰减率: 5.33mW/℃; 封装功耗 ILQ620/GB: 500mW;25℃以上的衰减率: 6.67mW/℃; 隔离电阻, 25℃时: $10^{12}\Omega$; 存储温度: $-55 \sim 150$ ℃; 工作温度: $-55 \sim 100$ ℃; 结温: 100℃; 引线焊接温度(离壳体 2mm): 260℃。

技术参数

	术 夢数			1				
	参 数		符号	测试条件	单 位	最 小	典 型	最大
发射器								
	E向电压		$V_{\rm F}$	$I_{\rm F} = \pm 10 {\rm mA}$	v	1	1.15	1.3
	E向电流		$I_{\rm F}$	$V_{\rm F} = \pm 0.7 \rm V$	μΑ		2.5	20
	自出电容		c_{o}	$V_{\rm F} = 0 \text{V}, f = 1 \text{MHz}$	pF		25	
<u></u>	X阻(结至:	引线)	RTHAL		%C/W	1	750	
检测器				1				
	も容		C _{CE}	$V_{\rm CE} = 5 \text{V}$, $f = 1 \text{MHz}$	рF		6.8	
身	美发 層电流	•	$I_{ ext{CEO}}$	$V_{\rm CE} = 24 { m V}$	nA		10	100
身	非发漏电流		$I_{ m CEO}$	$T_{\rm A} = 85^{\circ}{\rm C}$, $V_{\rm CE} = 24{\rm V}$	μA		2	50
	美发击穿电		BV c₂o	$I_{\rm CE}=0.5{\rm mA}$	v	70		
	文集击穿电		BV _{ECO}	$I_E = 0.1 \text{mA}$	V	7		
热	棋阻(结至有	爿线)	R_{TiJL}		°C/W		500	
封装传	输特性		I		'			
通	通道/通道 (TR对比	CTR×/CTRY	$I_{\rm F} = \pm 5 {\rm mA}$, $V_{\rm CE} = 5 {\rm V}$		1/1		3/1
C	TR 对称性		$I_{\mathrm{CE}(\mathrm{RATIO})}$	$I_{CE}(I_F = -5\text{mA})/I_F(= +5\text{mA})$		0.5		2
集	地极开路	电流	$I_{\mathrm{CE}(\mathrm{OFF})}$	$V_{\rm F} = \pm 0.7 \text{V}, V_{\rm CE} = 24 \text{V}$	μA		1	10
ILD/Q620	0							
館	包和电流传	输比	CTR_{CFeet}	$I_{\rm F} = \pm 1 \mathrm{mA}$, $V_{\rm CE} = 0.4 \mathrm{V}$	%		60	
电	1流传输比		CTR_{CE}	$I_{\rm F}=\pm 5{\rm mA}$, $V_{\rm CE}=5{\rm V}$	%	50	80	600
集	美发饱和电	压	$V_{\mathrm{CE}_{\mathrm{aut}}}$	$I_{\rm F} = \pm 8 {\rm mA}, I_{\rm CE} = 2.4 {\rm mA}$	v			0.4
ILD/Q620	0GB					T		
传	包和电流传	输比	CTR_{CEast}	$I_{\rm F}=\pm 1{ m mA}$, $V_{\rm CE}=0.4{ m V}$	%	30		
电	流传输比		CTR_{CE}	$I_{\rm F} = \pm 5 \mathrm{mA}$, $V_{\rm CE} = 5 \mathrm{V}$	%	100	200	600
集	美发饱和电	压	$V_{\mathrm{CE}_{\mathrm{out}}}$	$I_{\rm F} = \pm 1 {\rm mA}$, $I_{\rm CE} = 0.2 {\rm mA}$	v			0.4
隔离								
共	·模抑制,和	商出商 :	СМН	$V_{\rm CM} = 50 V_{\rm PP}, R_{\rm L} = 1 \text{k}\Omega, I_{\rm F} = 0 \text{mA}$	V/µs		5000	
共	·模抑制,\$	 出低	CML.	$V_{\rm CM} = 50 V_{\rm PP}, R_{\rm L} = 1 \text{k}\Omega, I_{\rm F} = 10 \text{mA}$	V/µs		5000	
共	·模耦 合电	容	C_{CM}		рF		0.01	
封	技电容		CI-O	$V_{1-0} = 0$ V, $f = 1$ MHz	p F	0.8		
	高电阻		R_{S}	$V_{1-0} = 500 \text{V}$	Ω		10^{12}	
耐压,输。			wrv	$(I_{1:0} \leq 10\mu\text{A}, 1\text{min})$	VAC _{RMS}	4420		
相对湿度			WTV		VACPEAK	6250		
HANT LLEGA	c and on the		WTV	$(I_{LO} \leq 10\mu\text{A}, 1\text{scc})$	VACRAS	5300		
			WTV		VACPEAK	7500		
通道/通i	道隔离电归	E İ			VAC	500		

双向可控硅光耦合电路

IL420型 600V 三端双向可控硅驱动光耦合电路

用途:用于固体继电器、工业自动控制、办公室自动化设备和仪器仪表设备等领域。

IL420型 600V 阻断电压可用于 380VAC 控制、电阻、电容、电感负载控制、如电机、线圈、高电流晶闸管、双向可控硅和电磁开关等。

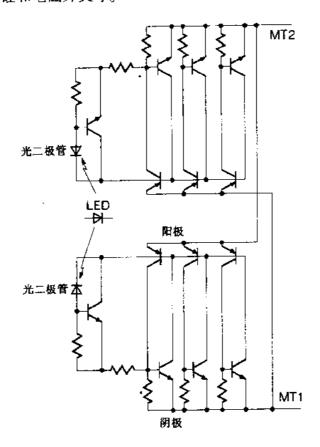
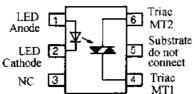



图 4-68 电路原理图 管脚说明:

1.LED 阳极, 2.LED 阴极,

Substrate 3. 空,4. 双向可控硅 MTI(阳极 1);

do not connect 5. 基片不连,6. 双向可控键 MTZ(阳极 2)

图 4-69 管脚图

IL420 型光耦合器

特点:高输入灵敏度;高静态转换速率 dV/dt: $10000V/\mu s$; 反向并联可控硅的转换速率:大于 $2kV/\mu s$; 非常低的漏电流: $<10\mu A$; 耐压测试电压: 7500VAC(峰值); 6 引脚封装。

最大额定值:

发射器:反向电压:6V;正向电流:60mA;浪涌电流:2.5A;功耗:100mW;25 C 以上的衰减率:1.33mW/C;热阻:750 C/W。

检测器:峰值反向电压:600V;峰值隔断电压:600V;RMS 导通电流:300mA;单浪涌电流:3A:总功耗:500mW;25℃以上的衰减率:6.6mW/℃,热阻:150℃/W。

封装:存储温度:-55~150℃;工作温度:-55~100℃;引线焊接温度:260℃(5s)。

技术参数

	参数	符号	测试条件	单位	最小	典型	最大
发射器							
	可电压	$V_{\rm F}$	$I_{\Gamma} \approx 10 \text{mA}$	v		1.16	1.39
	茅电压	$V_{\rm BH}$	$I_{\rm R} = 10 \mu {\rm A}$	v	6	30	
	月电流	$I_{\rm R}$	$V_{\mathbf{R}} = 6\mathbf{V}$	μA		0.1	10
输出	出电容	c_{\circ}	$V_{\rm F} = 0$ V, $f = 1$ MHz	pF		40	
热阻	1(结到引线)	RTHIL		°C/W		7 5 0	
—————————————————————————————————————	<u> </u>			· - -	 _		
	重复峰值阻断电压	$V_{ m DRM}$	$I_{\text{DRM}} = 100 \mu \text{A}$	V	600	650	
	重复峰值反向电压	$V_{ m RRM}$	$I_{\rm RM} = 100 \mu { m A}$	ν	600	650	
	阻断电压	$V_{ m D(RMS)}$	$I_{D(RMS)} = 70\mu A$	V	424	460	
	反向电压	$V_{\rm R}$	$I_{R(RMS)} = 70\mu A$	(V	424	460	
阻断电流		$I_{\mathrm{D(RMS)}}$	$V_{\rm D} = 600 {\rm V}$, $T_{\rm A} = 100 {\rm ^{\circ} C}$	μ A		10	100
	反向电流	I _{R(RMS)}	$V_{\rm B} = 600 \text{V}, T_{\rm A} = 100 \text{C}$	μA		10	100
阻断电压		V _{TM}	$I_T = 300 \text{ mA}$	v		1.7	3
	阻断电流	I _{TM}	$PF = 1.0, V_{\text{T(RMS)}} = 1.7V$	mA			300
	浪涌(非重复)	_ 1M1			[
阻断电流		I _{TSM}	f = 50 Hz				
	保持电流	I _H	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	A			3
锁定电流	71-11 20-1	I _L	$V_{\rm T} = 2.2 \rm V$	μΑ		65	500
	LED 触发电流	I _{FT}	$V_{AK} = 5V$	mA		5	_
接通时间	THE MASS OF THE		$V_{\rm RM} = V_{\rm DM} = 424 \text{ VAC}$	mA]	1	2
	关断时间	ton	$PF = 1.0, I_{\rm T} = 300 \text{mA}$	μs		35 50	
	大朝时间 :升临界速度	t OFF	$V_{\rm D} = 0.67 \text{ V}_{\rm DRM}$	μ5		5 D	
Harbeller™ T	.70個外歷段	177.41			10000		
		dV/dt _{er}	$T_{\rm j} = 25^{\circ}\mathrm{C}$	V/us	10000		
		$\mathrm{d}V/\mathrm{d}t_{\mathrm{cr}}$	$T_{\rm j} = 80^{\circ}\text{C}$	V/µs	5000		
电流转换中	电压上升临界速度		$V_{\rm D} = 0.67 \ V_{\rm DRM}$, $di/dt_{\rm eq} \le 15 \ {\rm A/ms}$		10000		
		$\mathrm{d}V/\mathrm{d}t_{\mathrm{erg}}$	·	V/μs	5000		
		$\mathrm{d}V/\mathrm{d}t_{\mathrm{eng}}$	T _j = 80℃	V/μs			8
	升临界速度	di∕dµ _{er}		A/μs		150	٥
热阻(结到引	引线)	R _{THIL}		°C/W		150	
福离						·	
	出耦合电压上升临界速率		$I_{\rm T} = 0$ A, $V_{\rm RM} = V_{\rm DM} = 424$ VAC	V/µs		5000	
共模耦		C_{CM}		pF		0.01	
封装电		C_{10}	$f = 1 \text{MHz}, V_{10} = 0 \text{V}$	pF		0.8	
输入对	输出的耐压						
		WTV	相对湿度≤50%	VAC _{RMS}	4420		
		WTV	$I_{10} \leqslant 10 \mu \text{A}$, 1 min.	VAC _{PEAK}	6250		
		WIV	相对湿度≤50%	VAC _{RMS}	5300		
#& I #A.	나 하 만난 한 참 살사보면 하나 보고	WTV	I ₁₀ ≤ 10μA, Is.	VACPEAK	7500		
	出电路之间的隔离电压			VDC	5300		
隔离电	PEL		$V_{10} = 500$			24.12	
		R_{i_0}	$T_{\rm A} \approx 25$ °C	Ω		≥ 10 ¹²	
61 45 A	25 개명 HA 436 min	$R_{\mathrm{i},}$	$T_{\rm A} \approx 100{\rm ^{\circ}C}$	Ω		≥ 10 ¹¹	.,
	流温度梯度	$\Delta I_{FT} / \Delta T_j$		μA/K		7	14
獨人与:	输出电路之间的电容	C_{10}	$V_{\rm B} \approx 0$, $f = 1$ kHz	ρF			2

600VIL4216/700VIL4217/800VIL4218 型双向可控硅驱动光耦合电路

用途, 用于固体继电器、工业自动控制、办公室自动化设备和仪器仪表设备等领域。

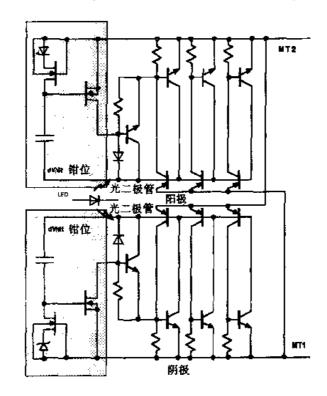


图 4-70 电路原基图 **管脚说明:** Anode 2 1.LED 阳极

1.LED 阳极, 2.LED 阴极, 3. 双向可控硅阳极 1(MTL), 4. 基片不连, 5. 双向可控硅阳极 2(MT2)。

图 4-71 管脚图

600VILA216/700VILA217/800VILA218 型光耦合器

特点:高灵敏度;高静态 dV/dt: $10000V/\mu s$; 反向并联可控硅的转换速率 dV/dt 大于 $10kV/\mu s$; 极低的漏电流: $<10\mu A$; 6 引脚封装;耐压可达 6000VAC(峰值)。

最大额定值:

发射器:反向电压:6V;正向电流:60mA;浪涌电流:2.5A;功耗:100mW;25 $^{\circ}$

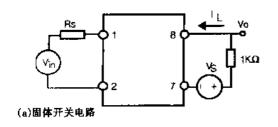
检测器:峰值阻断电压:IL4216,600V

IL4217,700V

IL4218,800V

导通电流(有效值): 300mA; 单浪涌电流: 3A; 总功耗: 500mW; 25 ℃以上的衰减率: 6.6mW/ ℃; 热阻: 150 ℃/ W。

封装:存储温度: -55~150℃;工作温度: -55~100℃;引线焊接温度(5s):260℃。


技术参数

<u> </u>	符 号	测试条件	单位	最小	典型	最
対器					 	Τ.
正向电压	$V_{\rm F}$	$I_{\rm F} = 20 \mathrm{mA}$	ν		1.3	1
击穿电压	V _{BR}	$I_{\rm R} = 10 \mu A$	v	6	30	
反向电流	I_{R}	$V_{\rm R} = 6 { m V}$	μA		0.1	
输出电容 热阻(结到引线)	Co	$V_{\rm F} = 0 \mathrm{V}$, $f = 1 \mathrm{MHz}$	pF		40	
	R _{THIL}	-			750	
站位						
IL4216	$V_{ m DRM}$	$I_{\text{DRM}} = 100 \mu \text{A}$	v	600	650	ĺ
IL4217	$V_{ m DRM}$	$I_{\mathrm{DRM}} = 100 \mu \mathrm{A}$	ν	700	750	
1L4218	V_{DRM}	$I_{\text{DRM}} = 100 \mu A$	ν	800	850	
导通电压	Didi	- 1401				
IL4216	$V_{\mathrm{b}(\mathrm{RMS})}$	$I_{\rm D(RMS)} = 70\mu A$	v	424	460	
П.4217	$V_{\rm D(RMS)}$	$I_{D(RMS)} = 70\mu A$	v	494	536	
E4218	V _{D(RMS)}	$I_{\mathrm{D}(\mathrm{RMS})} = 70\mu\mathrm{A}$	v	565	613	
型 断 电流	$I_{D(10MS)}$	$V_0 = 600 \text{V}, T_A = 100 ^{\circ}\text{C}$	μ A		10	1
反 向电流	$I_{ m R(RMS)}$	$V_{\rm R} = 600 \text{V}, T_{\rm A} = 100 \text{C}$	μΑ		10	10
导通电压	V _{TM}	$I_{\rm T} = 300 \text{ mA}$	v	1] 1.7	
导通电流	I _{TM}	•	mA			3
液涌(非重复)导通电流		$pF = 1.0, V_{\Upsilon(RMS)} = 1.7V$				
	I _{TSM}	f = 50 Hz	A	1	i 1	
保持电流	I _H	$V_T = 3V$	μΑ	}	65	20
锁定电流	I _L	$V_{\Gamma} = 2.2 \text{V}$	mA		5	
LED触发电流	$I_{\rm FT}$	$V_{AK} = 5V$	mA.		0.7	l
接通时间	FON	$V_{\rm RM} = V_{\rm DM} = 424 \text{ VAC}$	μs	1 1	35	
关断时间	\$ OFF	$pF = 1.0, I_T = 300 \text{mA}$	μs		50	
上升临界速率	ļ)				
阻断电压	$\mathrm{d}V_{(MT)}/\mathrm{d}t$	$V_{\rm RM}$, $V_{\rm DM} = 400 \text{ VAC}$, $T_{\rm A} = 25 ^{\circ}{\rm C}$	V/ps	10,000	I	
		$V_{\rm RM}$, $V_{\rm DM} = 400 {\rm VAC}$, $T_{\rm A} = 80 {\rm ^{\circ}C}$	V/μs		2000	
转换电压	$dV_{\rm (COM)}/{\rm d}t$	$V_{\rm RM}$, $V_{\rm DM} = 400 \text{ VAC}$, $T_{\rm A} = 25 ^{\circ}{\rm C}$	V/μs	10,000	***	
		$V_{\rm RM}$, $V_{\rm DM} = 400 \text{ VAC}$, $T_{\rm A} = 80 ^{\circ}{\rm C}$	V/µa		2000	
阻断电流	$di/\mathrm{d}t$	$I_{\rm T} = 300 { m mA}$	A/ms	1 [100	
热阻(结到引线)	R_{THIL}) °C/W	} i	150	
*		$I_{\rm T} = 0$ A		<u> </u>		
™ 输人输出电压耦合上升临界速率	$\mathrm{d}V_{(10)}/\mathrm{d}t$	$V_{\rm BM} = V_{\rm DM} = 300 \text{ VAC}$	V/μ8	5000		
共模耦合电容	C_{CM}	D112	pF	5000	0.01	
封装电容	c_{10}	$f = 1 \text{ MHz}, V_{10} = 0 \text{ V}$	рF	'	0.8	
隔离电阻	R_{B}		Ω] .	1011	
耐压(输入到输出)		(1120			
	WTV	(相对湿度≤50%)	VAC _{RMS}	1120	1	
	WIV	(I _{EO} ≤ 10µA, 1min.)	VAC _{PEAK}	6250		
	WIV	(相对湿度≤50%)	VAC	5300 7500		
	WIV	$(I_{10} \leq 10 \mu A, 1s.)$	VAC _{PEAK}	1500		

固体继电器光耦合电路

LH1529 光耦合通信开关电路

用途:用于电信开关一线路中继通断控制、振铃电流检测、环路电流检测和标记脉冲等领域。 LH1529 电信开关由一个光耦合固体继电器(SSR)和一个双向输入的光耦合器组成。

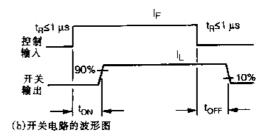


图 4-72 电路和波形图

A1 R2 RS 7S' 6A/K

管脚说明:

1.A 阳极; 2.k 阴极; 3.C; 集电极; 4.E 发射极; 5.A/K 阳极/阴极; 6.A/K 阳极/阴极 极; 7.S 源极

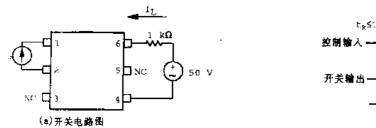
图 4-73 管脚图

特点:固体继电器和光耦合器封装在一块 8 引脚的塑料外壳内;I/O 隔离电压:3750 V_{RMS} ;光耦合器——双向电流检测;固体继电器: R_{ON} 为 20Ω (典型),负载电压为 350V;负载电流为 120mA,电流最大保护,抗浪涌能力强,线性 AC/DC 工作,消除开关跳动,低功耗,高可靠单片接收器。

最大绝对额定值:

封装:环境温度; -40~85℃;存储温度: -40~150℃;引线焊接温度(10s):260℃;隔离电阻(V_{10} = 500V, T_A = 25℃);10¹²Ω;总功耗:600mW。

固体继电器;LED 连续正向电流:50mA;LED 反向电压($I_R = 10\text{A}$):8V;DC 或 AC 峰值负载电压($I_L = 50\text{A}$):350V;连续 DC 负载电流:120mA。


光耦合器: LED 连续正向电流: 50mA; LED 反向电压($I_R = 10\text{A}$): 3V; 集发击穿电压: 30V; 光晶体管功耗: 150mW。

技术参数(T_A=25℃)

参 数	符号	测试条件	单位	最小	典型	最大
SSR(固体继电器)		•	•			
LED开关接通正向电流	I_{Force}	$I_{\rm L} = 100 { m mA}$, $t = 10 { m ms}$	mA		0.7	2.0
LED 开关关断正向电流	IFoff	$V_{\rm L} = 300 { m V}$	mA	0.2	0.6	L
LED正向电压	V _F	$I_{\rm F} = 10 { m mA}$	v	1.15	1.26	1.45
导通电阻	Ron	$I_{\rm F} = 5 \text{mA}$, $I_{\rm L} = 50 \text{mA}$	Ω	12	20	25
关断电阻	R _{OFF}	$I_{\rm F} = 0 {\rm mA}$, $V_{\rm L} = 100 {\rm V}$	GΩ		5000	
最大电流(极限)	Ilimit	$I_{\rm F} = 5 { m mA}$, $t = 5 { m ms}$	mA	170	210	250
輸出美虧漏电流		$I_{\rm F} = 0 {\rm mA}$, $V_{\rm L} = 100 {\rm V}$	nA		0.02	200
和山大明佛电机		$I_{\rm F} = 0 {\rm mA}$, $V_{\rm L} = 350 {\rm V}$	A			1.0
a 本 o Pht Me Unit of		$I_{\rm F} = {\rm OmA}$, $V_{\rm L} = 1$ V	pF		55	
7至8脚输出电容		$I_{\rm F} = 0 { m mA}$, $V_{\rm L} = 50 { m V}$	рF		10	
接通时间	Ton	$I_{\rm F}=5{ m mA}$, $I_{\rm L}=50{ m mA}$	ms		1.3	2.5
关断时间	T _{eff}	$I_{\rm F} = 5 {\rm mA}$, $I_{\rm L} = 50 {\rm V}$	ms		0.6	2.5
光耦合器						
LED 正向电压	V _F	$I_{\rm F} = 10 {\rm mA}$	v	0.9	1.2	1.5
DC电流传输比	CTR	$I_{\rm F} = 6.0 {\rm mA}$, $V_{\rm CE} = 0.5 {\rm V}$	%	33	165	
饱和电压	V _{CEest}	$I_{\rm F} = 16.0 {\rm mA}, I_{\rm C} = 2 {\rm mA}$	V.		.07	0.5
漏暗电流	Logo	$I_{\rm F} = 0$ mA, $V_{\rm CE} = 5$ V	пA	· ·		500
漏流出电流	Icso	$I_{\rm F}=5{\rm A}$, $V_{\rm CE}=5{\rm V}$	A	·		t

LH1056 型高压固体继电器光耦合器电路

用途:用于电话开关中继线路、高压设备、双向开关驱动器、电机控制和工业控制系统等领域。

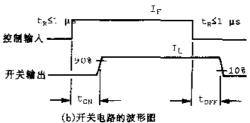
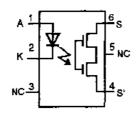



图 4-74 开关电路及波形图

管脚说明:

1.A 阳极;2.K 阴极;3.5.NC 不连接;4.S 源极;6.S 源极。

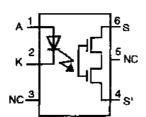
图 4-75 管脚构图

LH1056 是一个单刀单掷(SPST)常开型的固体继电器,这种固体继电器能控制的 AC 或 DC 负载电流达 100mA,电源电压达 350V。光耦合器由一个 GaAlAs LED、介质隔离发光二极管阵列和两个串联连接的高压 MOS 晶体管组成。

特点:常开型单刀单掷工作;控制 350VAC 或 DC 电压;开关负载电流为 100mA; LED 控制电流为 1.5mA;低导通电阻; dV/dt > 500V/ms; 电流限制。

最大绝对额定值:

发射器:反向电压:6.0V;连续正向电流:60mA;峰值正向电流(1s):1A;功耗:100mW;25 % 以上的线性降额率:1.3mW/%。


技术参数

参 数	符号	衡试条件	单位	最小	典型	最大
发射器						
<u></u> 正向电压	V _F	$I_{\rm F} = 10 { m mA}$	v		1.25	1.5
V _F 温度系数	$\Delta V_{\rm F}/\Delta T$		mV/℃		-2.2	
	I_{R}	$V_{\rm R} = 6 { m V}$	A		1	10
结电容	<u>C</u> _J	$V_{\rm F} = 0 \text{V}$, $f = 1 \text{MHz}$	рF		15	
动态电阻	$\Delta V_{\rm F}/\Delta I_{\rm F}$	$I_F = 10 \text{mA}$	Ω		6	
开关时间	$t_{\mathrm{R}}, t_{\mathrm{F}}$	$I_F = 10 \text{mA}$	9		1	
检测器						
输出击穿电压	$V_{\underline{B}}$	$I_{\rm B} = 50$ A		350	380	
输出关断漏电流	$I_{\mathrm{T(OFF)}}$	$V_{\rm T} = 100 \text{V}$, $I_{\rm F} = 0 \text{mA}$	nA		.03	200
馈通电容脚 4 至 6	C_{T}	$I_{\mathbf{F}} = 0, f = 1 \text{kHz}, V_{L} = 4 \text{VP-P}$	pF		24	
电流限制	I_{DMT}	$I_{\rm F} = 5 \mathrm{mA}$, $V_{\rm L} = 7 \mathrm{V}$, $t = 10 \mathrm{ms}$	mA_	100	150	210
封装 LED 格泽王白也落	I _{FON}	$V_{\rm L} = 7 { m V}$, $I_{\rm L} = 100 { m mA}$, $t = 10 { m ms}$	mA		2.5	3.5
LED 接通正向电流 LED 关断正向电流	I _{FORT}	$V_L = 300 \text{V}, I_F = 5 \text{A}$	mA -	0.2		1.3
导通电阻	Ron	$I_{\rm T} = 25 \mathrm{mA}$, $I_{\rm T} = 5 \mathrm{mA}$	Ω	20	30	50
接通时间	FON	$I_{\rm F} = 10 {\rm mA}$, $V_{\rm L} = +50 {\rm V}$	ms		0.9	2.0
关断时间	toer	$R_{\rm L} = 1 { m k} \Omega$	ms		0.7	2.0

检测器:输出击穿电压:350V;连续负载电流:100mA;总功耗:500mW;25℃以上线性降额。 封装:隔离电压:3750VAC_{RMS};隔离电阻(V_{IO} = 500V, T_A = 25℃):10¹²Ω;功耗:500mW;25℃ 以上的线性衰减率:2.5mW/℃;存储温度: $-40 \sim 150$ ℃;工作温度: $-40 \sim 85$ ℃;结温:100℃;引 线焊接温度(离壳体 2mm, 10s), 260℃。

LH1298 型高压固体继电器光耦合器

用途:用于电话开关中继线路、高压测试设备、双向可控硅驱动器、电机控制和工业控制系 统等领域。

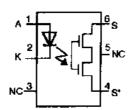
1.A 阳极;2.K 阴极;3.5.NC 不连接; 4.S 源极;6.S 源极。

图 4-76 管脚图

LH1298 是一个单刀单掷(SPST)常闭(NC)型的固体继电器,这种继电器控制 AC 或 DC 的 负载电流达 100mA,电源电压达 350V。光耦合器由一个 GaAlAs LED 二极管、介质隔离单片发 光二极管阵列、控制电路和高压 DMOS 晶体管组成。

特点:常闭型单刀单掷工作;控制 350VAC 或 DC 电压;开关负载电流:100mA;LED 控制电 流:1.5mA;低导通电阻;dV/dt>500V/ms;隔离电压:3750VAC_{RMS};电流限制。

最大额定值:


LED 正向电流:60mA; LED 反向电流:6mA; 隔离电阻($V_{10} = 500$ V, $T_A = 25$ ℃): 10^{12} Ω; 工作 温度:-40~85℃;存储温度:-40~150℃;引线焊接温度(离壳体 2mm,5s):260℃。

技术参数(T_A = 25℃)

参数	符号	測试条件	单位	最小	典型	最大
发射器	•				•	
正向电压	$V_{ m F}$	$I_{\rm F} = 10 { m mA}$	V		1.25	1.5
正向电压温度系数	$\Delta V_{\rm F}/\Delta T_{\rm A}$		mV/C		-2.2	
反向电流	$I_{ m R}$	$V_{\rm R} = 6{ m V}$	A		1	10
结电容	c_{i}	$V_{\rm R} = 0 \text{V}, f = 1 \text{ MHz}$	pF	_	15	
动态电阻	$\Delta V_{ m F}/\Delta I_{ m F}$	$I_{\rm F} = 10 { m mA}$	Ω		6	
开关时间	$t_{\rm R}, t_{\rm F}$	$I_{\rm F} = 10 { m mA}$	8		1	
检测器	_					
输出击穿电压	V _B	$I_{\rm B} = 50$ A	ν	350		
		$V_{\rm T} = 100 { m V}$, $I_{\rm F} = 5 { m mA}$	A		1.0	1
输出关断漏电流	$I_{T(OFF)}$	$V_{\rm T} = 300 {\rm V}$, $I_{\rm F} \approx 2.5 {\rm mA}$	A		0.1	5
	C_{Υ}	$V_{\rm T} = 0$, $f = 1 \mathrm{MHz}$	pF		24	
电流限制			mA		150	
封装						
LED 正向电流,关断	I _{Pth}	$V_{\rm L} = 300 \rm{V}$, $T_{\rm A} = 25 ^{\circ} \rm{C}$	mA		1.5	2.5
导通电阻	Ron	$I_{\rm T} = 25 \mathrm{mA}$, $I_{\rm F} = 0 \mathrm{mA}$	Ω	20	30	50
接通时间	Ton	$I_{\rm F} = 5 \text{mA}, V_1 = 50 \text{V}, R_1 = 1 \text{k} \Omega$	ms			3
美断 时间	TOFF	$t_{\rm F} = 3mA$, $t_{\rm L} = 300$, $t_{\rm L} = 1822$	ms			2

LH1550 型高压固体继电器光耦合器

用途:应用于电话交换中继线路、高压设备、双向可控硅触发器、电机控制和工业控制系统等领域。

管脚说明:

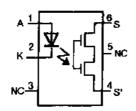
- 1.A 阳极;2.K 阴极;3.5.NC 不连接;
- 4.S'源极:6.S源极。

图 4-77 管脚图

LH1550 是一个单刀单掷(SPST)常开(NO)型的固体继电器,这种继电器能控制的 AC 或 DC 电流达 100mA,电源电压为 350V。耦合器由一个 GaAlAs LED、介质隔离发光二极管阵列和 两个串联连接的高压 MOS 晶体管组成。在 25mA 时的导通电阻为 37Ω,线性电流可达 50mA。内接电流限制电路和过压保护电路。

特点:常开型单刀单掷工作;控制 350VAC 或 DC 电压;开关负载电流 100mA; LED 控制电流 2.5mA;低导通电阻:在 100mA 时为 37Ω;隔离电压为 3750VAC(有效值);电流限制保护。

最大绝对额定值:


发射器:反向电压:5.0V;连续正向电流:50mA;峰值正向电流(1s):1A;功耗:100mW;大于25 \circ 0时的线性降额率为 1.3mW/ \circ 0。

检测器:输出击穿电压:350V;连续负载电流:100mA;总功耗:300mW;大于 25℃时的线性降额。

封装:功耗:400mW;大于 25℃时的线性降额率:2.5mW/℃;隔离电阻(V_{10} = 500V, T_A = 25℃):10¹²Ω;存储温度: – 40~150℃;工作温度: – 40~85℃;结温:100℃;引线焊接温度(离壳体 2mm,10s):260℃。

LH1540 型高压固体继电器光耦合器

用途:应用在电话交换中继线路、高压测试设备、双向可控硅驱动器、电机控制和工业控制系统等领域。

管脚说明:

- 1.A 阳极; 2.K 阴极; 3.5.NC 不连接;
- 4.S'源极;6.S源极。

图 4-78 管脚图

LH1540 是一个单刀单掷(SPST)常开(NO)型的固体继电器。这种继电器可控制的 AC 或 DC 负载电流达 100mA,电源电压达 350V。耦合器由一个 AlGaAs LED、介质隔离发光二极管阵列和两个串联连接的高压 MOS 晶体管组成。在 25mA 时的导通电阻为 20Ω,线性电流可达

50mA。内接电流限制电路和过压保护电路。

特点:常开型单刀单掷工作;控制 350VAC 或 DC 电压;开关负载电流 150mA;LED 控制电流 1mA;低导通电阻在 50mA 时为 20Ω;电流限制保护。

最大绝对额定值:

发射器:反向电压:6.0V;连续正向电流:60mA;峰值正向电流(1 秒):1A;功耗:100mW;大于 25%时的线性降额率:1.3mW/%。

检测器:输出击穿电压;350V;连续负载电流;150mA;总功耗;400mW;大于 25℃时的线性降额。

封装:隔离测试电压:3750VAC(有效值);隔离电阻($V_{10} = 500$ V, $T_A = 25$ °C): $10^{12}\Omega$;功耗: 500mW;大于 25 °C 时的线性降额率: 2.5mW/°C;存储温度: $-40 \sim 150$ °C;工作温度: $-40 \sim 85$ °C;结温:100°C;引线焊接温度(离壳体 2mm, 10s):260°C。

生产厂家:SIEMENS

4.3 德州仪器(TEXAS INSTRUMENTS)光电变换应用电路

3N、4N、6N系列光耦合电路

3N261~3N263型光耦合器电路

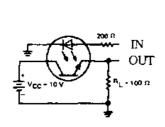


图 4-79(a) 光耦器电路图

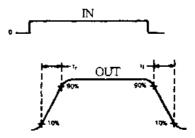


图 4-79(b) 电压波形图

电路中的输入波形由产生器供给。产生器的工作特性: $Z_{\rm OUT}=50\Omega$, $t_{\rm r} \le 15{\rm ns}$, 占空比约为 1%, $t_{\rm w}=100{\rm \mu s}$ 。输出波形由示波器监视,示波器的工作特性为 $t_{\rm r} \le 12{\rm ns}$, $R_{\rm IN} \ge 1{\rm M}\Omega$, $C_{\rm in} \le 20{\rm pF}_{\rm c}$

开关参数

	6 the Litter	NG &-	测试条件		3N261		3N262			3N263		
符号	参数名称	単位		最小	典型	最大	最小	典型	最大	最小	典型	最大
<i>t</i> _r	上升时间	កខ	$V_{\rm CC} = 10 \text{V}, I_{\rm F(\infty)} = 5 \text{mA}, R_{\rm L} = 100 \Omega$		10	20		10	20		15	25
t _f	下降时间	ha			10	20		10	20		15	25

技术参数

A 4L		Separate Are Con-		3N261		ļ	3N262			3N263	
参数	单位	测试条件	最小	典型	最大	最小	典型	最大	最小	典型	最大
V _{(BR)CEO} 集发击穿电压	v	$I_{\rm C} = 1 {\rm mA}, I_{\rm E} = 0, I_{\rm F} = 0$	40	•		40			40		
V _{(BR)ECO} 发集击穿电压	V	$I_{\rm E} = 100 \mu {\rm A}$, $I_{\rm C} = 0$ $I_{\rm F} = 0$	7			7			7		_
I _R 输人二极管静态反向电流	μΑ	$V_{\mathbf{R}} = 2\mathbf{V}$			100			100	 		100
	•	$V_{CE} = 5V$, $I_F = 1mA$	0.5			1		5	2		10
		$V_{\rm CE} = 5V$, $I_{\rm F} = 2mA$, $T_{\rm A} = -55\%$	0.7			1.4		-	2.8		
I _{C(m)} 接通集电极电流	mA	$V_{\rm CE} = 5 \text{V}, I_{\rm F} = 2 \text{mA}, T_{\rm A} = 100 ^{\circ}\text{C}$	0.5			1			2		
		$V_{\rm CE} = 5 \text{V}, I_{\rm F} = 10 \text{mA},$		50			80			90	
工艺性供证的	пA	$V_{\rm CE} = 20 {\rm V}, I_{\rm F} = 0$		6	100		6	100		6	100
I _{C(all)} 关断集电极电流	μ A	$V_{CE} = 20$ V, $I_F = 0$, $T_A = 100$ °C		4	100		4	100		4	100
		$I_{\rm F} = 10 {\rm mA}$, $T_{\rm A} = -55 {\rm °C}$	1		1.7	1		1.7	1	<u>_</u>	1.7
V ₆ 输入∴极管正向静态 │ 地压 │	v	$I_{\rm F} = 10 { m mA}$	0.8	1.4	1.5	0.8	1.4	1.5	0.8	1.4	1.5
,6œ		$I_{\rm F} = 10$ mA, $T_{\rm A} = 100$ °C	0.7		1.3	0.7	_	1.3	0.7		1.3
		$I_C = 0.5 \text{mA}, I_F = 2 \text{mA}$	•		0.3						
V _{CE(sat)} 集发饱和电压	V	$I_{\rm C} = 1 \mathrm{mA}, I_{\rm F} = 2 \mathrm{mA}$						0.3			
ļ		$I_{\rm C} = 2{\rm mA}$, $I_{\rm F} = 2{\rm mA}$									0.3
710 输入到输出的内电阻	Ω	$V_{\text{in-out}} = \pm 1 \text{kV}$	10 ^{J1}	10 ¹²		10 ¹¹	1012		1011	1012	
Cnn輸入到輸出的电容	рF	$V_{\text{in-out}} = 0, f = 1 \text{MHz},$		2.5	5	•	2.5	5	-	2.5	5

4N22A~4N24A型光电耦合器电路

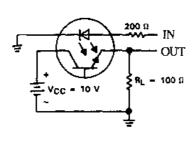


图 4-80(a) 光耦合器电路图

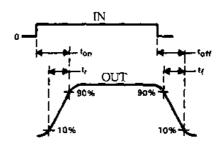
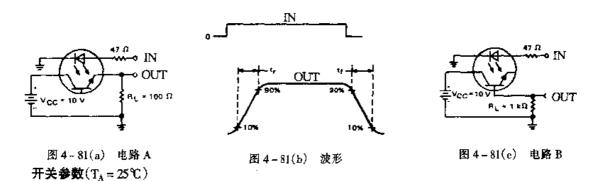


图 4-80(b) 电压波形图

电路中的输入波形由产生器供给。产生器的特性: $Z_{\rm OUT}=50\Omega$, $t_r \le 15{\rm ns}$, $t_w=100\mu{\rm s}$, 占空比=1%。波形由示波器进行监视。示波器的特性: $t_r \le 12{\rm ns}$, $R_{\rm in} \ge 1{\rm M}\Omega$, $C_{\rm in} \le 20{\rm pF}$ 。

开关参数(T_A = 25℃)

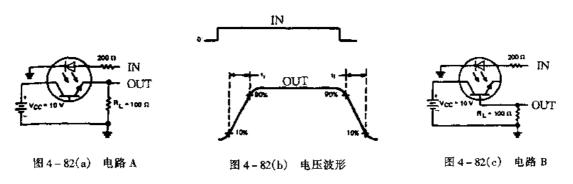

45. % (单位	测试条件	4N22A	4N23A	4N24A
参数	F12	妈 瓜冰竹	最大	最大	最大
ι _r 上升时间	μв	T . 10V I . 10-4 B - 1000	15	15	20
ι _ξ 下降时间	μв	$V_{\rm CC} = 10 \text{V}, I_{\rm F(on)} = 10 \text{mA}, R_{\rm L} = 100 \Omega$	15	15	20

技术参数(T_A = 25℃)

£2 ***	34 tr	354 5-5 Az 18-		4N22A			4N23A			4N24A	
参数	単位	測试条件	最小	典型	最大	最小	典型	最大	最小	典型	最大
V _{(BR)CBO} 集基击穿电压	v	$I_{\rm C} = 100 \mu {\rm A}$, $I_{\rm E} = 0$, $I_{\rm F} = 0$	35			35			35		
V _{(BR)CEO} 集发击穿电压	v	$I_{\rm C} = 1$ mA, $I_{\rm B} = 0$ $I_{\rm F} = 0$	35			35			35	•	
V _{(BR)EBO} 发集击穿电压	v	$I_{\rm E} = 100 \mu {\rm A}$, $I_{\rm C} = 0$, $I_{\rm F} = 0$	4			4			4		
I _R 输入二极管静态反向电流	μA	$V_{\rm R} = 2 { m V}$			100			100			100
		$V_{\text{CE}} = 5\text{V}, I_{\text{D}} = 0, I_{\text{F}}$ = 2mA	0.15			0.2			0.4	···-	
I _{C(m)} 接通集电极电流	mA	$V_{\text{CE}} = 5\text{V}, I_{\text{B}} = 0,$ $I_{\text{F}} = 10\text{mA}, T_{\text{A}} = -55^{\circ}\text{C}$	1			2.5			4		
1 (C(at) 区 / (3 米 で M	III.A	$V_{\text{CE}} = 5\text{V}, I_{\text{B}} = 0, I_{\text{Y}}$ = 10mA,	2.5	4		6	8		10	15	
		$V_{\text{CE}} = 5\text{V}, I_{\text{B}} = 0, I_{\text{F}}$ = 10mA, $T_{\text{A}} = 100$ °C	1			2.5			4		
I _{C(all)} 关断集电极电流	nA	$V_{CE} = 20 \text{V}, I_{B} = 0, I_{F}$ = 0			100			100			100
≠C(df)入时来电弧电弧	μΑ	$V_{\text{CC}} = 20 \text{V}, I_{\text{B}} = 0, I_{\text{F}}$ = 0, $T_{\text{A}} = 100 ^{\circ}\text{C}$			100			100			100
,		$I_{\rm F} = 10 {\rm mA}, T_{\rm A} = -55 {\rm ^{\circ}C}$	1		1.5	1		1.5	1		1.5
V _F 输人二极管静态正向电压	v	$I_{\rm F} = 10 { m mA}$	0.8		1.3	0.8		1.3	0.8		1,3
		$I_{\rm F} = 10 { m mA}$, $T_{\rm A} = 100 { m ^{\circ}C}$	0.7		1.2	0.7		1,2	0.7		1.2
		$I_{\rm C}=2.5{ m mA},\ I_{\rm B}=0,$ $I_{\rm F}=20{ m mA}$			0.3						
<i>V_{CE(au)}集发</i> 饱和电压	v	$I_{\rm C} = 5 \text{mA}, I_{\rm B} = 0, I_{\rm F}$ = 20mA						0.3			
	- 	$I_{\rm C} = 10 {\rm mA}, I_{\rm B} = 0, I_{\rm F}$ = 20 mA									0.3
r ₁₀ 输人到输出的内电阻	Ω	$V_{\text{in-out}} = \pm 1 \text{kV}$	1011			1011			1011		
Cna輸入到輸出的电容	рF	$V_{\text{in-out}} = 0, f = 1 \text{ MHz},$			5			5			5

4N25~4N28型光耦器电路

电路中的输入波形由信号产生器供给。信号产生器的工作特性: $Z_{\rm OUT}=50\Omega$, $t_{\rm r} \le 15{\rm ns}$, 占空比为 1%, $t_{\rm w}=100\mu{\rm s}$ 。输出波形由示波器监视,示波器的特性: $t_{\rm r} \le 12{\rm ns}$, $R_{\rm in} \ge 1{\rm M}\Omega$, $C_{\rm in} \le 20{\rm pF}$ 。

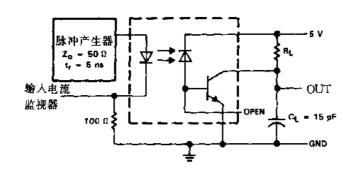

多 数	说明	单位	测试条件	数值
t, 上升时间 t: 下降时间	光晶体管工作	hra	$V_{\rm OC} = 10 \text{V}, I_{\rm B} = 0, I_{\rm C(co)} = 2 \text{mA},$ $R_{\rm L} = 100 \Omega$	2 .
4、上升时间 4.下降时间	光二极管工作	ha	$V_{\rm CC} = 10 \text{V}, I_{\rm E} = 0, I_{\rm C(on)} = 20 \mu \text{A},$ $R_{\rm L} = 1 \text{k} \Omega$	1

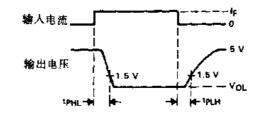
技术参数(TA = 25℃)

	在期 5 36	26.45	SHI W IN-	4	N26 ~ 2	25	4	N27 ~ 2	28
符号	参数名称	単位	測试条件	最小	典型	最大	最小	典型	最大
V _{(BR)CBO}	集基击穿电压	V	$I_{\rm C} = 100 \mu {\rm A}, I_{\rm E} = 0, I_{\rm F} = 0$	70			70		
$V_{(BR)CEO}$	集发击穿电压	V	$I_0 = 1 \text{mA}, I_B = 0 \ I_F = 0$	30			30		
V _{(BR)ECO}	发集击穿电压	V	$I_{\rm E} = 100 \mu {\rm A}$, $I_{\rm B} = 0$, $I_{\rm F} = 0$	7			7		
I_{R}	输入二极管静态反向电流	μA	$V_{\rm R} = 3V$			100			100
$I_{C(un)}$	接通集电极电流(光晶体管工作)	mΑ	$V_{\rm QE} = 10 \rm V$, $I_{\rm B} = 0$, $I_{\rm F} = 10 m \rm A$	2	5_		1	3	
$I_{\mathbb{C}(m)}$	接通集电极电流(光二极管工作)	μ A	$V_{\rm CB} = 10 \rm V$, $I_{\rm E} = 0$, $I_{\rm F} = 10 \rm mA$		20			20	
$I_{\mathcal{C}(\mathbf{aff})}$	关断集电极电流(光晶体管工作)	nA	$V_{\rm CE} = 10 { m V}$, $I_{\rm B} = 0$, $I_{\rm F} = 0$		1	50_		_1_	50_
$I_{C(\mathbf{off})}$	关断集电极电流(光二极管工作)	nA	$V_{\rm CH} = 10{\rm V}$, $I_{\rm E} = 0$, $I_{\rm F} = 0$		1.0	20		0.1	20
$V_{\rm F}$	输入二极管正向电压	V	$I_{\rm F} = 10 { m mA}$,		1.25	1.5		1.25	1.5
$V_{\mathrm{CE}(unt)}$	集发饱和电压	V	$I_{\rm C} = 2 {\rm mA}$, $I_{\rm B} = 0$, $I_{\rm F} = 50 {\rm mA}$		0.25	0.5		0.25	0.5
			$V_{\text{in-out}} = \pm 2.5 \text{kV} (4\text{N}25)$						
r _{IO}	输人到输出的内电阻	Ω	± 1.5kV(4N26,4N27)	10 ¹¹	1012		1011	1012	
			± 0.5kV(4N28)						
C _{ig}	输人到输出的电容	рF	$V_{\text{in-out}} = 0$, $f = 1 \text{MHz}$		1			1	

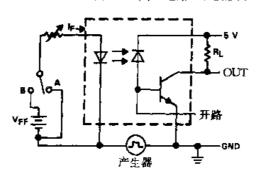
4N47~4N49型光耦合器电路

电路中的输入波形由信号产生器供给。信号产生器的工作特性: $Z_{\rm OUT}$ = 50 Ω , $t_{\rm r} \le 15 {\rm ns}$, 占空比为 1%, $t_{\rm w}$ = 100 μ s。输出波形由示波器监视,示波器的特性: $t_{\rm r} \le 12 {\rm ns}$, $R_{\rm in} \ge 1 {\rm M}\Omega$, $C_{\rm in} \le 20 {\rm pF}$ 。


开关参数(T_A = 25℃)


符号	参数名称	单位	测试条件	4N47			4N48			4N49		
19°¥	111 3 多数日本 平底:	, 例 风 尔 作	最小	典型	最大	最小	、 典型 最大 最小	最小	典型	最大		
t,	上升时间	μs	$V_{\rm CC} = 10 \text{V}, I_{\rm F(m)} = 5 \text{mA},$		10	20		10	20		15	25
t _f	下降时间	μs	R _L = 100Ω, 工作电路 A		10	20		10	20		15	25
t _r	上升时间	lres.	$V_{\rm CC} = 10 {\rm V}$, $I_{\rm F(on)} = 5 {\rm mA}$,		1	3		1	3		1	3
t _f	下降时间	μs	$R_{\rm L}$ = 100 Ω ,工作电路 B		1	3		1	3		1	3

技术参数(T_A = 25℃)


符号	参数名称	# A	·位 測试条件		4 N4 7		4.148				4N49		
শ্ব স	多数名称	甲亚		最小	上型	最大	· 最小	典型	最大	最小	典型	最大	
V _{(BR)GBO}	集基占穿电压	v	$I_{\rm C} = 100 \mu {\rm A}$, $I_{\rm E} = 0$, $I_{\rm F} = 0$	45			45			45			
V _{(BR)CEO}	集发击穿电压	v	$I_{\rm C} = 1 {\rm mA}$, $I_{\rm B} = 0$ $I_{\rm F} = 0$	40			40			40			
V _{(BR)EBO}	发基击穿电压	į V	$I_{\rm E} = 100 \mu {\rm A}$, $I_{\rm C} = 0$, $I_{\rm F} = 0$	7			7			7			
I_{ft}	输入二极管静态反向电流	μΑ	$V_{\rm R} = 2 { m V}$			100			100			100	
	接通集电极电流(光晶体) 曾工作)	İ	$V_{\text{CE}} = 5 \text{ V}, I_{\text{B}} = 0, I_{\text{F}} = 1 \text{ mA}$	0.5			ı		5	2		10	
$I_{C(m)}$			$V_{\text{CE}} = 5\text{V}, I_{\text{B}} = 0, I_{\text{F}} = 2\text{mA},$ $T_{\text{A}} = -55^{\circ}\text{C}$	0.7	-	i	1.4			2.8			
€C(cm)		mA	$V_{\rm CE} = 5 {\rm V} , I_{\rm B} = 0 , I_{\rm F} = 2 {\rm mA} ,$ $T_{\rm A} = 100 {\rm ^{\circ}C}$	0.5			1			2			
			$V_{\text{CE}} = 5\text{V}$, $I_{\text{B}} = 0$, $I_{\text{F}} = 10\text{mA}$,		50			80			90		
$I_{\mathrm{C}(\mathbf{on})}$	接通集电极电流(光二极管工作)	μΑ	$V_{\rm CB} = 5 { m V}$, $I_{\rm F} = 10 { m mA}$, $I_{\rm E} = 0$	30	30		30	80		30	80		
,	美断集电极电流(光晶体	пA	$V_{\rm CE} = 20 {\rm V}$, $I_{\rm B} = 0$, $I_{\rm F} = 0$	i	6	100		6	100		6	100	
$I_{C(vE)}$	管工作)	μΑ	$V_{\text{CE}} = 20\text{V}, I_{\text{B}} = 0, I_{\text{F}} = 0, T_{\text{A}}$ = 100°C		4	100		4	100		4	100	
$I_{\mathcal{C}(\mathbf{uff})}$	关断集电极电流(光二极 管工作)	nA.	$V_{\rm CB} = 20 {\rm V}$, $I_{\rm E} = 0$, $I_{\rm F} = 0$		1	10		1	10		1	10	
			$I_{\rm F} = 10 {\rm mA}$, $T_{\rm A} = -55 {\rm °C}$	1		1.7	1		1.7	1		1.7	
$V_{ m F}$	输入二极管静态正向电压	v	$I_{\rm F} = 10 { m mA}$	0.8	1.4	1.5	0.8	1.4	1.5	0.8	1.4	1.5	
		Ī	$I_{\rm F}$ = 10mA , $T_{\rm A}$ = 100 °C	0.7		1.3	0.7		1.3	0.7	•	1.3	
1			$I_{\rm C} = 0.5 {\rm mA}$, $I_{\rm B} = 0$, $I_{\rm F} = 2 {\rm mA}$			0.3							
V _{CE(sat)}	集发饱和电压	v	$I_{\rm C} = 1 {\rm mA}$, $I_{\rm B} = 0$, $I_{\rm F} = 2 {\rm mA}$						0.3				
	•	ļ	$I_{\rm G} = 2 {\rm mA}$, $I_{\rm B} = 0$, $I_{\rm F} = 2 {\rm mA}$									0.3	
r _{io}	输入到输出的内电阻	Ω	$V_{\text{in-out}} = \pm 1 \text{kV}$	10 ¹¹	1012		10 ¹¹	10 ¹²		1011	1012		
C _{is}	输入到输出的电容	pF	$V_{\text{in-out}} = 0, f = 1 \text{MHz},$		2.5	5		2.5	5	<u> </u>	2.5	5	

6N135,6N136,HCPL4502型光耦合器/光隔离器电路

注;CL包括探头和杂散电容 图 4-83(a) 电路 A 和波形图

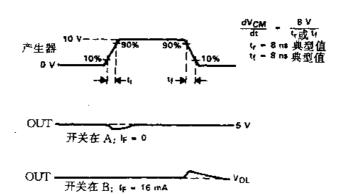


图 4-83(b) 电路 B 和波形图

6N135,6N136,HCPL4502 型光耦合器/光隔离器

最大绝对额定值($T_A = 25$ °C)

电源和输出电压范围, V_{CC} 和 V_0

反向输入电压

 $-0.5 \sim 15$ V

5V

图 4-83(c) 电路原理图

发基反向电压 5V 峰值输人正向电流 50mA峰值瞬变输入正向电流 1A 平均正向输入电流 25mA峰值输出电流 16mA 平均输出电流 8mA基极电流 5mA 输入功耗(在70℃以下) 45 mW输出功耗(在70℃以下) 100 mW存储温度 - 55 ~ 125℃ 工作温度 - 55 ~ 100℃ 引线焊接温度(离壳体 1.6mm 处,10s) 260℃

技术参数(0~70℃)

参数	26.12-		32al 3-19 Az 14-		6N135		6N13	6, HCPI	A502
参 数	単位		测试条件	最小	典型	最大	最小	典型	最大
V _F 輸入正向电压	v	$I_{\rm F} = 16 { m mA}$, $T_{\rm A}$	=25℃		1.6	1.7		1.6	1.7
αVF 正向电压温度系数	mV∕°C	$I_{\rm F} = 16 { m mA}$			-1.8			-1.8	
V _{ER} 輸入击穿电压	v	$I_{\rm R} = 10 \mu {\rm A}$, $T_{\rm A}$	= 25℃	5			5		
Vor低电平输出电压	v	$V_{\rm OC} = 4.5 \text{V},$ $I_{\rm F} = 16 \text{mA},$	I _{OL} = 1.1mA		0.1	0.4			
A OCHREGO T ANN THE THE STEE	*	$I_{B} = 0$	$\vec{I}_{OL} = 2.4 \text{mA}$					0.1	0.4
Ion高电平输出电压	nA	$I_{\rm F}=0,$ $I_{\rm R}=0,$	$V_{\rm CC} = V_{\rm O} = 5.5 \text{ V}$		3	500		3	500
10Hild 10 1 1 1 1 1 1 1 1 2 2 2	μΑ	$T_{\rm A} = 25$ °C	$V_{\rm CC} = V_0 = 15 \mathrm{V}$		0.01	1		10.0	1
I _{OH} 高电平输出电流	μA	$V_{\rm OC} = 15 \text{V}$, $V_{\rm O}$	$V_{\rm CC} = 15 \text{V}, V_{\rm O} = 15 \text{V}, I_{\rm F} = 0, I_{\rm B} = 0$			50			50
ICCH电源电流,高电平输出	μA	$V_{\rm CC} = 15 \mathrm{V}$, $I_0 =$	$= 0$, $I_{\rm F} = 0$, $I_{\rm B} = 0$, $T_{\rm A} = 25$ °C		0.02	1		0.02	1
Iccn电源电流,高电平输出	μA	$V_{\rm CC} = 15 \mathrm{V}$, $I_0 =$	$=0, I_{\rm F}=0, I_{\rm B}=0$			2			2
I _{CCL} 电源电流,低电平输出	μ A	$V_{\rm CC} = 15$ V, $I_0 =$	$= 0$, $I_{\rm F} = 16$ mA, $I_{\rm B} = 0$		40			40	
h _{EE} 晶体管正向电流传输比		$V_0 = 5$ V, $I_0 = 3$	5mA		100		(6N	100 1136 可 <i>)</i>	用)
CTR 电流传输比	%	$V_{CC} = 4.5 \text{V}, V_{C}$ $T_{A} = 25 \text{°C}$	$_0 = 0.4 \mathrm{V}, I_{\mathrm{F}} = 16 \mathrm{mA}, I_{\mathrm{B}} = 0$	7%	18%		19%	24%	
CTR 电流传输比	%	$V_{\rm DC} = 4.5 \text{V}, V_{\rm O}$	$I_{\rm F} = 0.5 \text{V}, I_{\rm F} = 16 \text{mA}, I_{\rm B} = 0,$	5%			15%		
{гю} 输入到输出的电阻	Ω	$V{\rm IO} = 500 \mathrm{V}$, $T_{\rm A}$	=25℃,		1012			1012	
I ₁₀ 输入到输出的隔离漏电流	μΑ	$V_{10} = 3000 \mathrm{V}$, $t = 1000 \mathrm{V}$	$= 5s$, $T_{\Lambda} = 25$ °C , RH = 45 %			1			I
C _i 输入电容	pF	$V_F = 0, f = 1MH$	łz		60	·	_	60	
C _{ic} 输入到输出的电容	pF	f = 1MHz,			0.6			0.6	

工作参数($V_{\rm CC} = 5$ V, $I_{\rm F} \approx 16$ mA, $T_{\rm A} = 25$ °C)

多 数	单位	测试条件	6N135	6N136, HCPL4502
39 XX	十世	03 PQR TT	数值	数值
BW	MHz	$R_{\rm L} = 100\Omega$,	2	2

开关参数($V_{\rm CC} = 5$ V, $I_{\rm F} = 16$ mA, $T_{\rm A} = 25$ °C)

	参数	单位 测试条件			6N135		6N136, HCPL4502		
_	多			最小	典型	最大	最小	典型	最大
	传输延迟时间,低电平到		$R_{\rm L} = 4.1 {\rm k}\Omega$		1.0	1.5			
1 _{M,H}	高电平输出	l lis	$R_{\rm L} = 1.9 \mathrm{k}\Omega$	1	<u>-</u>			0.6	0.8
传输延迟时间,高电平到 低电平输出		$R_{\rm L} = 4.1 {\rm k}\Omega$		0.7	1.5	_			
	低电平输出	με	$R_{\rm L} = 1.9 {\rm k}\Omega$					0.6	8.0
dV _{CM} (H)	共模输入瞬变抗干扰,高 电平输出	V/µs	$\triangle V_{CM} = 10V, I_{F} = 0, R_{L} = 4.1k\Omega,$		1000	:			
gi (H)			$\triangle V_{\rm CM} = 10 \text{V}, I_{\rm F} = 0, R_{\rm L} = 1.9 \text{k}\Omega,$					- 1000	_
$\frac{dV_{CM}}{dt}(L)$	共模输入瞬变抗于扰,低 电平输出	V/µs	$\triangle V_{\rm CM} = 10 \text{V}, R_{\rm L} \approx 4.1 \text{k}\Omega,$		- 1000				
			$\triangle V_{\rm CM} = 10 \text{V}, R_L = 1.9 \text{k}\Omega,$		_			- 1000	

6N137型光耦合器/光隔离器电路

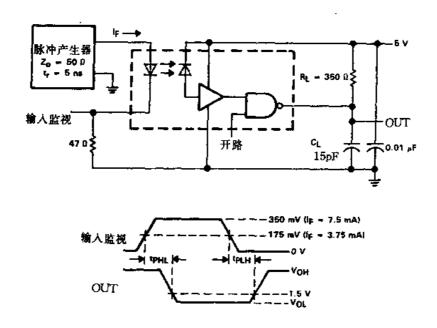


图 4-84(a) tput和 tput由输入电路测试及电压波形图

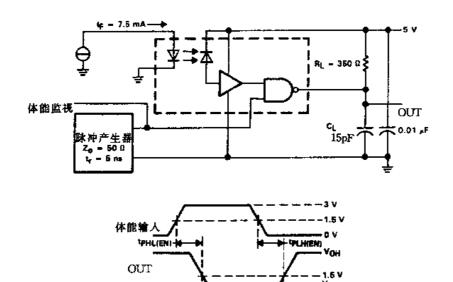
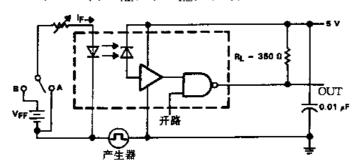



图 4 – 84(b) $t_{PLH}(EN)$ 和 $t_{PLH}(EN)$ 由使能电路测试及电压波形图

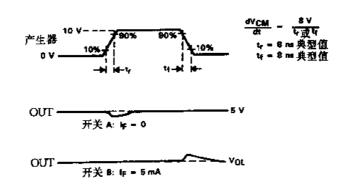
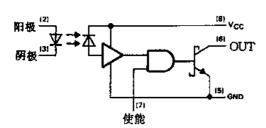



图 4-84(c) 抗瞬变于扰测试电路和电压波形图

6N137型光耦合器/光隔离器

功	能	表
~	Line	***

输入	使能	輸出
$I_{\mathrm{F}(op)}$	Н	L
$I_{F(\sqrt{t})}$	X	Н
X	L	Н

注:H高电平,L低电平,X任意电平

图 4-84(d) 6N137 逻辑图(正逻辑)

在电路应用中,0.01μF~0.1μF 陶瓷电容连接至8和5脚,可稳定高增益放大器的工作。 电容和光耦合器之间的引线总长不得超过20mm。 最大额定绝对值

电源电压,V_{CC}

反向输入电压 5V

使能输入电压(不超过 V_{cc}) 5.5V

输出电压 7V

峰值正向输入电流(≤1ms 持续时间) 40mA~20mA

平均正向输入电流 20mA~10mA

输出电流50mA输出功耗85mW

存储温度 - 55 ~ 125℃

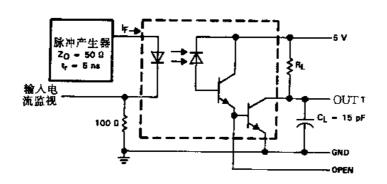
工作温度 0~70℃

引线焊接温度(离壳体 1.6mm 处,10s) 260℃

推荐工作条件

符号	参数	単位	最小	典型	最大
\overline{v}_{∞}	输出电源电压	v	4.5	5_	5.5
$V_{\rm IH(EN)}$	高电平使能输 人电压	v	2		v_{∞}
V _{IL(EN)}	低电平使能输入电压	V	0		0.8
$I_{\text{F(on)}}$	输人正向电流到接通输出	mA	6.3		15
$I_{\mathrm{F}(a\mathbf{E})}$	输人正向电流到关断输出	μA	0		250
IOL	接通低电平输出电流	mA			13
T_{A}	工作温度	℃	0		70

7V


技术参数

符号	参 数	单位	測试条件	最小	典型	最大
$V_{\rm F}$	输人正向电压	V	$I_{\rm F} = 10 \rm mA$, $T_{\rm A} = 25 \rm ^{\circ}C$		1.6	1.75
αVF	正向电压温度系数	mV/℃	$I_{\rm F} = 10 \text{mA}$		-1.8	
\overline{V}_{BR}	輸人反向击穿电压	v	$I_{\rm R} = 10 \mu {\rm A}$, $T_{\rm A} = 25 {\rm ^{\circ}C}$	5		
\overline{V}_{OL}	低电平输出电压	v	$V_{\rm OC} = 5.5 \text{V}$, $V_{\rm (EN)} = 2 \text{V}$, $I_{\rm F} = 5 \text{mA}$, $I_{\rm OL} = 13 \text{mA}$		0.23	0.6
I _{OH}	高电平输出电流	μА	$V_{\rm CC} = 5.5 \text{ V}, V_0 = 5.5 \text{ V}, V_{(EN)} = 2 \text{ V}, I_{\rm F} = 250 \mu\text{A}$			250
$I_{\rm IH(EN)}$	高电平使能输入电流	mA	$V_{\rm OC} = 5.5 \text{V}, V_{\rm (DN)} = 2 \text{V}$		-0.2	
$I_{L(EN)}$	低电平使能输入电流	mA	$V_{\rm CC} = 5.5 \mathrm{V}$, $V_{\rm (EN)} = 0.5 \mathrm{V}$		-0.5	2
I _{CCH}	电源电流,高电平输出	mA	$V_{\rm CC} = 5.5 \mathrm{V}, V_{\rm (EN)} = 0.5 \mathrm{V}, I_{\rm F} = 0$		10	15
Ioa	电源电流,低电平输出	mA	$V_{\rm OC} = 5.5 \text{V}$, $V_{\rm (EN)} = 0.5 \text{V}$, $I_{\rm F} = 10 \text{mA}$	_	13	18
I_{10}	输入输出的隔离漏电流	μА	$V_{10} = 3000 \text{ V}, t \approx 5 \text{ s}, T_{\Lambda} \approx 25 ^{\circ}\text{C}, RH = 45 ^{\circ}\text{C}$			Ī
r _{iO}	输入输出的电阻	Ω	$V_{50} = 500 \text{ V}$, $T_{A} = 25 ^{\circ}\text{C}$,		1012	
C_{i}	输入电容	рF	$V_{\rm F} = 0$, $f = 1$ MHz		60	
Cio	输入输出的电容	pF	$f = 1$ MHz, $T_A = 25$ °C,		0.6	

开关参数(V_{CC} = 15V, T_A = 25℃)

符号	多 数	单位	测试条件	最小	典型	最大
t _{PtH}	传输延迟时间,低到高电平,见 LED 输入	ns	$I_{\rm F} = 7.5 \mathrm{mA}$, $R_{\rm L} = 350 \Omega$, $C_{\rm L} = 15 \mathrm{pF}$,		42	75
t _{PHIL}	传输延迟时间,高到低电平,见 LED 输入	ns	$I_{\rm F} = 7.5 \mathrm{mA}$, $R_{\rm L} = 350 \Omega$, $C_{\rm L} = 15 \mathrm{pF}$,		42	75
I _{PLH(EN)}	传输延迟时间,低到高电平,见使能输入	ns	$I_{\rm F} = 7.5 \mathrm{mA}, R_{\rm L} = 350\Omega, C_{\rm L} = 15 \mathrm{pF},$	_	40	
t _{PHL(EN)}	传输延迟时间,高到低电平,见使能输人	ns	$I_{\rm F} = 7.5 \mathrm{mA}$, $R_{\rm L} = 350 \Omega$, $C_{\rm L} = 15 \mathrm{pF}$,	L	25	
t _r	上升时间	ns_	$I_{\rm F} = 7.5 \mathrm{mA}$, $R_{\rm L} = 350 \Omega$, $C_{\rm L} = 15 \mathrm{pF}$,		_20	
f	下降时间	ns	$I_{\rm F} = 7.5 \mathrm{mA}$, $R_{\rm L} = 350 \Omega$, $C_{\rm L} = 15 \mathrm{pF}$,	Ĺ	30_	
$\frac{\mathrm{d}V_{\mathrm{CM}}}{\mathrm{d}t}(\mathrm{H})$	共模输人瞬变抗干扰,高电平输出	V/μs	$\triangle V_{\rm CM} = 10 \text{V}$, $I_{\rm F} = 0$, $R_{\rm L} = 350 \Omega$,		50	
$\frac{\mathrm{d}V_{\mathrm{CM}}}{\mathrm{d}t}(\mathrm{L})$	共模输入瞬变抗干扰,低电平输出	V/μs	$\triangle V_{CM} = -10V, I_F = 5\text{mA}, R_L = 350\Omega,$		- 150	

6N138/6N139 型光耦合器/光隔离电路

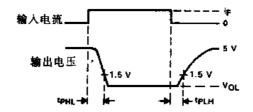
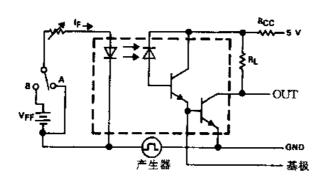



图 4-85(a) 开关测试电路和波形图

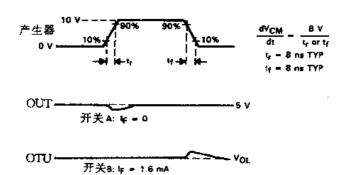


图 4-85(b) 抗瞬变干扰测试电路和电压波形图

6N138/6N139 型光耦合器/光隔离器

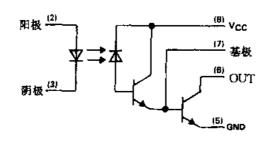


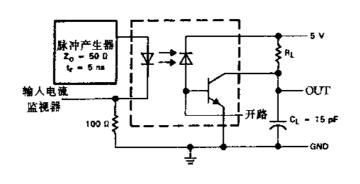
图 4-85(c) 6N138,6N139 型电路原理图

最大	44	小勿	랖	估
取八	#3	八山田以	AL	IH

4人 人 人 人 人 人 人 人 人 人 人 人 人 人 人 人 人 人 人	
电源和输出电压, V _{CC} 和 V ₀ :6N138	$-0.5 \sim 7V$
6N139	$-0.5 \sim 18V$
反向输入电压	5V
发基反向电压	0.5V
峰值输人正向电流(脉冲持续时间 1ms 占空比为 50%)	40mA
峰值瞬变输入正向电流(脉冲持续时间 ≤ μs)	1A
平均正向输入电流(在50℃以下)	20mA
输出电流(在25℃以下)	60mA
输入功耗(在50℃以下)	35mW
输出功耗(在25℃以下)	100mW
存储温度	- 55 ~ 125℃
工作温度	0 ~ 100℃
引线焊接温度(离壳体 1.6mm 处,10s)	260℃

技术参数

₩	A 1455	** /2.	Security of the Asset Code	6N138			,	6N139	
符号	多数	单位	测试条件	最小	典型	最大	最小	典型	最大
$V_{\rm F}$	输入正向电压		$I_{\rm F} = 1.6 {\rm mA}$, $T_{\rm A} = 25 {\rm °C}$		1.5	1.7		1.5	1.7
αVF	正向电压温度系数	mV/℃	$I_{\rm F} = 1.6 { m mA}$		-1.8			-1.8	
$V_{\rm BR}$	输入击穿电压	v	$I_{\rm R} = 10 \mu {\rm A}$, $T_{\rm A} = 25 {\rm ^{\circ}C}$	5			5		
	低电平输出电压 V		$V_{\text{CC}} = 4.5 \text{V}, I_{\text{F}} = 1.6 \text{mA}, I_{\text{OL}}$ = $4.8 \text{mA}, I_{\text{B}} = 0$		0.1	0.4			
E)		15	$V_{\rm CC} \approx 4.5 \text{V}, I_{\rm F} = 1.6 \text{mA}, I_{\rm OL}$ = 6.4 mA, $I_{\rm B} = 0$					0.1	0.4
Vol.		v	$V_{\rm CL} = 4.5 \text{ V}, I_{\rm F} = 5 \text{ mA}, I_{\rm OL} = 15 \text{ mA}, I_{\rm B} = 0$			_ _ _		0.1	0.4
			$V_{\rm CC} = 4.5 \text{V}, I_{\rm F} = 12 \text{mA}, I_{\rm OL}$ = 24 mA, $I_{\rm B} = 0$					0.2	0.4


	· · · · · · · · · · · · · · · · · · ·		<u> </u>		6N138		6N139			
符号	参 数	单位	测试条件	最小 典型 最大			最小		 -	
r			$V_{\rm CC} = 7V$, $V_{\rm O} = 7V$, $I_{\rm F} = 0$, $I_{\rm B}$		0.1	250	2427	732	40.7	
I _{OR}	高电平输出电流	μA	$V_{\rm CC} = 18 \text{V}, V_{\rm O} = 18 \text{V}, I_{\rm F} = 0,$ $I_{\rm B} = 0$					0.05	100	
I _{CCH}	电源电流,高电平输出	nA	$V_{CC} = 5V, V_0$ 开路, $I_F = 0, I_8$ = 0		10			10		
Iccl	电源电流,低电平输出	mA	$V_{\rm CC} = 5V$, $V_{\rm O}$ 开路, $I_{\rm F} = 1.6$ mA, $I_{\rm B} = 0$		0.2	·		0.2		
CTR	电流传输比		$V_{\text{CC}} = 4.5\text{V}, V_{\text{O}} = 0.4\text{V}, I_{\text{F}} = 0.5\text{mA}, I_{\text{B}} = 0$				400%	1650%		
UIK	, 巴加 沙雅 吃		$V_{\rm OC} = 4.5 \text{V}, V_{\rm O} = 0.4 \text{V}, I_{\rm F} = 1.6 \text{mA}, I_{\rm B} = 0$	300% 1	300%		500%	1400%		
r _{IO}	输入到输出的电阻	Ω	$V_{\rm IO} = 500 \mathrm{V}$		1012			10 ¹²		
I_{i0}	输人到輸出的隔离漏电流	μΑ	$V_{\rm HO} = 3000 \text{V}, t = 59, T_{\rm A} = 25^{\circ}\text{C}, \text{RH} = 45\%$			1			1	
C,	输入电容	рF	$V_{\rm F} = 0$, $f = 1$ MHz		60			60		
Cio	输入到输出的电容	рF	$f = 1 \mathrm{MHz}$		0.6			0.6	-	

开关参数(V_{CC} = 5V, T_A = 25℃)

符号	参 数	M /-	384 1-1- Az 1/4-		6N138			6N139	
117 75	∌ ₩	単位	测试条件	最小	典型	最大	最小	典型	最大
			$I_{\rm F} = 1.6 { m mA}$,		2	10			
			$R_{\rm L}=2.2{\rm k}\Omega$,		Z	10			
	传输延迟时间,高到低电平输出		$I_{\rm F} = 0.5 \mathrm{mA}$,						25
FPHIL.		μs	$R_{\perp} = 4.7 \mathrm{k}\Omega$,					4	25
			$I_{\rm F} = 12 \mathrm{mA}$,					0.3	
			$R_{\rm L} = 270\Omega$,	<u>.</u> .				0.3	1
		hs	$I_{\rm F} = 1.6 { m mA}$,		4	35			
			$R_{\rm L}=2.2{\rm k}\Omega$			33			
	 传输延迟时间,低到高电平输出		$I_{\rm F}=0.5{\rm mA}$,					10	60
[‡] PLH			$R_{\rm L}=4.7{\rm k}\Omega$,					10	
			$I_{\rm F} = 12 \text{mA}$,		· · · · · · · · · · · · ·			2.5	7
			$R_L = 270\Omega$,					3.5	,
d V _{CM}	上 数数 1 或分异子也 老古可数 11	,,,	$V_{\rm CM} = 10V_{\rm p-p}, I_{\rm F} = 0,$		500			500	
dr (H)	(H) 共模输入瞬变抗干扰,高电平输出	V/µs	$R_{\rm L}=2.2{\rm k}\Omega$,	500				500	
dV _{Od.}	长林岭;四苏七十七 化五分岭山	17.4	$V_{\rm CM} = V_{\rm p-p}$,		500			500	
dt (L)	共模输入瞬变抗干扰,低电平输出	V/μs	$R_{\rm L} = 2.2 {\rm k}\Omega$,		- 500	ŀ		- 500	

HCPL 系列光耦合电路

HCPL2502 型光耦合器/光隔离电路

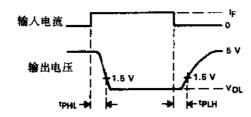
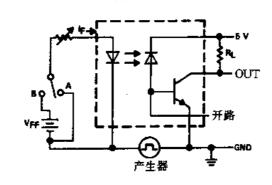



图 4-86(a) 开关测试电路和波形图

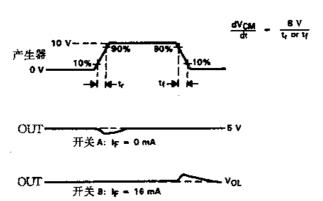


图 4-86(b) 抗瞬变干扰测试电路和电压波形图

HCPL2052 型光耦合器/光隔离器

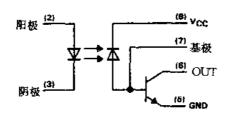


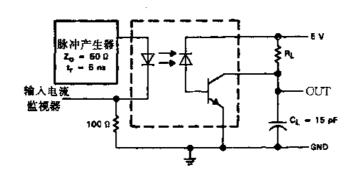
图 4-86(c) HCPL2052 型电路原理图

最大绝对额定值	
电源和输出电压, V_{cc} 和 V_{o}	0.5 ~ 15V
反向输入电压	5V
发基反相电压	5V
峰值输人正向电流(脉冲持续时间 1ms,50%占空比)	50mA
峰值瞬变输人正向电流(脉冲持续时间 1µs,300Hz)	1A
平均正向输入电流	25mA
峰值输出电流	16mA
平均输出电流	8mA
基极电流	5mA
输入功耗(在 70℃以下)	45mW
输出功耗(在 70℃以下)	$100 \mathrm{mW}$
工作温度	- 55 ~ 100℃
存储温度	- 55 ~ 125℃
引线焊接温度(离壳体 1.6mm 处,10s)	260℃

技术参数

符号	参 数	単位	測试条件		最小	典型	最大
V_{F}	输入正向电压	v	$I_{\rm F}=16{ m mA}$, $T_{\rm A}=$	25°C		1.6	1.7
ανΓ	正向电压温度系数	mV/℃	$I_{\rm F} = 16$ mA		Ī	-1.8	
$V_{ m BR}$	输入击穿电压	v	$I_{\rm R} = 10 \mu {\rm A}$, $T_{\rm A} = 25 {\rm C}$		5	· -	
VOL	低电平输出电压	v	$V_{\rm CC} = 4.5 \text{V}$, $I_{\rm F} = 16 \text{mA}$, $I_{\rm OL} = 2.4 \text{mA}$, $I_{\rm B} = 0$			0.1	0.4
_		nA	$I_{\rm F}=0$.	$V_{\rm CC} = V_{\rm O} = 5.5 \text{V}$	_	3	500
Ion	高电平输出电流	μΑ	$I_{\rm B}=0$, $T_{\rm A}=25$ °C	$V_{\rm CC} = V_0 = 15 \text{V}$		0.01	1
I _{OH}	高电平输出电流	μΑ	$V_{\rm CC} = 15 \text{V}$, $V_{\rm O} =$	15V, $I_{\rm F} = 0$, $I_{\rm B} = 0$			50
I_{CCH}	电源电流,高电平输出	μА	$V_{\rm CC} = 15 \mathrm{V}$, $I_{\rm O} = 0$, $I_{\rm F} = 0$, $I_{\rm B} = 0$, $T_{\rm A} = 25 \mathrm{^{\circ}C}$			0.02	ī
I _{CCH}	电源电流,高电平输出	μA	$V_{\rm CC} = 15 \text{V}, I_{\rm Q} = 0$		-	2	
Ioa	电源电流,低电平输出	μА	$V_{\rm OC} = 15 \text{V}, I_{\rm O} = 0, I_{\rm F} = 16 \text{mA}, I_{\rm B} = 0$			40	

符号	参数	单位	測试条件	最小	典型	最大
h _{FE}	晶体管正向电流放大系数		$V_0 = 5V$, $I_0 = 3mA$		100	
CTR	b 流传输比 $V_{\text{OC}} = 4.5\text{V}, V_{\text{O}} = 0.4\text{V}, I_{\text{F}} = 16\text{mA}, I_{\text{B}} = 0, T_{\text{A}} = 25\text{°C}$		15%		22%	
rio	输入到输出的电阻	输入到输出的电阻 Ω $V_{10} = 500 \text{ V}, T_{\text{A}} = 25 \text{ C}$,		İ	1012	_
I _{IO}	输入到输出的隔离漏电流	μΑ	$V_{10} = 3000 \text{V}, t = 5\text{s}, T_A = 25^{\circ}\text{C}, \text{RH} = 45\%$			1
C_i	输人电容	输入电容 pF $V_{r}=0, f=1$ MHz		<u>-</u>	60	
Cio	输入到输出的电容 pF $f=1$ MHz,			0.6		


工作参数

符号	参 数	单位	测试条件	数值
BW	帶寬(-3dB)	MHz	$R_{\rm L} = 100\Omega$,	2

开关参数

符号	参数	单位	测试条件	最小	典型	最大
t _{MH}	传输延迟时间,低到高电平输出	ps	$R_{\rm L} = 1.9 \text{k}\Omega$		0.6	0.8
t _{FML}	传输延迟时间,高到低电平输出	μs	$R_{\rm L} = 1.9 {\rm k}\Omega$		0.6	0.8
$\frac{dV_{CM}}{dt}(H)$	共模输入瞬变抗干扰,高电平输出	V/μs	$\triangle V_{\rm CM} = 10 \text{V}, I_{\rm F} = 0, R_{\rm L} = 1.9 \text{k}\Omega,$		- 1000	
$\frac{\mathrm{d}V_{\mathrm{CM}}}{\mathrm{d}t}(\mathrm{L})$	共模输入抗瞬变干扰,低电平输出	V/µs	$\triangle V_{\rm CM} = -10 \text{V}, I_{\rm F} = 16 \text{mA}, R_{\rm L} = 1.9 \text{k}\Omega,$	 	- 1000	

HCPL2530/HCPL2531 型光耦合器/光隔离器

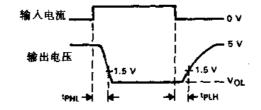
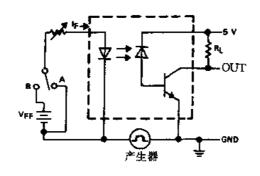



图 4-87(a) 开关测试电路和波形图

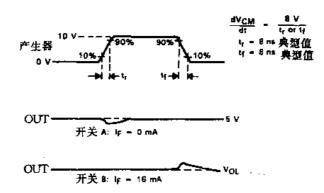


图 4-87(b) 抗瞬变干扰测试电路和电压波形图

HCPL2530/HCPL2531 型光耦合器/光隔离器

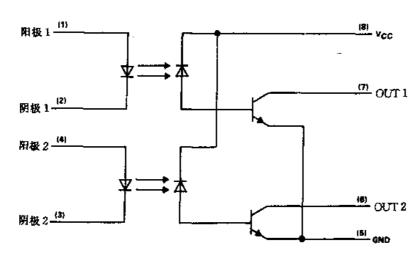


图 4-87(c) HCPL2530/HCPL2531 型电路原理图

最大绝对额定值	
电源和输出电压, $V_{\rm cc}$ 和 $V_{ m o}$	~ 0.5 ~ 15V
反向输入电压(每个通道)	5V
峰值输入正向电流(每个通道)(脉宽 1ms,占空比为 50%)	50mA
峰值瞬变输入正向电流(每通道)(脉宽 1µs,300Hz)	1A
平均正向输入电流(每通道)	25mA
峰值输出电流(每通道)	16mA
平均輸出电流(每通道)	8mA
输入功耗(在70℃以下,每通道)	45mW
A15	

输出功耗(在70℃以下,每通道)

35 mW

存储温度

~ 55 ~ 125℃

工作温度

~ 55 ~ 100℃

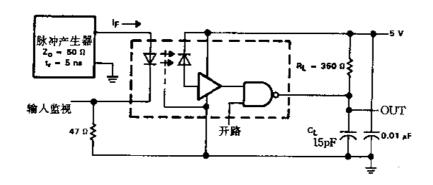
引线焊接温度(离壳体1.6mm 处,10s)

260℃

技术参数

符号	参数	単位	,		Н	ICPL25	30	HCPL2531		
111.22	→ XX	- 平江		, α α α α α α α α α α α α α α α α α α α	最小	典型	最大	最小	典型	最大
$V_{\mathbf{F}}$	输入正向电压	v	$I_{\rm F} \simeq 16{ m mA}$, $T_{\rm A}$:	= 25℃		1.6	1.7		1.6	1.7
αVF	正向电压温度系数	տ∨∕℃	$I_{\rm F} \approx 16 {\rm mA}$			-1.8			-1.8	l
$V_{\rm ER}$	輸入击穿电压	v	$I_{\rm R} = 10 \mu {\rm A}$, $T_{\rm A} =$	= 25℃	5	_		5		
17	AT -	v	$V_{\rm OC} = 4.5 \rm V$	$I_{\rm OL} = 1.1 \text{mA}$		0.1	0.5			
V_{OL}	低电平输出电压 	V	$I_{\rm F} = 16 {\rm mA}$	$I_{\rm CL} = 2.4 {\rm mA}$					0.1	0.5
I _{OH}	高电平输出电流	пА	$I_{P1} = I_{P2} = 0_0$ $T_A = 25^{\circ}C$	$V_{00} = V_{01} = V_{02} = 5.5V$		3	500	_	3	500
***		μΑ	$V_{\rm CC} = V_{\rm O1} = V_{\rm C2} = 15 \text{V}, I_{\rm Fl} = I_{\rm Fl} = 0$				50			50
Icch	电源电流,高电平输出	μA	$V_{\rm OC} = 15 \text{V}$, $I_{\rm OI} = I_{\rm O2} = 0$, $I_{\rm FI} = I_{12} = 0$				4			4
Ical	电源电流,低电平输出	μΑ	$V_{\rm CC} = 15$ V, $I_{\rm Ol} =$	$V_{\rm CC} = 15$ V, $I_{\rm O1} = I_{\rm O2} = 0$, $I_{\rm F1} = I_{\rm F2} = 16$ mA		80			80	
CTR	电流传输比		$V_{\rm OC} = 4.5 \text{V}, V_{\rm O} = 0.$	5V, I _F = 16mA, T _A = 25°C	7%	18%		19%	24%	
CTR	电流传输比		$V_{\rm GC} = 4.5 \text{V}, V_{\rm O}$	= 0.5V, I _F = 16mA	5%			15%		
гю	输入到输出的电阻	Ω	$V_{\rm KO} = 500 \mathrm{V}$, $T_{\rm A}$	= 25°C		1012	_	_	1012	
I ₁₀	输入到输出的隔离漏电流	μA	$V_{10} = 3000 \text{V}, t = 5$	S_8 , $T_A = 25\%$, $RH = 45\%$			i			1
C_i	輸入电容	ρF	$V_F = 0, f = 1$ MH	z		60			60	
C_{io}	输人到输出的电容	pF	f = 1MHz			0.6			0.6	
r _{ii}	输入到输入的电阻	Ω	$V_{ii} = 500$ V, $T_A =$:25℃		1011		•	1011	
I _ü	輸入到輸入的隔离漏电流	μА	$V_{ii} = 500 \text{V}, t = 55$	$T_{\rm A} = 25\%$, $R_{\rm h} = 45\%$		0.005			0.005	
C _{ii}	输入到输入的电容	pF	$f = 1 \text{MHz}$, $T_A = 3$			0.25			0.25	

工作参数($V_{\rm CC} = 5$ V, $I_{\rm F} \approx 16$ mA, $T_{\rm A} = 25$ °C)


符号	参 数	单位	測试条件	HCPL 2530 数值	HCPL2531 数值
BW	带宽	MHz	$R_{\rm L} = 100\Omega$	2	2

开关参数

	<u></u>	36.63	测试条件	HCPL2530			HCPL2531			
符号	多 数	単位		最小	典型	最大	最小	典型	最大	
	. 连续承担时间 体列克内亚数中		$R_{\rm L} = 4.1 {\rm k}\Omega$		1.0	1.5				
гин	传输延迟时间,低到高电平输出	μв	$R_{\rm L} = 1.9 {\rm k}\Omega$,,				0.6	0.8	
-	传输延迟时间,高到低电平输出	hæ	$R_L = 4.1 \text{k}\Omega$		0.7	1.5				
1 PHL			$R_{\rm L} = 1.9 \mathrm{k}\Omega$					0.6	0.8	

符号	参 数	单位	测试条件	HCPL2530			HCPL2531		
10 3	<i>y</i> xx	千匹	西风来 什		典型	最大	最小	典型	最大
$\frac{\mathrm{d}V_{\mathrm{CM}}}{\mathrm{d}t}(\mathrm{H})$	 共模輸人瞬变抗干扰,高电平输	V/μs	$\triangle V_{\rm CM} = 10 \text{V}, I_{\rm F} = 0, R_{\rm L} = 4.1 \text{k}\Omega,$		1000				
	出		$\Delta V_{\rm GM} = 10 \text{V}, \ I_{\rm F} = 0, \ R_{\rm L} = 1.9 \text{k}\Omega,$					1000	
$\frac{\mathrm{d}V_{\mathrm{CM}}}{\mathrm{d}t}(\mathbf{L})$	片模输入瞬变抗干扰,低电平输	V.	$\triangle V_{\text{CM}} = 10 \text{V}, R_{\text{L}} = 4.1 \text{k}\Omega,$		- 1000				
$\frac{-dt}{dt}$ (L)	出	V/µs	$\triangle V_{\rm CM} = 10 \text{V}, R_{\rm L} = 1.9 \text{k}\Omega,$					- 1000	

HCPL2601 型光耦合器/光隔离电路

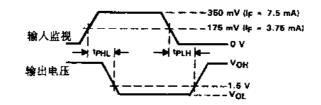
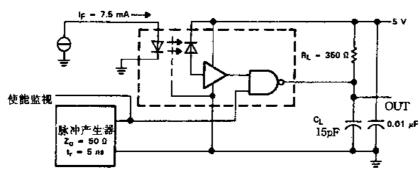



图 4-88(a) t_{PLH}和 t_{PHL} LED 输入测试电路和电压波形图

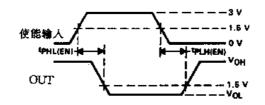
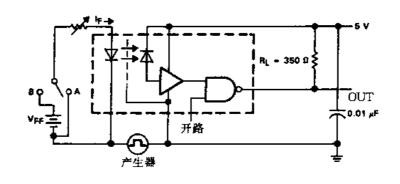



图 4-88(b) tpun和 tpun使能测试电路和电压波形图

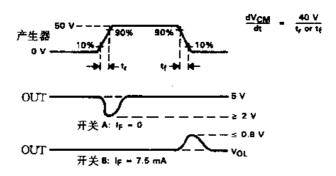
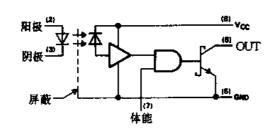



图 4-88(c) 抗瞬变干扰测试电路和电压波形图

HCPL2601 型光耦合器/光隔离器

功能表						
输入	使能	输出				
$I_{F(\omega_0)}$	Н	L				
$I_{F(aff)}$	X	Н				
X	L	Н				

注:H高电平,L低电平,X任意

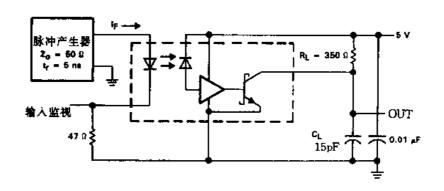
图 4-88(d) HCPL2601 型电路原理图

最大绝对额定值

电源电压, V _{CC}	7V
反向输入电压	5V
使能输入电压(不超过 V _{CC})	5.5V
输出电压	7V
峰值正向输入电流(≤1ms 持续时间)	40mA
平均正向输入电流	20mA
输出电流	25mA
输出功耗	40mW
存储温度	- 55 ~ 125℃
工作温度	0 ~ 70℃
引线焊接温度(离壳体 1.6mm 处, 10s)	260℃

推荐工作条件

符号	参 数	单位	最小	典型	最大
V _{cc}	电源电压	v	4.5	5	5.5
V _{H(EN)}	高电平使能输人电压	v	2		V _{cc}
$V_{\pm(\mathrm{EN})}$	低电平使能输入电压	v	0	<u> </u>	0.8
$I_{\mathrm{F(on)}}$	输入正向电流,接通输出	mA.	6.3		15
I _{F(aff)}	輸入正向电流,关断輸出	μА	0		250
I_{OL}	低电平输出电流	mA			13
T _A	工作温度	°C	0		70


技术参数

符号	参 数	单位	测试条件	最小	典型	最大
$V_{\rm F}$	输入正向电压	v	$I_{\rm F} = 10 \mathrm{mA}$, $T_{\rm A} = 25 \mathrm{^{\circ}C}$.		1.6	1.75
αVF	正向电压温度系数	mV/°C	$I_{\rm F} = 10 { m mA}$		-1.8	
V _{BR}	输入反向击穿电压	v	$I_{\rm R}=10\mu{\rm A}$, $T_{\rm A}=25{}^{\circ}{\rm C}$	5		
V_{OL}	低电平输出电压	v	$V_{\rm OC} = 5.5 \text{V}, V_{\rm (EN)} = 2 \text{V}, I_{\rm F} = 5 \text{mA}, I_{\rm OL} = 13 \text{mA}$		0.23	0.6
I _{OH}	高电平输出电流	μA	$V_{\rm CC} = 5.5 \text{V}$, $V_{\rm O} = 5.5 \text{V}$, $V_{\rm (EN)} = 2 \text{V}$, $I_{\rm F} = 250 \mu \text{A}$			250
I _{IN(EN)}	高电平使能输入电流	mA	$V_{\rm CC} = 5.5 \mathrm{V}, V_{\rm (EN)} = 2 \mathrm{V}$		-0.2	
I _{IL(EN)}	低电平使能输入电流	m.A	$V_{\rm CC} = 5.5 \mathrm{V}, V_{(EN)} = 0.5 \mathrm{V}$		-0.5	-2
I_{COH}	电源电流,高电平输出	mA	$V_{\rm CC} \approx 5.5 \text{V}, V_{\rm (EN)} \approx 0.5 \text{V}, I_{\rm F} = 0$		10	15
I_{OCL}	电源电流,低电平输出	mA	$V_{CC} = 5.5 \text{V}, V_{(EN)} = 0.5 \text{V} I_F = 10 \text{mA}$		13	19
I _{to}	输人到输出的隔离漏电流	μΑ	$V_{10} = 3000 \text{V}, t = 5 \text{s}, T_A = 25 ^{\circ}\text{C}, RH = 45 \%$	1		1
r _{IO}	,输入到输出的电阻	Ω	$V_{10} = 500 \text{V}, T_A = 25 \text{°C}$		1012	
C :	输入电容	pF	$V_{\mathrm{F}} = 0$, $f = 1$ MHz		60	
C_{io}	输入到输出的电容	pF	$f = 1 \text{MHz}, T_A = 25 \text{°C}$,		0.6	

开关参数(V_{CC} = 5V, T_A = 25℃)

符号	参 数	单位	测试条件	最小	典型	最大
t _{PDH}	传输延迟时间,低到高电平输出,LED输入	ns	$I_{\rm F} = 7.5 \mathrm{mA}$, $R_{\rm L} = 350 \Omega$, $C_{\rm L} = 15 \mathrm{pF}$,		42	75
t _{PHL}	传输延迟时间,高到低电平输出,LED输入	ns	$I_{\rm F} = 7.5 \text{mA}$, $R_{\rm L} \approx 350\Omega$, $C_{\rm L} = 15 \text{pF}$,		42	75
t _{PLH(EN)}	传输廷迟时间,低到高电平输出,使能输人	ns	$I_{\rm F} = 7.5 \text{mA}$, $R_{\rm L} = 350 \Omega$, $C_{\rm L} = 15 \text{pF}$,		40	•
t _{PHL(EN)}	传输延迟时间,高到低电平输出,使能输入	n ₈	$I_{\rm F} = 7.5 \text{mA}$, $R_{\rm L} = 350\Omega$, $C_{\rm L} = 15 \text{pF}$,		25	Ţ.
	上升时间	n ₈	$I_{\rm F} = 7.5 \text{mA}$, $R_{\rm L} = 350\Omega$, $C_{\rm L} = 15 \text{pF}$,		20	
t _i	下降时间	ns	$I_{\rm F} = 7.5 \mathrm{mA}$, $R_{\rm L} = 350 \Omega$, $C_{\rm L} = 15 \mathrm{pF}$,		30	
$\frac{\mathrm{d}V_{\mathrm{CM}}}{\mathrm{d}t}(\mathrm{H})$	共模輸入瞬变抗干扰, 高电平输出	V/μs	$\triangle V_{\rm CM} = 50 \text{V}$, $I_{\rm F} = 0$, $R_{\rm L} = 350 \Omega$,	1000	10000	
$\frac{\overline{\mathrm{d}V_{\mathrm{CM}}}}{\mathrm{d}t}(\mathrm{L})$	共模输入瞬变抗干扰,低电平输出	V/μs	$\triangle V_{\rm CM} = -50 \text{V}, I_{\rm P} = 7.5 \text{mA}, R_{\rm L} = 350 \Omega$,	- 1000	- 1000	

HCPL2630型双通道光耦合器/光隔离电路

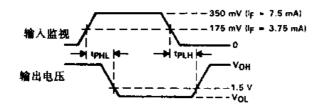


图 4-89(a) t_{PLH}和 t_{PSL} LED 输入测试电路和波形图

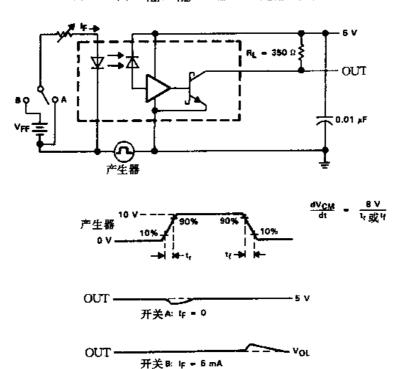


图 4-89(b) 抗瞬变干扰测试电路和电压波形图

HCPL2630 型双通道光耦合器/光隔离器

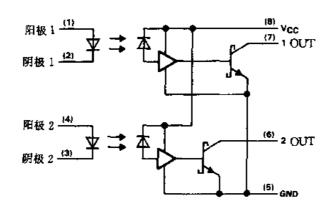


图 4-89(c) HCPL2630 型电路逻辑图(正逻辑)

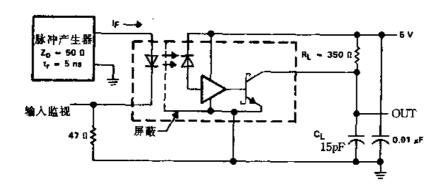
最大绝对额定值

电源电压, $V_{\rm CC}$	7 V
反向输入电压	5V
输出电压	7V
峰值正向输入电流,每通道(≤1ms 脉宽)	30mA
平均正向输入电流,每通道	15mA
输出电流,每通道	16mA
输出功耗	80mW
存储温度	- 55 ~ 125°C
工作温度	0 ~ 70℃
引线焊接温度(离壳体 1.6mm 处,10s)·	260℃

推荐工作条件

符号	参数	単位	最小	典型	最大
V_{∞}	电源电压	v	4.5	5	5.5
I _{F(on)}	输人正向电流,接通输出	mA	6.3		15
f _{F(off)}	输人正向电流,关断输出	μΑ	0		250
I _{OL}	低电平输出电流	mA	<u> </u>		13
T _A	工作温度	℃	0		70

技术参数


符号	参 数	单位	测试条件	最小	典型	最大
V _F	输入正向电压	v	$I_{\rm F} = 10 { m mA}$, $T_{\rm A} = 25 { m ^{\circ}C}$		1.6	1.75
αVF	正向电压温度系数	mV/°C	$I_{\rm F} = 10 { m mA}$		-1.8	
$V_{\rm BR}$	輸入反向击穿电压	v	$I_{\rm R} = 10 \mu {\rm A}, T_{\rm A} = 25 {\rm °C}$	5		
V_{OL}	低电半输出电压	ν	$V_{CC} = 5.5 \text{V}, I_F = 5 \text{mA}, I_{OL} = 13 \text{mA}$		0.23	0.6
I _{0H}	高电平输出电流	μA	$V_{\rm CC} = 5.5 \text{V}, V_{\rm O} = 5.5 \text{V}, I_{\rm F} = 250 \mu\text{A}$			250

符号	参 数	单位	测试条件	最小	典型	最大
Icch	电源电流,高电平输出	mA	$V_{\rm CC} = 5.5 { m V}$, $I_{\rm F} = 0$		20	30
$I_{\rm GGL}$	电源电流,低电平输出	mA	$V_{\rm CC} = 5.5 { m V}$, $I_{\rm F} = 10 { m mA}$		26	36
In	输入到输入的隔离漏电流	μΑ	$V_{II} = 500 \text{V}$, $t = 58$, $T_A = 25 ^{\circ}\text{C}$, $RH = 45 ^{\circ}\text{C}$		0.005	
Ino	输入到输出的隔离漏电流	μA	$V_{10} = 3000 \text{V}$, $t = 5 \text{s}$, $T_A = 25 \text{°C}$, $RH = 45 \text{\%}$			1
r _{II}	输入到输入的电阻	Ω	$V_{\rm II} = 500 \text{V}$, $T_{\rm A} = 25 \text{C}$		1011	
r ₁₀	输人到输出的电阻	Ω	$V_{10} = 500 \text{V}, T_{A} = 25 \text{°C}$		1012	
C;	輸入电容	рF	$V_{\rm F} = 0$, $f = 1$ MHz		60	
Cü	输入到输入的电容	pF	$V_{\mathbf{F}} = 0$, $f = 1$ MHz		0.25	
C _{io}	輸入到输出的电容	μF	$f = 1 \text{MHz}, T_A = 25 \text{°C}$	<u> </u>	0.6	<u> </u>

开关参数

符号	参数	单位	测试条件	最小	典型	最大
t pr.H	传输延迟时间,低到高电平输出,LED输入	пв	$I_{\rm F} = 7.5 \text{mA}$, $R_{\rm L} = 350\Omega$, $C_{\rm L} = 15 \text{pF}$,		42	75
t MIT	传输延迟时间,高到低电平输出,LED输入	ns	$I_{\rm F} = 7.5 \mathrm{mA}$, $R_{\rm L} = 350 \Omega$, $C_{\rm L} = 15 \mathrm{pF}$,	_	42	75
t _r	上升时间	ns	$I_{\rm F} = 7.5 \mathrm{mA}$, $R_{\rm L} = 350 \Omega$, $C_{\rm L} = 15 \mathrm{pF}$,	_	20	-
t _f	下降时间	ns	$I_{\rm F} \approx 7.5 {\rm mA}$, $R_{\rm L} = 350 \Omega$, $C_{\rm L} = 15 {\rm pF}$,		30	
$\frac{\mathrm{d}V_{\mathrm{CM}}}{\mathrm{d}t}(\mathrm{H})$	共模输入抗瞬变干扰,高电平输出	V/μs	$\Delta V_{\rm CM} = 10 \text{V}, I_{\rm F} = 0, R_{\rm L} = 350 \Omega,$		50	
$\frac{\mathrm{d}V_{\mathrm{CM}}}{\mathrm{d}t}(\mathbf{L})$		V/µs	$\triangle V_{\rm CM} = -10 \text{V}, I_{\rm F} = 5 \text{mA}, R_{\rm L} = 350 \Omega,$		- 150	

HCPL2631 型双通道光耦合器/光隔离电路

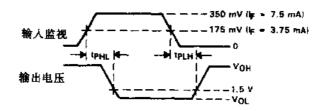


图 4-90(a) true和 trueLED 输入测试电路和波形图

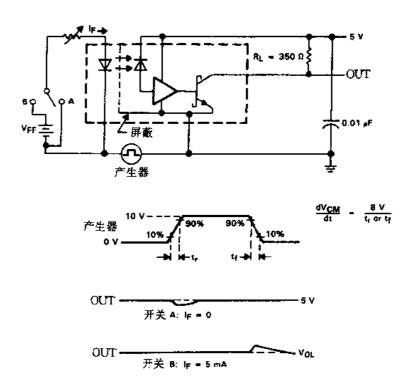


图 4-90(b) 抗瞬变干扰测试电路和电压波形图

HCPL2631 型双通道光耦合器/光隔离器

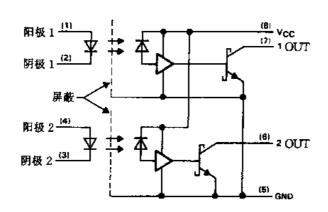
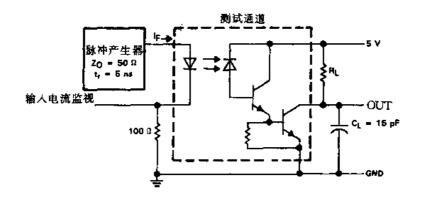


图 4-90(c) HCPL2631 型电路逻辑图(正逻辑)

最大绝对额定值	
电源电压, V_{CC}	7V
反向输入电压	5V
输出电压	7V
峰值正向输人电流,每通道(≤1ms 脉宽)	30mA
平均正向输入电流,每通道	15mA
输出电流,每通道	16mA
输出功耗	85mW
存储温度	- 55 ~ 125℃
工作温度	0 ~ 70℃
引线焊接温度(离壳体 1.6mm 处,10s)	260℃
254	

推荐工作条件

符号	参数	单位	最小	典型	最大
$\nu_{\rm cc}$	电源电压	ν	4.5	5	5.5
$I_{\mathrm{F}(\mathrm{on})}$	输人正向电流,接通输出	mA	6.3		15
I _{F(aff)}	输入正向电流,关断输出	μA	0		250
IoL	低电平输出电流	mA			13
T _A	工作温度	С	0		70


技术参数

符号	多数	单位	测试条件	最小 典型	最大
$V_{\mathbf{F}}$	輸入正向电压	v	$I_{\rm F} = 10 {\rm mA}$, $T_{\rm A} = 25 {\rm ^{\circ}C}$	1.6	1.75
αVF	正向电压温度系数	mV/°C	$I_{\rm F}$ = 10mA	-1.8	
$V_{\rm BR}$	输入反向击穿电压	v	$I_{\rm R} = 10 \mu {\rm A}, T_{\rm A} = 25 {\rm ^{\circ}C}$	5	
V_{OL}	低电平输出电压	v	$V_{\rm CC} = 5.5 \text{V}$, $I_{\rm F} = 5 \text{mA}$, $I_{\rm QL} = 13 \text{mA}$	0.23	0.6
Ion	高电平输出电流	μΑ	$V_{\rm OC} = 5.5 \text{V}, V_{\rm O} = 5.5 \text{V}, I_{\rm F} = 250 \mu\text{A}$		250
Icch	电源电流,高电平输出	mA	$V_{\rm CC} = 5.5 \text{V}, I_{\rm F} = 0$	20	30
Ion	电源电流,低电平输出	mA	$V_{CC} = 5.5 \text{ V}$, $I_F = 10 \text{mA}$	26	38
	输人到输人的隔离漏电流	μΑ	$V_{\rm H} \approx 500 \text{V}, \ \epsilon = 5 \text{s},$ $T_{\rm A} \approx 25 \text{C} RH = 45 \text{\%}$	0.005	
I ₁₀	输入到输出的隔离漏电流	μΑ	$V_{10} = 3000 \text{V}, \ \iota = 5 \text{s},$ $T_{\text{A}} = 25 ^{\circ}\text{C} RH = 45 ^{\circ}\text{M}$		1
r ₁₁	输人到输人的电阻	Ω	$V_{\rm H} \approx 500 \text{V}$, $T_{\rm A} = 25 ^{\circ}\text{C}$,	1011	
r ₁₀	输入到输出的电阻	Ω	$V_{10} = 500 \text{ V}, T_{A} = 25 ^{\circ}\text{C},$	10 ¹²	
C_{i}	輸人电容	pF	$V_{\rm F} = 0$, $f = 1$ MHz	60	-
Cii	输入到输入的电容	pF	$V_{\rm F}=0, f=1\rm MHz$	0,25	
Cio	输入到输出的电容	pF	$f = 1 \text{MHz}$ $T_A = 25 ^{\circ}\text{C}$	0.6	

开关参数(V_{CC} = 5V, T_A = 25℃)

符号	多数	单位	测试条件	最小	典型	最大
t _{ECH}	传输延迟时间,低到高电平输出,LED 输入	ns	$I_{\rm F} = 7.5 \text{mA}, \ R_{\rm L} = 350\Omega, \ C_{\rm L} = 15 \text{pF},$	}	42	75
£ _{PHL}	传输延迟时间,高到低电平输出,LED 输入	рs	$I_{\rm F} = 7.5 {\rm mA}, \ R_{\rm L} = 350 \Omega, \ C_{\rm L} = 15 {\rm pF},$		42	75
t,	上升时间	ns	$I_{\rm F} = 7.5 \mathrm{mA}$, $R_{\rm L} = 350 \Omega$, $C_{\rm L} = 15 \mathrm{pF}$		20	
ŧ _f	下降时间	ns	$I_{\rm F} = 7.5 {\rm mA}, \ R_{\rm L} = 350 \Omega, \ C_{\rm L} = 15 {\rm pF},$		30	
$\frac{\mathrm{d}V_{\mathrm{CM}}}{\mathrm{dt}}(\mathrm{H})$	共模输入抗瞬变干扰,高电平输出	V/μs	$\triangle V_{CM} = 50 \text{V}, I_y = 0,$ $R_{L} = 350 \Omega$	1000	10 000	
$\frac{\mathrm{d}V_{\mathrm{CM}}}{\mathrm{d}t}(\mathrm{L})$	dV _{CM} (L) 共模输入抗瞬变干扰,低电平输出		$\triangle V_{\text{CM}} = -50\text{V}, I_{\text{F}} = 5\text{mA},$ $R_{\text{L}} = 350\Omega$	- 1000	- 10 000	

HCPL2730/HCPL2731 型双通道光耦合器/光隔离电路

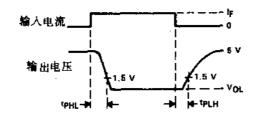
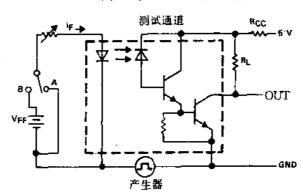



图 4~91(a) 开关特性测试电路和波形图

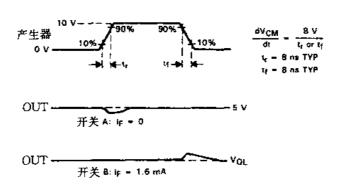


图 4-91(b) 抗瞬变于扰测试电路和波形图

最大绝对额定值 电源和输出电压, $V_{\rm CC}$ 和 $V_{\rm O}$: HCPL2370

 $-0.5 \sim 7V$

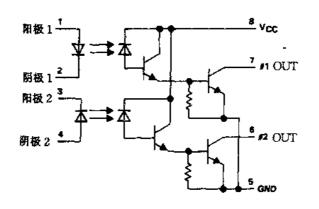


图 4-91(c) HCPL2730/HCPL2731 型电路原理图

HCPL2371	$-0.5 \sim 18V$
反向输入电压	5V
峰值正向輸人电流(每通道)(脉宽 = 1ms,占空比 50%)	40mA
平均正向输入电流(每通道)(在50℃以下)	20mA
输出电流(每通道)(在35℃以下)	60mA
输入功耗(每通道)(在 50℃以下)	35 mW
输出功耗(每通道)(在35℃以下)	100mW
工作温度	- 40 ~ 85℃
存储温度	- 55 ~ 125°C
引线焊接温度(离壳体 1.6mm 处,10s)	260℃
技术参数(0℃~70℃)	

*	44 184	NA 114	354 3-15 Av 14.	F	ICPL273	30	HCPL2731		
符号	参数	単位	测试条件	最小	典型	最大	最小	<u>典型</u>	最大
V _F	输入正向电压	v	$I_{\rm F} = 1.6 {\rm mA}$, $T_{\rm A} = 25 {\rm ^{\circ}C}$		1.5	1.7		1.5	1.7
αVF	正向电压温度系数	mV/℃	$I_{\rm F}=1.6{\rm mA}$		-1.8			8.1-	
VBR	輸人击穿电压	v	$I_{\rm R} = 10 \mu {\rm A}$, $T_{\rm A} = 25 {\rm ^{\circ}C}$	5			5		
			$V_{\rm CC} = 4.5 \text{V}, I_{\rm F} = 1.6 \text{mA}$ $I_{\rm DL} = 4.8 \text{mA}, I_{\rm B} = 0$		0.1	0.4			
16	Michael W Mark (Ledy 17	v	$V_{\rm CC} = 4.5 \text{V}, I_{\rm F} = 1.6 \text{mA}$ $I_{\rm OL} = 8 \text{mA}, I_{\rm B} = 0$					0.1	0.4
Vor	《低电平輸出电压 ·	, ,	$V_{\rm CC} = 4.5 \text{ V}, I_{\rm F} = 5 \text{ mA}$ $I_{\rm OL} = 15 \text{ mA}, I_{\rm B} = 0$					0.1	0.4
			$V_{CC} = 4.5 \text{V}, I_F = 12 \text{mA}$ $I_{OL} = 24 \text{mA}, I_B = 0$					0.2	0.4
_	********		$V_{\rm CC} = 7V$, $V_{\rm O} = 7V$ $I_{\rm F} = 0$, $I_{\rm B} = 0$	1.5 1.7 -1.8 5 5					
I _{OH}	高电平输出电流	μ Α	$V_{CC} = 18V, V_0 = 18V$ $I_F = 0, I_B = 0$					0.05	100

A+	参数	单位	له اساد ها المور	ŀ	ICPL273	30	HCPL2731		
符号			测试条件	最小	典型	最大	最小	典型	最大
,	克斯皮茨 产皮型袋山		$V_{CC} = 7V, I_0 = 0$ $I_F = 0, I_B = 0$		4				
I_{COH}	电源电流,高电平输出	пА	$V_{\rm CC} = 18 \text{V}, I_{\rm O} = 0$ $I_{\rm F} = 0, I_{\rm B} = 0$		•	·	i	5	
I _{cci.}	电源电流,低电平输出	mА	$V_{CC} = 7V, I_0 = 0$ $I_{E1} = 1.6 \text{mA}, I_{E2} = 1.6 \text{mA}, I_B = 0$		0.4				
₹CCI.		mA.	$V_{\text{CC}} = 18\text{V}, I_0 = 0$ $I_{\text{FI}} = 1.6\text{mA}, I_{\text{E2}} = 1.6\text{mA}, I_{\text{B}} = 0$					0.6	
CTR	电流传输比		$V_{CC} = 4.5 \text{V}, V_{C} = 0.4 \text{V}$ $I_{F} = 0.5 \text{mA}, I_{B} = 0$				400%	1800%	
CIR			$V_{\rm CC} = 4.5 \text{V}, V_{\rm O} = 0.4 \text{V}$ $I_{\rm F} = 1.6 \text{mA}, I_{\rm B} = 0$	300%	1000%		500%	1600%	
r _{ii}	输入到输入的电阻	Ω	$V_{ii} = 500 \mathrm{V}$		10"			10 ^{`ii}	
r_{io}	输人到输出的电阻	Ω	$V_{io} = 500 \text{V}$		1012			10 ¹²	
I _{ii}	输人到输入的隔离漏电流	μΑ	$V_{ii} = 500 \text{V}, t = 5 \text{s}$ RH = 45 %		0.005			0.005	
I_{io}	输入到输出的隔离漏电流	μΑ	$V_{io} = 3000 \text{V}, t = 5 \text{s}$ $T_A = 25 \%, RH = 45 \%$			1			1
C_i	輸入电容	рF	$V_{\rm F} = 0$, $f = 1$ MHz		60			60	
Cii	输人到输人的电容	рF	$f = 1 \mathrm{MHz}$		0.25			0.25	
Cin	输入到输出的电容	pF	f = 1 MHz		0.6			0.6	

开关参数($V_{CC} = 5V$, $T_A = 25$ °C)

<i>₩</i> -□	多数	单位	Self Self Act (AL	HCPL2730			HCPL2731		
符号			测试条件	最小	典型	最大	最小	典型	最大
	传输延迟时间,高到低电平输出	lta	$I_{\rm F} = 1.6 {\rm mA}$, $R_{\rm L} = 2.2 {\rm k}\Omega$		2	20		2	20
$t_{ m PHL}$			$I_{\rm F}=0.5{ m mA}$, $R_{\rm L}=4.7{ m k}\Omega$					7	100
			$I_{\rm F} = 12 {\rm mA}$, $R_{\rm L} = 270 {\rm \Omega}$		0.4	2		0.4	2
	传输延迟时间,低到高电平 输出	ns	$I_{\rm F}=1.6{ m mA}$, $R_{\rm L}=2.2{ m k}\Omega$		4	35		5	35
[‡] PLH			$I_{\rm F}=0.5{ m mA}$, $R_{\rm L}=4.7{ m k}\Omega$					6	60
			$I_{\rm F} = 12 {\rm mA}$, $R_{\rm L} = 270 \Omega$		3	10		2	10
$\frac{\mathrm{d} V_{\mathrm{CM}}}{\mathrm{dt}}(\mathrm{H})$	共模输人抗瞬变干扰,高电 平输出	V/μs	$V_{\text{CM}} = 10 \text{Vp-p}, I_{\text{F}} = 0$ $R_{\text{L}} = 2.2 \text{ k}\Omega$		500				
$\frac{\mathrm{d}V_{\mathrm{CM}}}{\mathrm{dt}}(\mathrm{L})$	共模输入抗瞬变干扰,低电 平输出	V/ps	$V_{\rm CM}$ = 10Vp-p , $I_{\rm F}$ = 1.6mA $R_{\rm L}$ = 2.2k Ω		- 500	i		- 500	

MCT 系列光耦合电路

MCT2/MCT2E 型光耦合器电路

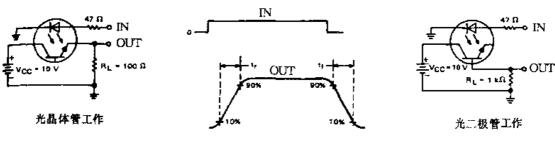


图 4 – 92(a) 电路 A 图 4 – 92(b) 电压波形图

图 4-92(c) 电路 B

电路中的输入波形由信号产生器产生,信号产生器的特性: $Z_{OUT} = 50\Omega$, $t_r \le 15$ ns, 占空比 $\approx 1\%$ 。输出波形由示波器监视,示波器的特性: $t_r \le 12$ ns , $R_{in} \ge 1M\Omega$, $C_{in} \le 20$ pF。

MCT2/MCT2E型光耦合器

技术参数(T_A≈25℃)

符号	参	数	单位	测证	【条件	最小	典型	最大
V _{(BR)CBO}	集基击穿电压	· •	v	$I_{\rm C} = 10 \mu {\rm A}$, $I_{\rm E} = 0$	$0, I_{\rm F} = 0$	70		-
V _{(BR)CEO}	集发击穿电压		v	$I_{\rm C}=1{\rm mA},I_{\rm B}=0$	$I_{\rm F} = 0$	30		
V _{(BR)ECO}	发集击穿电压		v	$I_{\rm E} = 100 \mu {\rm A}$, $I_{\rm B} =$	$0, I_{\mathrm{F}} = 0$	7		
I_{R}	输入二极管静态	反向电流	μA	$V_{\rm R} = 3 \rm V$	·			10
	经活催的报告效	光三极管工作	mA	$V_{\rm GE} = 10{\rm V}$, $I_{\rm F} = 1$	$10mA$, $I_B = 0$	2	5	
$I_{C(an)}$	接通集电极电流	光二极管工作	μ A	$V_{\rm CB} = 10 \mathrm{V}$, $I_{\rm F} = 1$	10mA , $I_{\text{E}} = 0$	2	20	
7	36 MC Bu et 402 et 330	光三极管工作		$V_{CE} = 10 \text{V}, I_F = 0, I_B = 0$			1	50
$I_{\mathrm{C}(dl)}$	关断集电极电流	光二极管工作	nA	$V_{\rm CB} = 10 { m V}$,	$I_{\rm F}=0$, $I_{\rm E}=0$		0.1	20
				V _{CE} = 5V	MCT2		250	
$h_{\rm FE}$	│ 晶体管静态正向 │ │	可电流放大系数	İ	$I_{\mathbf{C}} = 100\mu\mathbf{A}$ $I_{\mathbf{F}} = 0$	MCI2E	100	300	
V _F	输入二极管静态	。 正向电压	V	$I_{\rm F} = 20 \text{mA}$	•		1.25	1.5
$V_{\mathrm{CE}(\mathrm{set})}$	集发饱和电压		V	$I_{\rm C} = 2 { m mA}$, $I_{\rm F} = 10$	6mA , $I_{\text{B}} = 0$		0.25	4
, IO	输入到输出的电	· · · · · · · · · · · · · · · · · · ·	Ω	$V_{\text{in-out}} = \pm 1.5 \text{kV}$ MCT2 $\pm 3.55 \text{kV}$ MCT2E		1011	,	
Cio	输入到输出的电		pF	$V_{\text{in-out}} = 0, f = 1 \text{M}$	[Hz		1	

开关参数(T_A=25℃)

符号	多数		单位	测试条件	数值
t _r	上升时间	北二四年 工作		$V_{\rm CC} = 10 \text{V}, I_{\rm C(on)} = 2 \text{mA}, R_{\rm L} = 100 \Omega$	5
t _f	下降时间	九二枚日工作	光三极管工作 μs	* CC = 10*, fC(on) = 21121, ftL = 1000	
-t _r	上升时间	光二极管工作		$V_{\rm OC} = 10 \text{V}$, $I_{\rm C(on)} = 20 \mu \text{A}$, $R_{\rm L} = 1 \text{k}\Omega$	1
t _f	下降时间	元仮育工作	με	**************************************	'

MOC 系列光耦合电路

MOC3009~MOC3012型光耦合器/光隔离电路

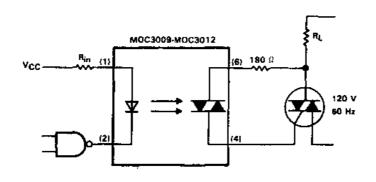


图 4-93(a) 电阻负载电路图

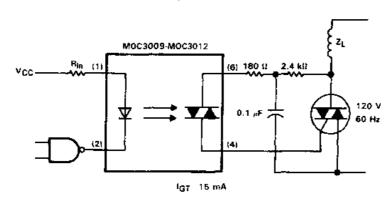


图 4-93(b) 有灵敏栅的电感负载电路图

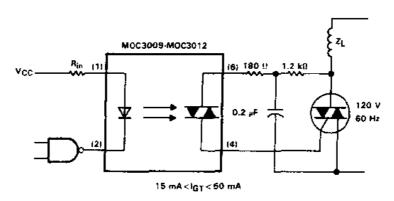


图 4-93(c) 电感负载电路图

MOC3009~MOC3012型光耦合器/光隔离器

耦合器由 GaAs 红外发射二极管和光控双向可控硅组成。

特点:250V 光控双向可控硅驱动器输出;GaAs 二极管红外光源和光耦合的双向可控硅驱

动器;隔离电压:7500Vp-p;输出驱动115VAC;标准6引脚塑封。

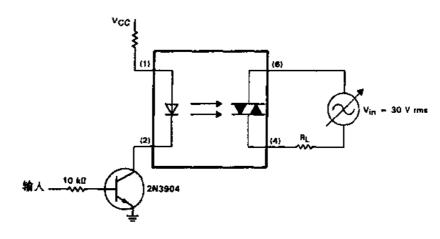


图 4-93(d) 参数测量电路

最大绝对额定值(T _A =25℃)	
输入到输出的峰值电压(最大持续 5s,60Hz)	7.5kV
输人二极管反向电压	3V
输入二极管正向电流,连续	50mA
输出重复峰值关断电压	250V
输出接通电流,总有效值(50~60Hz,正弦波)	
$T_{\rm A} = 25 ^{\circ}{\rm C}$	100mA
$T_{\rm A} = 70$ °C	50mA
输出驱动非重复峰值接通电流	1.2A
连续功耗	
红外发射二极管	100mW
光控双向可控硅	300mW
器件总功耗	330mW
工作温度	- 40 ~ 100℃
存储温度	- 40 ~ 150°C
引线焊接温度(离壳体 1.6mm 处,10s)	260℃

技术参数(TA=25℃)

符号	参	数	単位	测试条件	最小	典型	最大
I_{R}	静态反向电流		μA	$V_{\rm R} = 3{\rm V}$		0.05	100
V _F	静态正向电压		v	$I_F = 10 \text{mA}$		1.2	1.5
IDRM	重复关断电流		nA	$V_{\rm DRM} = 250 \mathrm{V}$,		10	100
₫v/dt	重复关断电流 关断电压临界上升速率 转换电压上升临界速率 MOC3009	V/µs			12		
dv/dt(c)	转换电压上升临界速	率	V/µs	$I_0 = 15 \text{mA}$		0.15	
.	MOC3009					15	30
dv/dt 关断电压临界上升速率 V/μs dv/dt(c) 转换电压上升临界速率 V/μs I ₀ = 15mA I _{FT} 输入触发电流 MOC3009 MOC3010 MOC3011 mA 輸出电源电压 = 3V		8	15				
	_	5	10				
	V _F 静态正向电压 IDRIM 重复关断电流 (v/dt) 关断电压临界上升速率 /dt(c) 转换电压上升临界速率 I _{FT} 输入触发电流 W _{IM} 峰值接通电压	MOC3012					5
V _{TM}	峰值接通电压		v	$I_{\text{TM}} = 100 \text{mA}$		1.8	3
I_{H}	保持电流		μA]	100	•

MOC3020~MOC3023 型光耦合器/光隔离电路

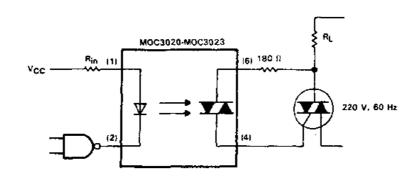


图 4-94(a) 电阻负载电路图

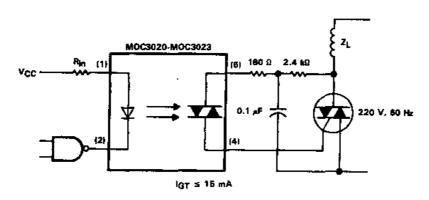


图 4-94(b) 有灵敏栅的电感负载电路图

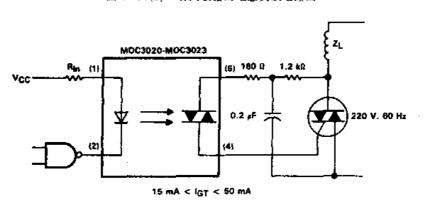


图 4-94(c) 电感负载电路图

MOC3020~MOC3023型光耦合器/光隔离器

耦合器由 GaAs 红外发射二极管和光控双向可控硅组成。

特点:400V 光可控硅驱动驱出;高隔离电压:7500Vp-p;输出驱动 220VAC;标准 6 引脚塑封。

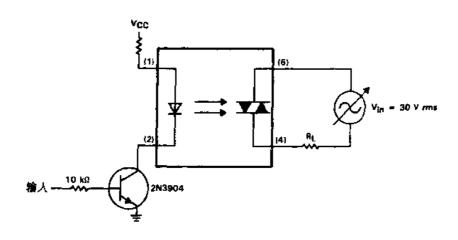
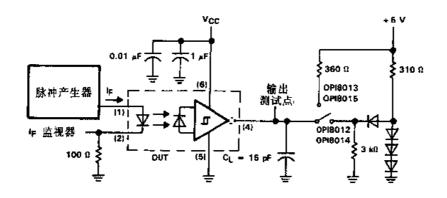
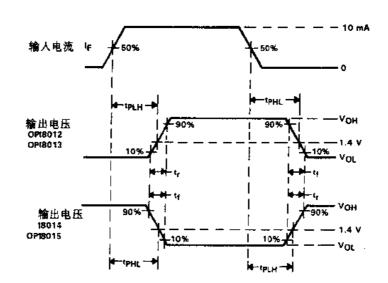


图 4-94(d) 参数测量电路图

最大绝对	额定值
------	-----


技术参数(TA=25℃)


输入到输出的峰值电压,(最大持续 5s,60Hz)	7.5kV
输入二极管反向电压	3V
输入二极管正向电流,连续	50mA
输出重复峰值关断电压	400V
输出接通电流,总有效值(50~60Hz,正弦波)	
$T_A = 25$ °C	100mA
$T_{\rm A} = 70{}^{\circ}{\rm C}$	50mA
输出驱动非重复峰值接通电流	1.2A
连续功耗(在25℃以下)	
红外发射二极管	100mW
光可控双向硅	300mW
器件总功耗	330mW
工作温度	-40 ~ 100℃
存储温度	-40 ~ 150℃
引线焊接温度(离壳体 1.6mm 处,10s)	260℃

符号	3	數	单位	测试条件	最小	典型	最大
I_{R}	静态反向电流	<u>-</u>	μΑ	$V_{\rm R} = 3 \text{V}$		0.05	100
V _F	静态正向电压		v	$I_{\rm F} = 10 { m mA}$		1.2	1.5
I_{DRM}	重复关断电流		nA	$V_{\rm DRM} = 400 \text{V}$	Ī	10	100
dv/dt	关断电压临界上升速率 转换电压临界上升速率		V/μs			100	
dv/dt(c)			V/µs	$I_0 = 15 \text{mA}$		0.15	
		MOC3020			T	15	30
,	ha i at dans we	MOC3021	٦.	handrate see the fire and		8	15
$I_{\rm FT}$	输入触发电流	MOC3022	mA	输出电源电压=3V		5	10
		MOC3023	7			3	5
V _{TM}	峰值接通电压		ν	$I_{\rm TM} \approx 100 {\rm mA}$		1.4	3
$I_{\rm H}$	保持电流		μΑ			100	

OPI 系列光耦合电路

OPI8012~OPI8015型光耦合器/光隔离电路

注:A. 脉冲产生器供给输入脉冲,脉冲产生器的特性:频率 PRF = 10kHz, 占空比 = 50%, $t_r < 20ns$, $t_f < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$, $t_o < 20ns$,

- B. CL包括探头和分布电容
- C. 全部二极管型号为 IN3064 或 IN916

图 4-95 开关时序电路及波形图

OPI8012~OPI8015 型光耦合器/光隔离器

光耦合器由 GaAs 红外发射二极管和一个硅光检测器单片集成电路组成。光检测器包括一个光二极管、一个线性放大器、一个施密特触发器迟滞级和一个数字输出级。

特点:输出与 TTL/LSTTL 逻辑电平兼容;四种输出型式: OPI8012 缓冲器图腾柱, OPI8013 缓冲集电极开路, OPI8014 反相器(图腾柱), OPI8015 反向集电极开路;高隔离电压: 3540Vp-p;标准6引脚 DIP 型封装;具有迟滞的施密特触发级用于高噪声抗扰;200 千波特数据传输速率;最大上升和下降时间为 70ns。

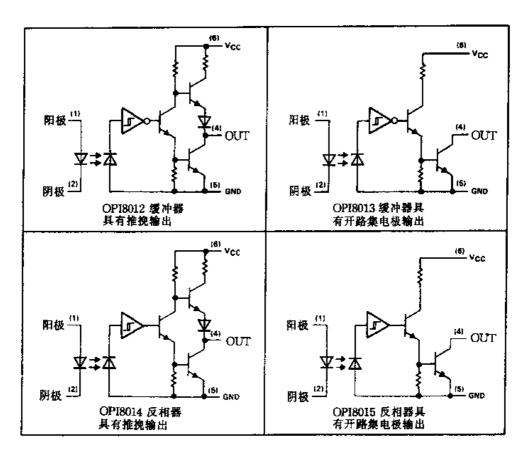


图 4-96 电路原理图

推荐工作条件

•		数			OPI8012	
	参		单 位	OPI8014		
				最小	典型	最大
电源电压,V _{CC}			 V	4.75	5	5.25
高电平输出电流,I _{OH}			 μΑ			- 800
低电平输出电流, IoL			 mA			12.8
工作温度,T,			 С	- 40		70

技术参数(TA=-40~70℃)

44.00		36.41	30d 2-k	e Ar Isla		OP 180 12	2		OPI8014	4
符号	参 数	単位	测试	最小	典型	最大	最小	典型	最大	
$\nu_{\rm F}$	输入二极管正向电压	v	$I_{\rm F} = 10 {\rm mA}$, $T_{\rm A} = 25 {\rm ^{\circ}C}$			1.2	1.5		1.2	1.5
I_{R}	输入二极管反向电流	μА	$V_{\rm R}=3{ m V}$, $T_{\rm A}=2$	$V_{\rm R} = 3V$, $T_{\rm A} = 25$ °C			100			100
I _{FT+}	输入二极管正阀值电流	mA	$V_{\rm OC} = 5V$	$V_{\rm OC} = 5V$		1.5	10		1.5	10
$I_{\rm FT+}/I_{\rm FT-}$	迟滞比		$V_{\rm CC} = 5 \mathrm{V}$			1.4			1.4	··
	*** ## ## ## ## ##		$V_{\rm CC} = 4.75 \rm V$	$I_{\rm F} = 0$				2.4	3.2	
V_{OH}	高电平输出电压	V	$I_{\mathrm{OH}} = -800 \mu \mathrm{A}$	$I_{\rm F} = 10 { m mA}$	2.4	3.2				
	Per at 1991 AA alta da 1995	1	$V_{\rm OC} = 4.75 \rm V$	$I_{\rm F} = 0$		0.2	0.4			
V_{OL}	低电平输出电压	V	$I_{\rm OL} = 12.8 {\rm mA}$	$I_{\rm F} = 10 {\rm mA}$					0.2	0.4
			$V_{\rm CC} = 5.25 \text{V},$	$I_F = 0$				- 30	- 50	- 100
I_{06}	输出短路电流	mA	$V_0 = 0$	$I_{\rm F} = 10 { m mA}$	- 30	- 50	- 100	1	•	
		1 .	11 F ACV	$I_{\rm F} = 0$		8	15		4	15
$I_{\rm CC}$	电源电流	mA	$V_{\rm CC} = 5.25$ V	$I_{\rm F} = 10 { m mA}$		10	15		9	15

开关参数(T_A = 25℃)

	4 14	34. 52	504 1-10 Av /4-	OPI8012			OPI8014		
符号		単位	测试条件	最小	典型	最大	最小	典型	最大
	上升时间	ns			25	70		25	70
tf	下降时间	пз	$V_{\rm CC}$ = 5V, $I_{\rm F}$ = 10mA, 输出		9	70	- "	9	70
t MH	传输延迟时间,低到高电平输出	μs	负载 8个 TTL 等效电路		l	5		3	5
t _{HIL}	传输延迟时间,高到低电平输出	μs			3	5		1	5

推荐工作条件

		OPI8013					
参数	单位		OPI8015				
		最小	典型	最大			
电源电压, V _{cc}	v	4.75	5	5.25			
高电平与输出电压, VoH	v			30			
低电平输出电流, IoL	mA		-10	12.8			
工作温度, TA	°C	- 40	·	70			

技术参数(T_A = -40~70℃)

	A. 141.	. 36.73	OPI8013					OPI8015			
符号	参 数	单位	医 坏	条件	最小	典型	最大	最小	典型	最大	
$V_{\mathfrak{k}}$	输入二极管正向电压	V	$I_{\rm F}$ = 10mA, $T_{\rm A}$ = 25 °C			1.2	1.5		1.2	1.5	
I_{R}	输入二极管反向电流	μΑ	$V_{\rm R}=3{\rm V}$, $T_{\rm A}=2$	$V_{\rm R} = 3V$, $T_{\rm A} = 25$ °C			100			100	
I _{FT+}	输入二极管正阀值电流	mA	$V_{\rm CC} = 5 \text{V}$			1.5	10		1.5	10	
$I_{\rm FT+}/I_{\rm FT-}$	迟滞比		$V_{\rm CC} = 5 \text{V}$	· -		1.4			1.4		
	min at 100 de at 100 de		$V_{\rm OC} = 4.75 \mathrm{V}$,	$I_{\rm F}=0$					0.02	100	
I _{OH}	高电平输出电流	μΑ	$V_{\rm OH} = 30 \text{V}$	$I_{\rm F} = 10$ mA		2	100				
	Maria State Andrews Arts		$V_{\rm GC} = 4.75 \mathrm{V}$	$I_{\rm F} = 0$		0.2	0.4				
V_{OL}	低电平输出电压	V	$I_{\rm OL} = 12.8 {\rm mA}$,	$I_{\rm F} = 10 {\rm mA}$					0.2	0.4	
	A. Service Service		V 5 25V	$I_{\rm F} = 0$		8	15		4	15	
I_{CC}	电源电流	mA	$V_{\rm GC} = 5.25 \mathrm{V}$	$I_{\rm F} = 10$ mA		10	15		9	15	

开关参数(T_A=25℃)

		ae //.	and the first		OPI8013		_	5	
符号	参数	单位	測试条件	最小	典型	最大	最小	典型	最大
	上升时间	ns			30	70		30_	70
$t_{\rm f}$	下降时间	ns	$V_{\rm CC} = 5V$, $I_{\rm F} =$		9	70		9	70
tell	传输延迟时间,低到高电平输出	μв	10mA , $R_{\rm L} = 360 \Omega$,		1	5		3	5
tPHL	传输延迟时间,高到低电平输出	μв			3	5		1	5

TIL 系列光耦合电路

TIL113/TIL119A 型光耦合器电路

电路中的输入波形由信号产生器提供,产生器的特性: $Z_{\rm OUT}=50\Omega$, $t_{\rm r}\leqslant 15{\rm ns}$, 占空比为 · 366 ·

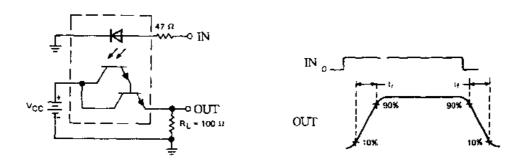
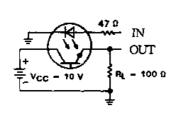


图 4-97 开关时序测试电路及电压波形图

1%, $t_{\rm W}$ = 500μs。输出波形由示波器监视,示波器的特性; $t_{\rm r} \le$ 12ns, $R_{\rm in} \ge$ 1MΩ, $C_{\rm in} \le$ 20pF。输入脉冲幅度; $I_{\rm C(on)}$ = 125mA(TIL113), $I_{\rm C(on)}$ = 2.5mA(TIL119A)。

	技	术卷	数(T_{1}	=2	25°C	1
--	---	----	----	---------	----	------	---

Mr □.			Select Select Ont	ļ	TIL113		·	T IL 119 <i>A</i>	X
符号	多 数	単位	测试条件	最小	典型	最大	最小	典型	最大
V(BR)CBO	集基击穿电压	v	$I_{\rm G} = 10 \mu {\rm A}$, $I_{\rm E} = 0$, $I_{\rm F} = 0$	30					
V(BR)CEO	集发击穿电压	v	$I_{\rm C} = 1 {\rm mA}, I_{\rm B} = 0, I_{\rm F} = 0$	30			30		
V _{(BR)EBO}	发基击穿电压	v	$I_{\rm E} = 10 \mu {\rm A}$, $I_{\rm C} = 0$, $I_{\rm F} = 0$	7			·		_
V _{(BR)ECO}	发集击穿电压	V	$I_{\rm E} \approx 10 \mu {\rm A}$, $I_{\rm F} = 0$				7		
	At + 40 + 50 + 50 10		$V_{\text{CE}} = 1 \text{V}, I_{\text{B}} = 0, I_{\text{F}} = 10 \text{mA}$	30	100				
$I_{\mathbb{C}(\mathbf{qn})}$	集电极电流,接通输出	nıA	$V_{\rm CE} = 1 \mathrm{V}$, $I_{\rm F} = 10 \mathrm{mA}$	_	-	-	30	160	
$I_{C(\alpha E)}$	集电极电流,关断输出	nA	$V_{\rm CE} = 10 \text{V}, I_{\rm B} = 0, I_{\rm F} = 0$			100			100
h _{FE}	晶体管静态正向电流放大系数		$V_{\rm CE} = 1 {\rm V}$, $I_{\rm C} = 10 {\rm mA}$, $I_{\rm F} = 0$		15,000	•			
$V_{\rm F}$	输入二极管静态正向电压	V	$I_{\rm F} = 10 {\rm mA}$			1.5			1.5
	Be the life for the IT	,,,	$I_C = 125 \text{mA}$, $I_B = 0$, $I_F = 50 \text{mA}$			1.2			
$V_{\mathrm{CE}(*)}$	集发饱和电压 	ν	$I_{\rm C} \approx 30 {\rm mA}$, $I_{\rm F} = 10 {\rm mA}$						1
r _{IO}	输入到输出的电阻	Ω	$V_{\text{in-out}} = \pm 1.5 \text{kV}$	1011			1011		
C _{io}	输入到输出的电容	ρF	$V_{\text{in-out}} = 0, f = 1 \text{MHz}$		1	1.3		1	1.3


开关参数

<i>**</i>	参数	<i>*</i>	単位	34 1-2 友 IA	TL113			TIL119A			
符号	→ 7		最小	典型	最大	最小	座典	最大			
t,	上升时间			$V_{\rm CC} = 15 \text{V}, I_{\rm C(re)} = 125 \text{mA},$		300					
t _į	下降时间		tra	$R_{\rm L}=100\Omega$,		300					
· t _t	上升时间	·	'	$V_{\rm CC} = 10 \text{V}, I_{\rm C(co)} = 2.5 \text{mA},$					300		
1,	下降时间		μs	$R_L = 100\Omega$,			·	•	300		

TIL118-1/TIL118-2/TIL118-3型光耦合器电路

电路中的输入波形由信号产生器提供,信号产生器的特性; $Z_{\rm OUT}\approx 50\Omega$, $t_{\rm r}\leqslant 15{\rm ns}$, 占空比 = 1%, 脉宽 $t_{\rm W}=100\mu{\rm s}$ 。输出波形由示波器监视,示波器的特性; $t_{\rm r}\leqslant 12{\rm ns}$, $R_{\rm in}\geqslant 1{\rm M}\Omega$, $C_{\rm in}\leqslant 20{\rm pF}$ 。输入脉冲幅度; $I_{\rm C(on)}=2{\rm mA}$ 。

TIL118-1/TIL118-2/TIL118-3型光耦合器

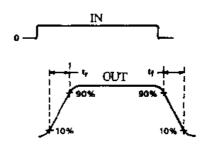
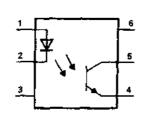



图 4-98(a) 开关时序测试电路和电压波形图

光耦合器由 GaAs 红外发射二极管和一个 n-p-n 硅光晶体管组成。

特点:高的电流放大系数;高隔离电压:3.65kV;高速开关 $t_r = 2\mu s$, $t_f = 2\mu s$.

管脚说明:

- 1. 阳极,2. 阴极,
- 3. 不连,4. 发射极,

图 4-98(b) 管脚图

最大绝对额定值

输入到输出的耐压

± 3.535KV

集发电压

30V

发集电压

7V

输入二极管反向电压

3V

输入二极管连续正向电流(在25℃以下) 100mA

连续功耗

红外发射二极管

150mW

光晶体管

150mW

器件总功耗

250mW

存储温度

- 55 ~ 150℃

引线焊接时间(离壳体 1.6mm 处,10s)

260℃

技术参数

符号	参	- 数	单位	测试条件	最小	典型	最大
$V_{(BR)CEO}$	集发击穿电压	<u> </u>	ν	$I_{\rm C} = 1 {\rm mA}, I_{\rm B} = 0, I_{\rm F} = 0$	30		
V _{(BR)ECO}	发集击穿电压		V	$I_{\rm E}=10\mu{\rm A}$, $I_{\rm F}=0$	7		
$I_{C(m)}$	通态集电极 光晶体	TIL118 - 2	mA	$V_{\text{CE}} = 5\text{V}, I_{\text{F}} = 10\text{mA}, I_{\text{B}} = 0$	5		
_	电流 工作	TIL118 - 3	<u> </u>		10		
$I_{\mathrm{C}(\mathrm{eff})}$	关断集电 光晶体 极电流 工作	本管	nA	$V_{CE} = 5V, I_F = 0, I_B = 0$		1	100
V_{r}	输入二极管静态正向	可电流	V	$I_F = 10 \text{mA}$		1.2	1.5
$V_{\mathrm{CE}(\mathrm{set})}$	集发饱和电压		v	$I_{\rm C} = 2 { m mA}, I_{\rm F} = 10 { m mA}, I_{\rm B} = 0$			0.4
r_{10}	输入到输出的电阻	<u> </u>	Ω	$V_{\text{in-cont}} = \pm 500 \text{V}$	1011		
Cio	输人到输出的电容		pF i	$V_{\text{in-out}} = 0, f = 1 \text{MHz}$		ī	2

开关参数 $(T_A \approx 25\%)$

	参	数	单位	测试条件	最小	典型	最大
t _r	上升时间·	光晶体管工作		$V_{\rm CC} = 10 \text{V}$, $I_{\rm C(un)} = 2 \text{mA}$		2	15
$t_{\rm f}$	下降时间		ha	$R_{\rm L} = 100\Omega$		2	15

TIL127/TIL128A 型光耦合器电路

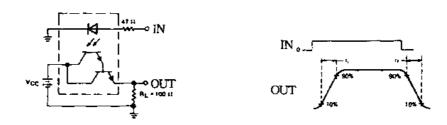


图 4-99 开关时序测试电路和电压波形图

电路中的输入波形信号由脉冲信号产生器提供,产生器的特性: $Z_{\rm OUT}=50\Omega$, $t_{\rm r} \le 15{\rm ns}$, 占空比=1%, 脉宽 $t_{\rm W}=500{\rm \mu s}$ 。输出波形由示波器监测,示波器的特性: $t_{\rm r} \le 12{\rm ns}$, $R_{\rm in} \ge 1{\rm M}\Omega$, $C_{\rm in} \le 20{\rm pF}_{\rm o}$ 输入脉冲幅度: TIL127 为 $I_{\rm C(on)}=125{\rm mA}$, TIL128A 为 $I_{\rm C(on)}=2.5{\rm mA}$.

技术参数

A* 17	4 44		Start -+ Ar (AL		TIL127		,	TIL128A	
符号	参数	単位	拠试条件	最小	典型	最大	最小	典型	最大
V(BR)CBO	集基击穿电压	v	$I_{\rm C} = 10\mu{\rm A}$, $I_{\rm E} = 0$, $I_{\rm F} = 0$	30					
$V_{(BH)CE0}$	集发击穿电压	v	$I_{\rm C} = 1 {\rm mA}, I_{\rm B} = 0, I_{\rm F} = 0$	30			30		
V(BR)EBO	发基击穿电压	v	$I_{\rm E} = 10\mu{\rm A}$, $I_{\rm C} = 0$, $I_{\rm F} = 0$	7					
V _{(BR)ECO}	发集击穿电压	v	$I_{\rm E} = 10 \mu {\rm A}$, $I_{\rm F} = 0$	<u> </u>			7		
	输人二极管静态反向电流	μA	$V_{\rm R} = 3V$			10			10
	使中枢中卒 按连绘山		$V_{\rm CE} = 1 { m V}$, $I_{\rm B} = 0$, $I_{\rm F} = 10 { m mA}$	30	100				
I _{C(cq)}	集电极电流,接通输出	mA	$V_{CE} = 1 \text{ V}$, $I_y = 10 \text{mA}$				30	160	
$I_{\mathrm{C}(\mathrm{off})}$	集电极电流,关断输出	nA	$V_{\rm CE} = 10 {\rm V} , I_{\rm B} = 0 , I_{\rm F} = 0$	i		100			100
hre	晶体管静态正向电流放大系 数		$V_{\rm UK} = 1 { m V}$, $I_{\rm C} = 10 { m mA}$, $I_{\rm F} = 0$		15 000			•	•
V _P	输入二极管静态正向电压	v	$I_{\rm F} = 10 {\rm mA}$			1.5	_	_	1.5
T/	Alta 62 Mar dan Her IT	1)	$I_{\rm C} = 125 {\rm mA}$, $I_{\rm B} = 0$, $I_{\rm F} = 50 {\rm mA}$		_	1.2			
$V_{\mathrm{CE}(\mathrm{col})}$	集	V	$I_C = 30 \text{mA}$, $I_F = 10 \text{mA}$						1
{гю}	输入到输出的电阻	Ω	$V{\rm in-call} = 500 { m V}$	10 ¹¹			1011		
Cio	输入到输出的电容	рF	$V_{\text{in-out}} = 0$, $f = 1 \text{MHz}$		1	1.3		1	1.3

开关参数(T_A = 25℃)

	4 **	单位	单位 测试条件		TIL127			T11.128A		
符号	参 数	事业	関	最小	典型	最大	最小	典型	最大	
	上升时间		$V_{\rm CC} = 15 \text{V}, I_{\rm C(on)} = 125 \text{mA},$		300					
1 _€	下降时间	μs 	$R_{\rm L} = 100\Omega$,		300					
ε _τ	上升时间		$V_{\rm CC} \approx 10 \text{V}$, $I_{\rm C(co)} = 2.5 \text{mA}$,					300		
t _f	下降时间	μз	$R_{\rm L} = 100\Omega$,					300		

TIL153/TIL154/TIL155 型光耦合器电路

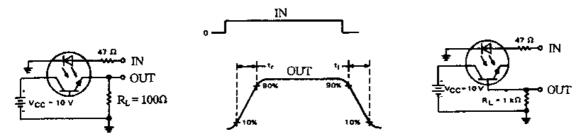


图 4-100(a) 光晶体管工作测试电路图

图 4-100(b) 电压波形图

图 4-100(e) 光二极管工作测试电路图

电路中的输入信号由脉冲信号产生器提供,产生器的特性: $Z_{\rm OUT}=50\Omega$,占空比 $\approx 1\%$, $t_{\rm r} \le 15{\rm ns}$,脉宽 $t_{\rm W}=100\mu{\rm s}$ 。输出波形由示波器监视,示波器的特性: $t_{\rm r} \le 12{\rm ns}$, $R_{\rm in} \ge 1{\rm M}\Omega$, $C_{\rm in} \le 20{\rm pF}$ 。输入脉冲幅度:光晶体管工作电路, $I_{\rm C(on)}=2{\rm mA}$,光二极管工作电路, $I_{\rm C(on)}=20\mu{\rm A}$ 。

技术参数(T_A=25℃)

			26.0	Sera C. B. dee Jul		TIL15	3		TIL154	1		TIL15:	5
符号	参	数	单位	測试条件	最小	典型	最大	最小	典型	最大	最小	典型	最大
$V_{(\mathrm{BR})\mathrm{CBO}}$	集基击穿电压		v	$I_{\rm C} = 10\mu{\rm A}, I_{\rm E} = 0, I_{\rm F}$ = 0	70			70			70		
V _{(BR)CEO}	集发击穿电压		v	$I_{\rm C} = 1 {\rm mA}, I_{\rm H} = 0, I_{\rm F}$ = 0	30		·	30			30		
V(BR)EBO	发基击穿电压		v	$I_{\rm E} = 10 \mu {\rm A}, I_{\rm C} = 0, I_{\rm F}$ = 0	7			7			7		
I_{R}	输入二极管静	态反向电流	μA	$V_{\rm R} = 3V$			10			10	Ĺ		10
_	集电极电流,	光晶体管工作	mA	$V_{\text{CE}} = 10 \text{V}, I_{\text{F}} = 10 \text{mA}$ $I_{\text{B}} = 0$	1	3		2	5		5	9	
$I_{C(-)}$	接通输出	光二极管工作	μA	$V_{\text{CB}} = 10 \text{ V}$, $I_{\text{F}} = 10 \text{ mA}$ $I_{\text{E}} = 0$	-	10			10			10	
_	集电极电流,	光晶体管工作		$V_{\text{CE}} = 10 \text{V}, I_{\text{F}} = 0$ $I_{\text{B}} = 0$		1	50		1	50		1	50
$I_{C(\mathbf{off})}$	关断输出	光二极管工作	nΑ	$V_{\rm CB} = 10 \text{V}, I_{\rm F} = 0$ $I_{\rm E} = 0$		0.1	20		0.1	20		0.1	20
$h_{\rm FE}$	晶体管静态 II 系数	向电流放大		$V_{\rm CE} = 5 \text{V}$, $I_{\rm C} = 10 \text{mA}$ $I_{\rm F} = 0$	50	100		100	200		100	550	
$V_{\mathbf{F}}$	输入二极管静	态正向电压	v	$I_{\rm F} = 10 { m mA}$		1.2	1.4		1.2	1.4		1.2	1.4
$V_{\mathrm{CE}(\mathrm{ant})}$	集发饱和电压		v	$I_{\rm C}=1{ m mA}$, $I_{\rm F}=10{ m mA}$ $I_{\rm B}=0$		0.25	0.4		0.25	0.4		0.25	0.4
r _Ю	输入到输出的	电阻	Ω	$V_{\rm in-out} = 500 m{V}$	1011			1011			1011		
Cio	输入到输出的	电容	рF	$V_{\text{in-out}} = 0$, $f = 1 \text{MH}_2$		1	1.3		1	1.3		1	1.3

开关参数

符号	参	数	单位	测试条件	最小	典型	最大
t _t	上升时间	────────────────────────────────────		W = 20V I . = 2=A R = 1000		5	10
t_{f}	下降时间	元的许官工作	μя	$V_{\rm CC} = 10 \text{V}$, $I_{\rm C(un)} = 2 \text{mA}$, $R_{\rm L} = 100 \Omega$,		5	10
t,	上升时间	No - are and - th-		I/ = 10V I 20 A P = 11-0		i	
ı _f	下降时间	一 光二 极管 工作	μs	$V_{\rm CC} = 10V, I_{\rm C(on)} = 20\mu{\rm A}, R_{\rm L} = 1{\rm k}\Omega,$		i	

TIL186-1/TIL186-2/TIL186-3/TIL186-4型交流输入光耦合电路

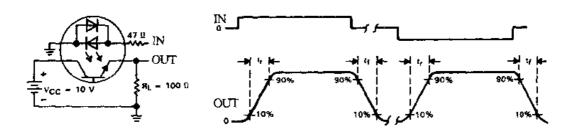


图 4-101 开关时序测试电路和电压波形图

电路为交流输入的光隔离电路,输入波形由信号产生器提供,产生器的特性为: $Z_0 = 50\Omega$, $t_r \le 15$ ns,占空比 = 1%。输出波形由示波器监视,示波器的特性: $t_r \le 12$ ns, $R_i \ge 1$ M Ω , $C_i \le 20$ pF。调节输入脉冲幅度,使 $I_{C(on)} = 2$ mA

技术参数

符号	多	数	单位	测试条件	:	最小	典型	最大
V _{(BR)CBO}	集基击穿电压		v	$I_{\rm C} = 10 \mu {\rm A}$, $I_{\rm E} = 0$, $I_{\rm F} =$	0	100		
V _{(BR)CEO}	集发击穿电压	•	v	$I_{\rm C} = 1 {\rm mA}$, $I_{\rm B} = 0$, $I_{\rm F} = 0$)	55		
$V_{(BR)EBO}$	发基击穿电压		v	$I_{\rm E} = 10\mu{\rm A}, I_{\rm C} = 0, I_{\rm F} =$	0	7		
$V_{(BR)ECO}$	发集击穿电压		v	$I_{\rm E} = 100 \mu {\rm A}, I_{\rm B} = 0, I_{\rm F} =$:0	7		
	T				TIL186 ~ 1	0.1		
				$V_{\rm CE} = 10 \mathrm{V}, I_{\rm F} = 2 \mathrm{mA},$	TIL186 - 2	0.2		
	İ	: 	1	$I_B = 0$	TIL186 - 3	0.5		
	 集电极电流。	 光晶体管工作	1		TIL186 ~ 4	1		
$I_{\mathrm{C}(\mathbf{m})}$		一 元期2年1日二年	mA		TIL186 - 1	1		
	接通輸出	İ		$V_{CE} = 10V$, $I_{F} =$	TIL186 ~ 2	2		
		:	-	$10 \text{mA}, I_B = 0$	TIL186 ~ 3	5		
					TIL186 ~ 4	10		
		光二极管工作	μΑ	$V_{\rm CB} = 10 \rm V$, $I_{\rm F} = 10 \rm mA$,	/ _E = 0	5	12	
$I_{\mathcal{C}(off)}$	集电极电流,关断输	出	nA	$V_{\rm CE} = 50 \rm V$, $I_{\rm F} = 20 \rm mA$, $I_{\rm CE} = 20 \rm mA$	_B = 0		2	200
h_{FE}	晶体管静态正向电流	杭放大系数		$V_{\rm CE} = 5 { m V}$, $I_{\rm C} = 10 { m mA}$, $I_{\rm F}$	= 0	100	550	
V _F	输人二极管静态正向	的电压	v	$I_{\rm F} = 10 { m mA}$		1	1.16	1.5
$V_{\mathrm{CE}(\mathrm{set})}$	集发饱和电压		v	$I_{\rm C} = 1 {\rm mA}, I_{\rm F} = 10 {\rm mA}, I_{\rm B}$	= 0		0.14	0.4
F10	输人到输出的电阻		Ω	$V_{\text{in-out}} = \pm 500 \text{V}$		1011		
Cio	输入到输出的电容		рF	$V_{\rm pa-out} = 0, f \approx 1 \text{MHz}$			1	2
$\frac{I_{\mathrm{C(on)}}}{I_{\mathrm{C(on)}}2}$	集电极电流对称比,	接通輸出		$V_{\rm CE} = 10 { m V}, I_{\rm F} = 10 { m mA}, I_{\rm F}$	_E = 0	1		3

开关参数(T_A=25℃)

符号	多数	单位	测试条件	最小	典型	最大
t,	上升时间	μв			4	10
1 _f	下降时间	μв	$V_{\rm CC} = 10 \text{V}, I_{\rm C(on)} = 2 \text{mA}, R_{\rm L} = 100 \Omega,$	•	4	10

TIL187-1~TIL187-4/TIL188-1~TIL188-4型交流输入光耦合器/光隔离电路

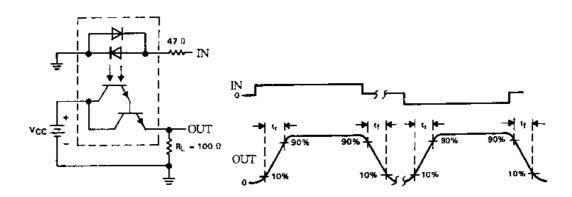


图 4~102 开关时序测试电路和电压波形图

电路为交流输入光耦合电路,输入波形由信号产生器提供,产生器的特性为: $Z_0=50\Omega$, $t_r \leq 15$ ns,占空比=1%。输出波形由示波器监测,示波器的特性: $t_r \leq 12$ ns, $R_i \geq 1$ M Ω , $C_i \leq 20$ pF。输入脉冲幅度: $I_{C(on)}=10$ mA。

开**关参数**(T_A = 25℃)

-	符号	参数	黄冶	单位 测试条件		TIL187			T1L188	
	18.2	9 X	- 4- -1,v,		最小	典型	最大	最小	典型	最大
	t,	上升时间	μя	$V_{\rm CC} = 10 \text{V}, I_{\rm C(on)} = 10 \text{mA}, R_{\rm L} = 100 \Omega,$		100			100	
_	t _f	下降时间	μs			100			100	

技术参数

符号		<u>\$</u>	Mit.	单位	391 2-0 Az 14-		TIL187	,		TIL188	3
何号		9	数	學业	測试条件	最小	典型	最大	最小	典型	最大
$V_{(BR)CBO}$	集基击线	ř 电压	<u>.</u>	V	$I_{\rm C} = 10 \mu {\rm A}$, $I_{\rm E} = 0$, $I_{\rm F} = 0$	100					
$V_{(BR)CEO}$	集发击务	F 电压		V	$I_{\rm C} = 1 {\rm mA}$, $I_{\rm B} = 0$, $I_{\rm F} = 0$	55			55		
$I_{(\mathrm{BR})\mathrm{EBO}}$	发基击第	祖底		. V	$I_{\rm E} = 10 \mu {\rm A}$, $I_{\rm C} = 0$, $I_{\rm F} = 0$	14					
$I_{(\mathrm{BR})\mathrm{ECO}}$	发集击第	神压		V	$I_{\rm E}=10\mu{\rm A},I_{\rm F}=0$				7		
			TIL187 - 1, TIL188 - 1			5			5		
	集电极	₩ = #	TIL187 - 2, TIL188 - 2			10			10		
,	电流,	光晶体	TIL187 - 3, TIL188 - 3		$V_{\text{CE}} = 1 \text{V}, I_{\text{F}} = 2 \text{mA}, I_{\text{B}} = 0$	20			20		
$I_{\mathbf{C}(\mathbf{m})}$	接通	管工作	TIL187 – 4, TIL188 – 4			30			30		
	輸出				$V_{CE} = 1 \text{ V}$, $I_{F} = 10 \text{mA}$, $I_{B} = 0$	50			50		
		光二极	管工作	μ A	$V_{\rm CB} = 1 \text{V}, I_{\rm F} = 10 \text{mA}, I_{\rm E} = 0$		12				
$I_{\mathrm{C}(\mathrm{off})}$	集电极电	し流,关断	輸出	nΑ	$V_{\rm CE} = 10 {\rm V}$, $I_{\rm F} = 0$, $I_{\rm B} = 0$			100			100
$h_{\rm FE}$	品体管制	李态正问题	也流放大系数		$V_{\rm CE} = 1 { m V}$, $I_{\rm C} = 10 { m mA}$, $I_{\rm F} = 0$		25000				
V_{Γ}	输入二极	及管静态i	E向电压	V	$I_{\rm F} = 10 { m mA}$	I	1.2	1.5	1	1.2	1.5
$V_{\mathrm{CE}(\mathrm{sat})}$	集发饱和	电压		V	$I_{\rm C} = 50 {\rm mA}$, $I_{\rm F} = 10 {\rm mA}$, $I_{\rm B} = 0$		0.87	1		0.87	1
r_{10}	输入到制	自出的电路	1	Ω	$V_{\text{in-out}} = \pm 500 \text{V}$,	10 ¹¹			1011		
C_{io}	輸人到報	出的电视	¥	pF	$V_{\text{in-out}} = 0, f = 1 \text{MHz}$		1	1.3		1	1.3
$\frac{I_{C(an)}1}{I_{C(an)}2}$	集电极电	1流对称	比,接通输 出		$V_{\text{CE}} = 1\text{V}, I_{\text{F}} = 2\text{mA},$	1		3	1		3

TIL189-1~TIL189-4/TIL190-1~TIL190-4型光耦合器/光隔离电路

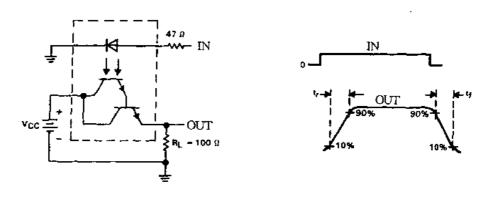


图 4-103 开关时序测试电路和电压波形图

电路中的输入信号由脉冲信号产生器提供,产生器的特性: $Z_0 = 50\Omega$, $t_r \le 15$ ns,占空比 = 1%。输出波形由示波器监测,示波器的特性: $t_r \le 12$ ns, $R_i \ge 1$ M Ω , $C_i \le 20$ pF。输入脉冲幅度为 $I_{C(an)} = 10$ mA。

TIL189 和 TIL190 系列电路是高电流放大系数和输入/输出间高隔离电压的一种电路。

特点:电流放大系数:500%(最小, $I_F = 10mA$)到 1500%($I_F = 2mA$);增益有四种选择型式; 高隔离电压:3.535kVp; GaAs 二极管红外源光耦合到硅 N-P-N 达林顿光晶体管。

开关参数

———— 符号	45. #H	单位	测试条件	TL189			TIL190		
竹写	参数		(网络东行	最小	典型	最大	最小	典型	最大
t _r	上升时间	μs	V = 10V / = 10-A R = 1000		100			100	
$t_{\rm f}$	下降时间	ងខ	$V_{\rm CC} = 10 \text{V}, I_{\rm C(on)} = 10 \text{mA}, R_{\rm L} = 100 \Omega$		100			100	

技术参数(TA = 25℃)

			***	***	344 1-2 Az /A		TIL189)		TIL 190)
符号		多	教	单位	测试条件	最小	典型	最大	最小	典型	最大
V _{(BR)CBO}	集基击员	中压		v	$I_{\rm C} = 10\mu{\rm A}$, $I_{\rm E} = 0$, $I_{\rm F} = 0$	100					
V _(BR) cmo	集发击多	子 电压		v	$I_{\rm C} = 1 {\rm mA}$, $I_{\rm B} = 0$, $I_{\rm F} = 0$	55	<u>-</u>		55		
V _{(BR)EBO}	发基击罗	中压		V	$I_{\rm E} = 10 \mu {\rm A}$, $I_{\rm C} = 0$, $I_{\rm F} = 0$	14					
V _{(BR)BCO}	发集击务	电压		V	$I_{\rm E} = 100 \mu {\rm A}, I_{\rm F} = 0$				7		
I_{R}	输入二根	を管静态	反向电流	μΑ	$V_{\rm R} = 3V$			10			10
			TIL189 ~ 1 , TIL190 ~ 1	2	$V_{CS} = 1 \text{V}, I_{C} = 2 \text{mA}, I_{R} = 0$	_5_			5		
	集电极 光晶体	사 E H=	TIL189 - 2, TIL190 - 2			10			10		
	电流,	車流.	TIL189 - 3, TIL190 - 3		$V_{CE} = 1V$, $I_F = 2mA$, $I_B = 0$	20			20		
$I_{C(m)}$	│ 伊丁作	TIL189 - 4, TIL190 - 4	1		30		_	30			
	輸出	1			$V_{\rm CE} = 1 \rm V$, $I_{\rm F} = 10 \rm mA$, $I_{\rm B} = 0$	50			50		
	,	光二极		$\mu \Lambda_{\perp}$	$V_{\rm CB} = 1 {\rm V}$, $I_{\rm Y} = 10 {\rm mA}$, $I_{\rm E} = 0$	5	15				
$I_{\mathrm{C}(\mathrm{eff})}$	集电极电	电流,关断	输出	πA	$V_{\rm CE} = 10 {\rm V}$, $I_{\rm F} = 0$, $I_{\rm B} = 0$		1	100		1	100
h _{FE}	晶体管	李态正向甲	1. 流放大系数		$V_{\rm CE} = 1 { m V}$, $I_{\rm C} = 10 { m mA}$, $I_{\rm F} = 0$		25000				
V _F	输入二机	输入二极管静态正向电压		v	$I_{\rm F} = 10 { m mA}$	_	1.2	1.5		1.2	1.5
V _{CE(sat)}	集发饱和电压		v	$I_{\rm C} = 50 \text{mA}$, $I_{\rm F} = 10 \text{mA}$, $I_{\rm B} = 0$		0.87	1		0.87	1	
I _{io}	输入到银	输入到输出的内电阻		Ω	$V_{\text{in-out}} = \pm 500 \text{V}$,	10 ¹¹			10'1		
Cio	输入到箱	自出的电视	¥	рF	$V_{\text{in-out}} = 0, f = 1 \text{MHz},$		1	1.3	_	1	1.3

TIL191~TIL193B型光耦合器应用电路

用途:用于隔离测量和控制。

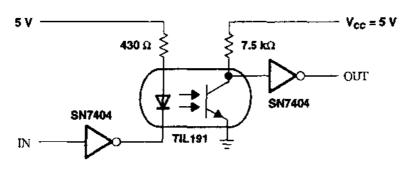


图 4-104(a) 应用电路

TIL191 ~ TIL193B

这些光耦合器的每个通道由一个 GaAs 光发射二极管和一个硅 nPn 光晶体管组成。 TIL191 有一个通道,4 引脚封装; TIL192 有两个通道,8 引脚封装; TIL193 有 4 个通道,16 引脚封装。

特点:GaAs 二极管红外源;光耦合源到硅 nPn 光晶体管;可选择 1、2 或 4 通道;可选择三种器件的电流传输比(20%,50%,100%);高隔离电压:3.535kV;塑封型式。

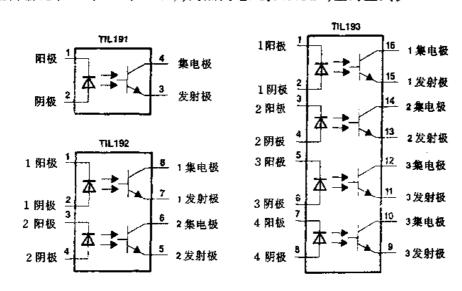


图 4-104(b) 电路原理图

最大绝对额定值(25℃)

输入到输出的耐压(隔离电压) $\pm 3.535 kV(峰值)$ 或 DC $\pm 2.5 kV(有效值)$

集电极—发射极电压 35V 发射极—集电极电压 7V 输入二极管反向电压 5V 输入二极管连续正向电流(25℃以下) 50mA 连续总功耗(25℃)

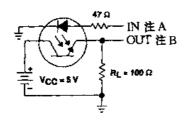
光晶体管

150mW

每通道输入二极管和光晶体管

200mW

存储温度,Tstg


- 55 ~ 125℃

引线焊接温度(离壳体 1.6mm 处,10s)

260℃

技术参数

符号	参数名称		测试条件	单位	最小	典型	最大
V _{(BR)CEO}	集电极发射极击穿电压		$I_{\rm C}=0.5{\rm mA}, I_{\rm F}=0$	v	35	<u>-</u>	
V _{(BR)ECO}	发射极集电极击穿电压		$I_{\rm C} = 100 \mu {\rm A}$, $I_{\rm F} = 0$	v	7		
I_{R}	输入二极管反向静态电流		V _R = 5V	μА		•	10
I _{C(aff)}	集电极电流,关断输出		$V_{\text{CE}} = 24\text{V}$, $I_F = 0$	nA			100
CTR	电流传输比	TIL191, TIL192, TIL193 TIL191A, TIL192A, TIL193A TIL191B, TIL192B, TIL193B	$I_{\rm F} = 5$ mA $V_{\rm GE} = 5$ V		20%		
V _F	输入二极管静态正向电压		$I_V = 20 \text{raA}$	v			1.4
$V_{\mathrm{CE}(\mathrm{set})}$	集电极发射极饱和电压		$I_{\rm F} = 5 \text{mA}$ $I_{\rm C} = 1 \text{mA}$	v	- "	•	0.4
C_{i_0}	输入到输出的电容	:	$V_{\rm in-max} = 0 \text{mA}$ $f \approx 1 \text{MH}_2$,	pF		1	
r _{io}	1 输入到输出的电阻		V _{in-out} = ± 1mA	Ω		1011	

注: A. 由产生器供给输入波形,上升时间 t_r≤ 15ns 脉宽 t_w = 100ps。

B.监视器上的输出波形、上升时间 4_τ ≤ 12ns。

图 4-104(c) 参数测量电路图

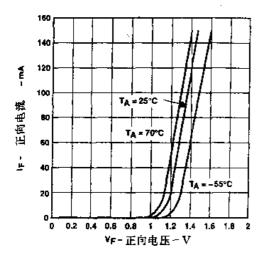


图 4-104(d) 正向电流与正向电压的关系

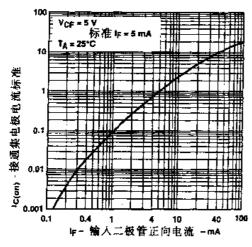


图 4-104(f) 集电极电流(输出接通)与输入 二极管正向电流的关系

图 4-104(e) 集电极电流与集电压的关系

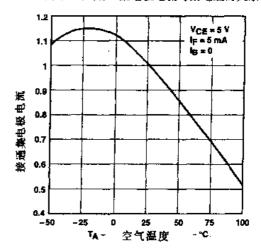


图 4-104(g) 集电极电流(输出接通) 与温度的关系

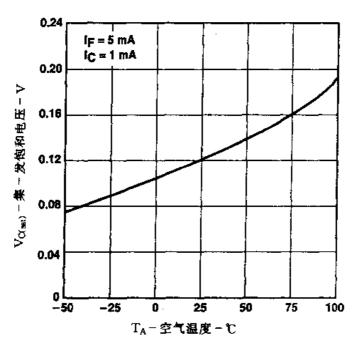
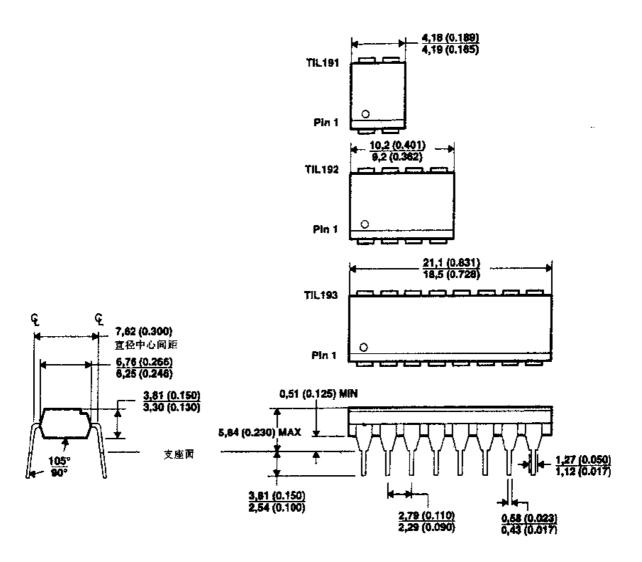



图 4-104(h) 集一发饱和电压与温度的关系

注:单位 mm(英寸) 图 4 - 104(i) 管脚封装尺寸图

TIL194~TIL196/TIL194A~TIL196A/TIL194B~TIL196B型交流输入光耦合 电路

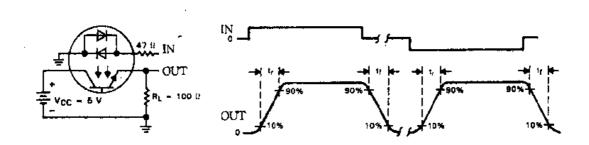


图 4-105(a) 开关时序测试电路和电压波形图

电路中的输入为交流信号,输入信号由交流信号产生器供给,信号产生器的特性: $Z_0=50\Omega$, $t_r \le 15$ ns,占空比=1%。输出波形由示波器监视,示波器的特性: $t_r \le 12$ ns, $R_i \ge 1$ M Ω , $C_i \le 20$ pF。输入脉冲幅度为 $I_{C(on)}=2$ mA。

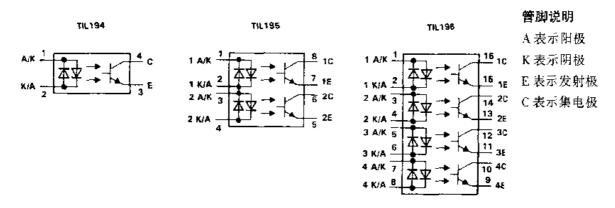


图 4-105(b) 管脚图(顶视)

开关参数

符号	参数	单位	测试条件	典型值
t	上升时间	J13	W 5V / 2 / B 1000	6
t_{ℓ}	下降时间	μs	$V_{\rm CC} = 5 \text{V}$, $I_{\rm C(on)} = 2 \text{mA}$, $R_{\rm L} = 100 \Omega$	6

最大绝对额定值(T_A = 25℃)

输入到输出的耐压 ±3.535kVp

 集发电压
 35V

 发集电压
 7V

输入二极管连续正向电流(在 25°以下) ± 50mA

连续功耗(在25℃以下)

 光晶体管
 150mW

 器件总功耗
 200mW

存储温度 - 55 ~ 125℃

引线焊接温度(离壳体 1.6mm 处, 10s) 260°C

技术参数(TA=25℃)

符号		参数	单位	测试条件	最小 典型	最大
$V_{(\mathrm{BR})\mathrm{CEO}}$	集发击穿电	Æ	V	$I_{\rm C} = 0.5 {\rm mA} \ I_{\rm F} = 0$	35	
$V_{(BR)ECO}$	发集击穿电	EK.	V	$I_{\rm C} = 100 \mu {\rm A}$, $I_{\rm F} = 0$	7	
$I_{\mathrm{C}(\mathrm{att})}$	集电极电流	, 关 断输 出	nA	$V_{\rm CE} = 24 { m V}, I_{ m F} = 0$		100
	- 	TIL194, TIL195, TIL196			20%	
CTR	电流转换比	TIL194A, TIL195A, TIL196A		$I_F = 5 \text{mA}$, $V_{CE} = 5 \text{V}$	50%	
	İ	TIL194B, TIL195B, TIL196B		į.	100%	
ν _ε +	输入二极管	静态正向电压	v	$I_{\rm F} = 20 {\rm mA}$		1.4
V _{CE(set)}	集发饱和电	<u> </u>	v	$I_{\rm F}=5{\rm mA}$, $I_{\rm C}=1{\rm mA}$		0.4
C ₁₀	输入到输出的	的电 容	pF	V in-out = 0, f = 1 MHz,	1	
r _{ia}	输入到输出的	的电阻	Ω	$V_{ m inspect} = \pm 1 { m kV}$	1011	
$rac{I_{\mathrm{C(cm)1}}}{I_{\mathrm{C(cm)2}}}$	集电极电流	对称比,接通输出		$V_{\text{CE}} = 5\text{V}, I_{\text{F}} = 5\text{mA}$	1	3

TIL300/TIL300A 型精密线性光耦合器应用电路

用途:用于电源反馈、医学传感器隔离、光直接存取阵列和隔离过程控制传感器等场合。 · 378 ·

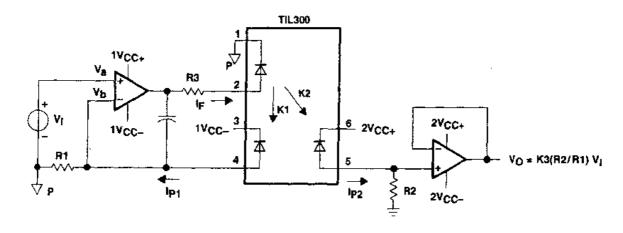


图 4-106(a) 典型应用电路

电路中运算放大器的输出驱动 LED,反馈光二极管源电流通过 RI 连接到运算放大器的反相输入端。假定光电流 $I_{Pl}=V_1/RI$,直接与 LED 电流成比例,通过反馈传输 KI($V_1/RI=KI\times IF$),运算放大器供给 LED 电流,使 $V_b=V_a$ 。

KI 是伺服增益,是反馈光二极管电流与输入 IED 电流之比,即 KI = I_{Pl}/I_F

K2 是正向增益,是输出光二极管电流与输入 LED 电流之比,即 K2 = I_{P2}/I_{F}

K3 是传输增益,是正向增益与伺服增益之比,即 K3 = K2/K1。

TIL300/TIL300A 型光耦合器

TIL300 精密线性光耦合器由一个红外 LED 照射光隔离反馈二极管和输出光二极管组成。反馈光二极管捕获 LED 的光通量,产 LEDK 生控制信号,能够稳定 LED 的驱动电流。输出光二极管产生的输 PDK1 出信号与伺服光通量的发射成线性比例。

特点: 交直流信号耦合; 带宽 > 200kHz; 传输增益稳定性高: ±0.05%/℃;3500V(峰值)隔离电压。

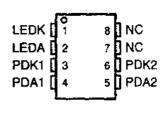


图 4-106(b) 管脚图(顶视)

管脚说明

名 称	编号	说 明
LEDK	ı	LED 阴极
LEDA	2	LED 阿破
PDK!	3	光二极管 1 阴极
PDA1	4	, 光二极管 1 阳极
PDA2	5	光
PDK2	6	光二极管 2 阴极
NC	7	不连接
NC	8	不连接

最大绝对额定值(工作温度范围内)

发射器

连续功耗

160mW

输入二极管正向电流, $I_{\rm F}$

60mA

浪涌电流(脉宽 < 10 ps)

250mA

反向电压, $V_{\rm R}$

5V

反向电流, $I_{\rm R}$

 $10\mu A$

检测器

连续功耗

50 mW

反向电压, V_R

50V

耦合器

连续功耗

210mW

存储温度, $T_{\rm stg}$

- 55 ~ 150°C

工作温度, T_A

- 55 ~ 100℃

输入到输出的耐压

3500V(峰值)

引线焊接温度(离壳体 1.6mm 处,10s)

260℃

技术参数

发射器

参数	测试条件	单位	最小 典型 最大
V _P 正向电压	$I_{\rm F}$ = 10mA	v	1.25 1.50
V _F 温度系数		mV/℃	- 2.2
I _R 反向电流	$V_{\rm R} = 5 \text{V}$	μA	10
t, 上升时间	$I_{\rm F} = 10 \mathrm{mA}$, $\Delta I_{\rm F} = 2 \mathrm{mA}$	145	1
t _f 下降时间	$I_{\rm F} = 10 {\rm mA}$, $\Delta I_{\rm F} = 2 {\rm mA}$	μ5	1
C _i 结电容	$V_{\rm F} = 0$, $f = 1 \mathrm{MHz}$	PF	15

检测器

	参 数	测试条件	单位	最小	典型	最大
I_{DK}	暗电流	$V_{\rm H} = 15 \text{V}, \qquad I_{\rm F} = 0$	nA			25
	开路电压	$I_{\rm F} = 10 { m mA}$	V		0.5	
108	短路电流限	$I_{\rm F} = 10 { m mA}$	pA		80	
C _i	结电容	$V_T = 0, \qquad f = 1 \text{MHz}$	рF		12	

耩合器

	参数		侧证	f条件	单位	最小	典型	最大	
7/1	何服电流增益			$I_{\rm F} = 1 { m mA}$		0.3%	0.5%	0.8%	
<i>K</i> 1	LANK AC MICAR IN			$I_{\rm F} = 10 { m mA}$		0.5%	0.8%	1.1%	
E/2	工戶中華機夫			$I_{\rm F} = 1 \mathrm{mA}$		0.3%	0.5%	0.8%	
K2	正向电流增益		检测器偏压为 —	$I_{\rm F} = 10 { m mA}$		0.5%	0.8%	1.1%	
		mm 200	15V	$I_{\rm F}=1{ m m}A$		0.75	1	1.25	
2/7	11: b\$ 100 16	TR 300		$I_{\rm F} = 10 {\rm mA}$		0.75	1	1.25	
K3	传输增益	TIL300A] 	$I_{1'} = 1 \text{mA}$		0.9	. 1	1.10	
			1	$I_{\rm F} = 10 { m mA}$		0.9	1	1.10	
	146.34 M DC 25.46	K1/K2	r = 10A		%/°C	- 0.5			
	增益温度系数	К3	I _F = 10mA		767 C		±0.005		
AFG	传输增益线性度		$I_Y = 1$ to 10mA				±0.25%		
<i>∆K</i> 3	阿爾增益以往及		$I_{\rm F} = 1$ to $10 {\rm mA}$,	$T_{\rm A} = 0 - 75 {\rm ^{\circ}C}$			±0.5%		
₽₩	带宽		$I_{\rm F} = 10 \mathrm{mA}$, $R_{\rm L} = 50 \Omega$	1, I _F (调制)	kHz		200		
t,	上升时间	· · · · · · · · · · · · · · · · · · ·	$I_{\rm F} = 10 { m mA}$, $R_{\rm L} =$	= 50Ω, I _F (调制)	ļiB		1.75		
t _f	下降时间		$I_{\rm F} = 10 { m mA}$, $R_1 =$	- 50Ω, I _t (调制)	με		1.75		
V_{issu}	隔离电压(峰值)		$I_{10} = 10\mu\text{A}$, $f =$	60Hz	V	3500			

TIL3009~TIL3012型光耦合隔离双向可控硅应用电路

用途:用于光隔离测控电路。

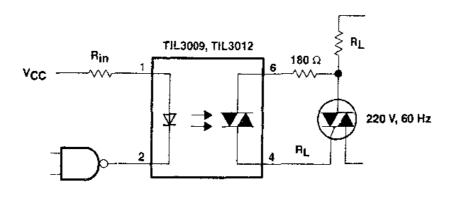


图 4-107(a) 电阻负载电路

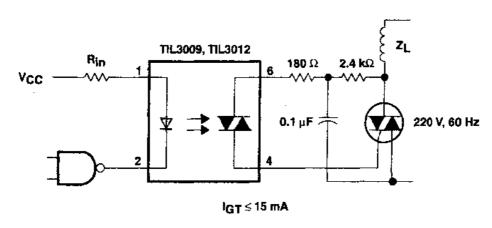


图 4-107(b) 具有灵敏栅感性负载的双向可控硅电路

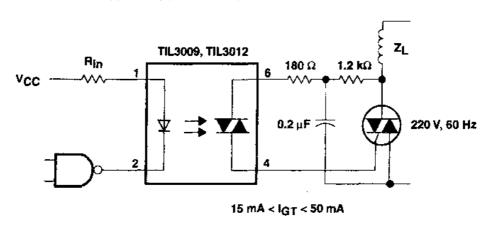


图 4-107(c) 具有非灵敏栅感性负载的双向可控硅电路

TIL3009~TIL3012型光耦合器

每个器件由一个 GaAs 红外发射二极管和光控双向可控硅组成。

特点:250V 光可控双向可控硅驱动输出;高隔离电压为 3535V;输出驱动用于 115VAC;标准 6 引脚塑封;可工作于高湿度环境。

0 1 6 2 5 3 4

管脚说明

1.阳极, 2.阴极,

3. 不连接, 4. 电源,

5. 双向可控硅基片,

6.电源。

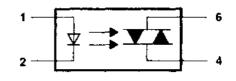


图 4-107(d) 管脚图(顶视)

图 4-107(e) 逻辑图

最大绝对额定值(25℃)

输入对输出的峰值隔离电压(5s 最大持续时间,60Hz) 3.535kV

输入二极管反向电压 3V

输入二极管正向电流,连续 50mA

输出重复峰值关断电压 250V

输出接通电流,总有效值(50~60Hz,正弦波)

 $T_{\rm A} = 25\,^{\circ}{\rm C}$ 100mA

 $T_A = 70$ °C

输出驱动非重复峰值接通电流

 $(t_{\rm W} = 10 \, {\rm ms}$,占空比 = 10%) 1.2mA

连续功耗(25℃以下)

红外发射二极管 100mW

光控双向可控硅 300mW

器件总功耗 330mW

工作结温, 7₁ - 40~100℃

存储温度, T_{ste} - 40 ~ 150℃

引线焊接温度(离壳体 1.6mm 处,10s) 260℃

技术参数(25℃)

符号	参数名称		测试条件	・単位	最小	典型	最大
I_{R}	静态反向电流	向电流	$V_{\rm R} = 3V$	μΛ		0.05	100
$V_{\rm F}$	静态正向电压	文向电流 V 正向电压 In 关断电流 V U压上升临界速率 In 电流(任意方 TIL3009 电流(任意方 TIL3011 TIL3012 指	$I_{\rm F} = 10 {\rm mA}$	v		1.2	1.5
I_{DRM}	重复关断电流		$V_{\rm DRM} = 250 \mathrm{V}$,	nA		10	100
dv/dt	- 关断电压上升临界速率	ř.		V/μs		12	
dv/dt(e)	关断电压上升临界速率 转换电压上升临界速率 TIL3009		$I_0 = 15 \text{mA}$,	V/µs		0.15	
	T1L3009		!			15	30
,	输入电流(任意方 TIL3010	TIL3010	i kAdud SE dalla arr			8	15
$J_{\rm FI}$	(何)	TTL3011	│ 输出电源电压 = 3V	mA -		5	10
	[771.3012					5
V _{TM}	接通峰值电压(任意方	间)	$I_{\rm TM} = 100 {\rm mA}$	V		1.8	3
In	维持电流任意方向			$\mu\Lambda$		100	

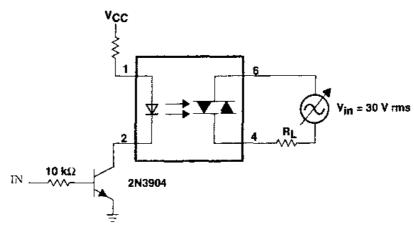


图 4-107(f) 参数测量电路(临界上升速率测量电路)

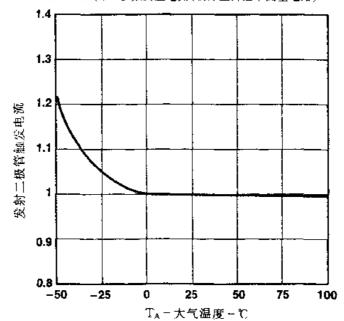


图 4-107(g) 发射二极管触发电流与温度的关系

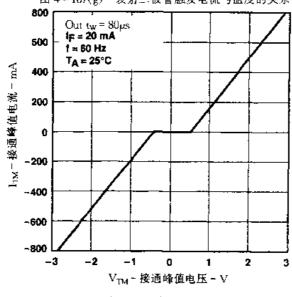


图 4-107(h) 导通特性

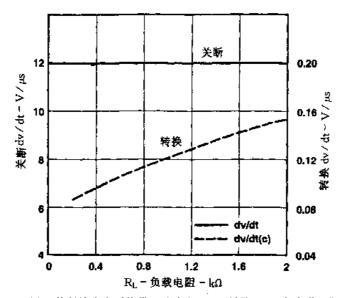


图 4-107(i) 关断输出电压临界上升速率 dv/dt、转换 dv/dt 与负载电阻的关系

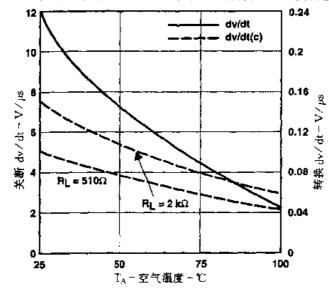


图 4-107(j) 关断输出电压上升速率 dv/dt、转换 dv/dt 与空气温度的关系

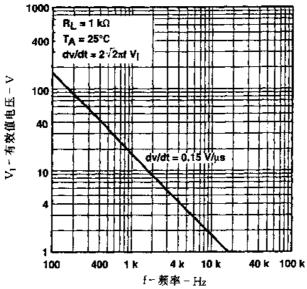


图 4-107(k) 有效值电压与频率的关系

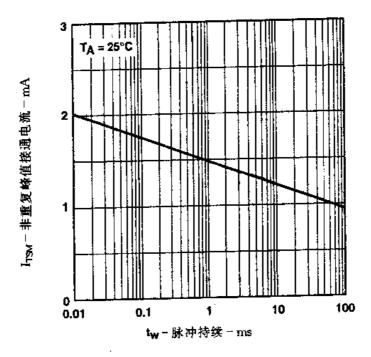
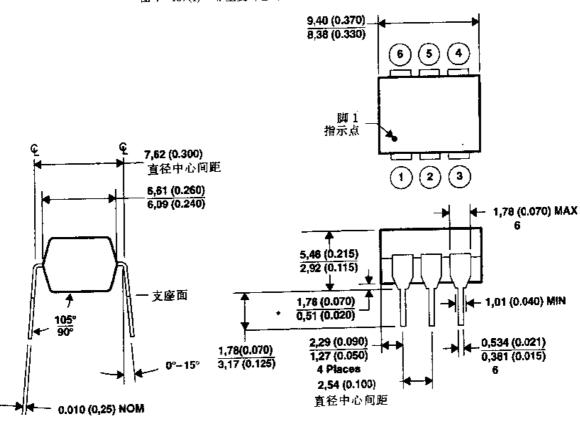



图 4~107(1) 非重复峰值导通电流与脉冲持续时间的关系

注:单位 mm(英寸) 图 4-107(m) 管脚封装尺寸图

· 385 ·

TIL3020~TIL3023型光耦合双向可控硅应用电路

用途:用于光隔离测控电路。

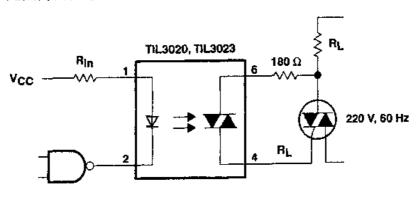


图 4-108(a) 电阻负载电路

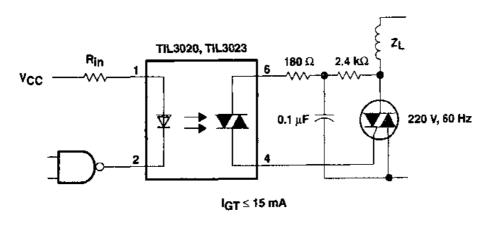


图 4-108(b) 具有灵敏触发栅感性负载的可控硅电路

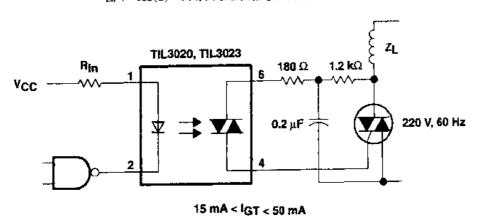


图 4-108(c) 具有不灵敏触发概感性负载的可控硅电路

TIL3020~TIL3023 型光耦合器件由 GaAs 红外发射二极管及硅光电双向可控硅开关组成。6 引脚封装,在高湿度工作环境下器件的工作特性较好。

特点:400V 光双向可控硅驱动输出;高隔离电压:3535V(峰值);输出驱动用于 220VAC。 最大绝对额定值(25℃)

输入对输出的峰值隔离电压(5s 最大持续时间,60Hz)

3.535kV

输入二极管反向电压 3V 输入二极管正向电流,连续 50mA 输出重复峰值关断电压 250V 输出接通电流,总有效值(50~60Hz,正弦波)

 $T_A = 25 \, ^{\circ}\mathrm{C}$ 100 mA $T_{\Lambda} = 70$ °C 50mA

输出驱动非重复峰值接通电流

 $(t_{W} = 10 \text{ms}, 占空比 = 10%)$ 1.2mA

连续功耗(在25℃以下)

红外发射二极管 100mW 光双向可控硅 300mW 器件总功耗 330mW

工作结温 -40 ~ 100℃

存储温度 -40 ~ 150℃

引线焊接温度(离壳体 1.6mm 处,10s) 260℃

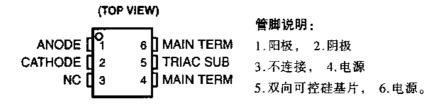


图 4-108(d) 管脚图(顶视)

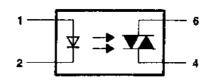


图 4-108(e) 逻辑图

技术参数

符号	参数名称		测试条件	単位	最小	典型	最大
I_{R}	静态反向电流	- -	$V_{\rm R} = 3 { m V}$	μΑ		0.05	100
V_{F}	静态正向电压		$I_{\rm F} = 10 {\rm mA}$	v		1.2	1.5
I_{DRM}	重复关断电流(方向任	(意)	$V_{\text{DRM}} = 250 \text{V},$	nA		10	100
$\mathrm{d} v/\mathrm{d} t$	关断电压上升临界速	率		V/μs		100	
$\mathrm{d}v/\mathrm{d}t(\mathbf{c})$	转换电压上升临界速	率	$I_0 = 15 \text{mA}$,	V/µs		0.15	
		TIL3020		i		15	30
,	输入触发电流(方向	TIL3021	Marilian Marina IT ass		100	8	15
$I_{\rm FT}$	任意)	T1L3022	√ 輸出电源电压 3V	mA.		5	10
,	İ	TIL3023] [3	5
V _{TM}	接通电压峰值(方向任	意)	$I_{\rm TM} = 100 {\rm mA}$	V		1,4	3
I_{H}	维持电流(方向任意)			μA		100	

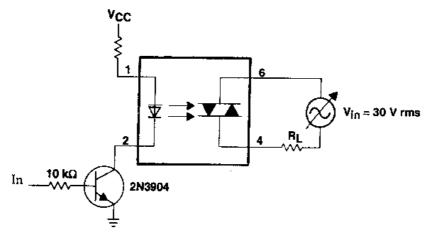


图 4-108(f) 参数测量电路图(临界上升速率测试电路)

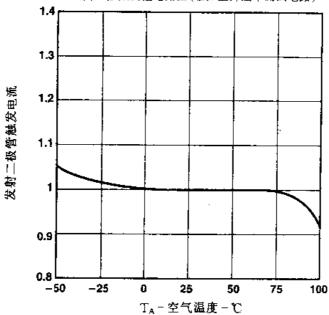


图 4-108(g) 发射二极管触发电流与温度的关系

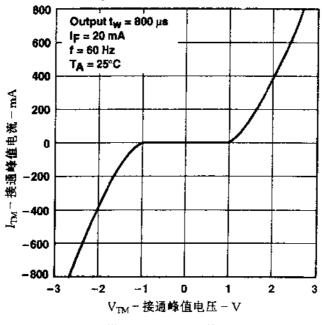


图 4-108(h) 导通特性

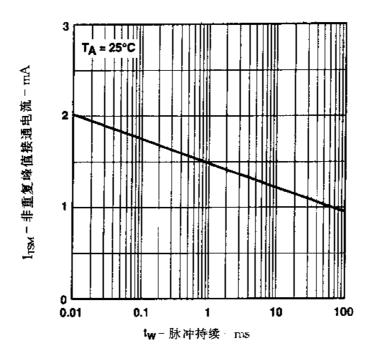
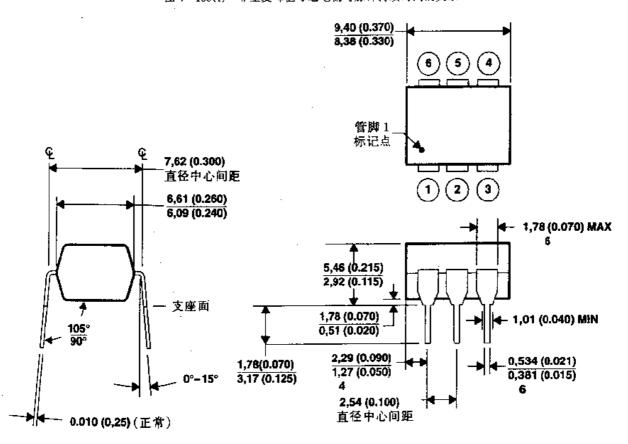



图 4-108(i) 非重复峰值导通电流与脉冲持续时间的关系

注:单位 mm(英寸) 图 4-108(j) 管脚封装尺寸图

光耦合通用电路

光耦合器应用电路

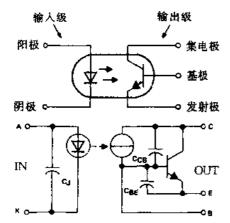
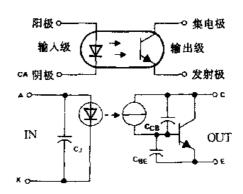



图 4-109 光耦合器 TIL102/TIL103 连接等效电路

电路中的光耦合器由一个 GaAs 红外发射二极管作为输入级,一个硅 n-p-n 光晶体管作为输出级。二极管和传感器之间是一个红外透光玻璃,二极管发射波长约 900mm。传感器光晶体管响应波长约 900mm。在光晶体三极管集电极和基极之间由入射光产生的基极电流与二极管发射光成比例。集电极和基极以及基极和发射极之间的结电容决定输出电流波形的上升和下降时间。

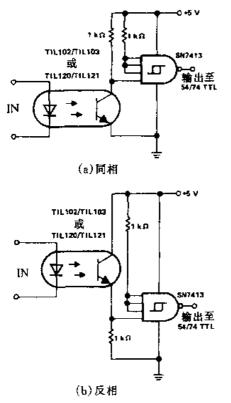


图 4-111 光耦合器驱动 SN7413 电路

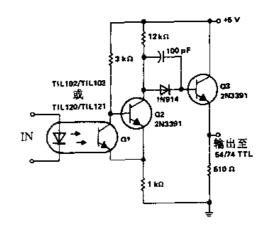
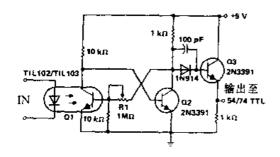
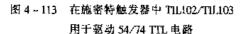




图 4-112 光耦合器与分立元件施密特触发器 用于驱动 54/74 FTL 电路

电路是一个施密特触发器,其输出电平与标准 TTL 器件兼容。

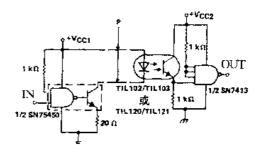


图 4-114 传輸线隔离电路

电路的两个系统之间,用光耦合器使传输线耦合起来,图 8-114表示一个典型的接口系统,通过双绞线耦合 TTL集成电路。SN75450B是一个输入级,驱动传输线和光耦合器的发射二极管。红外发射二极管约 20mA 时接通,在光晶体管最大额定电流以下。在传输线接收端,光晶体管耦合制 SN7413,产生快速脉冲。系统输出为同相脉冲。

电路中的控制级可由分立元件或集成电路组成,输出级由大功率开关器件组成。

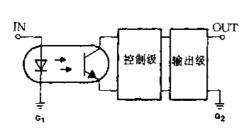


图 4-115 固体继电器电路

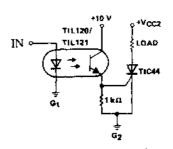


图 4-116 光耦合器用于固体锁定电路

电路中光耦合器的输出用于控制可控硅栅极,可控硅导通后如要关断,必须关断电源 Vero。

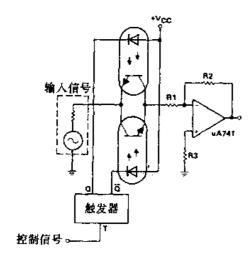


图 4-117 用光耦合器的新波器电路

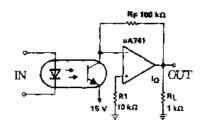


图 4-118 光耦合器用于光脉冲放大器

电路采用光耦合器将开关电路输入信号与开关电路输出信号相互隔离,可降低输出脉冲 尖锋。电路中用两个光耦合器,表示斩波器,输入信号可正也可负。μA741 是运算放大器,增 益为 R2/R1,可提高输出信号的幅度。

电路中的 μA741 是运算放大器,通过反馈电阻 R_p 来控制电路的增益。

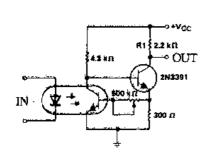


图 4--119 光耦合器用于分立元件脉冲放大器

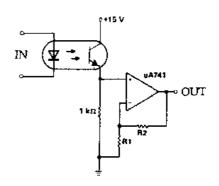



图 4-120 光耦合器用于电压反馈脉冲放大器

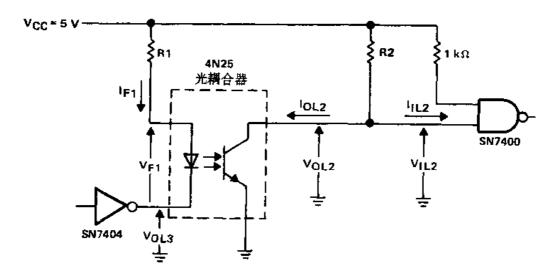
注: Vo12 = 当光耦合器导通时,耦合器输出的低电平电压

 V_{112} = 对门 2 输入的低电平电压

图 4-121 光耦合器用于接口电路

当电路中逻辑电路 1(门 1)的输出是低电平 (V_{OL1}) 时,光耦合器的输出同样是低电平 (V_{OL2}) ,因为 V_{OL2} 输入到逻辑电路 2(门 2),所以它必须小于 V_{IL2} ,为了保持逻辑电路 2 工作在稳态,必须满足以下公式。

V₀₁₂(光耦合器)≤ V_{π2}(最大)(逻辑电路)


其他计算公式如下:

$$I_{\text{OL2}} \geqslant I_{\text{R2}} - I_{\text{II}2}$$

$$R1 = \frac{V_{\text{CC1}} - V_{\text{F1}} - V_{\text{OL1}}}{I_{\text{F1}}}$$

$$R2(最小) = \frac{V_{\text{CC2}}(最大) - V_{\text{OL2}}(最大)}{I_{\text{OL2}}(最大) + I_{\text{IL2}}(最大)}$$

$$R2(最大) = \frac{V_{\text{CC2}}(最小) - V_{\text{IH2}}(最小)}{I_{\text{OH2}}(最大) + I_{\text{IH2}}(最大)}$$

注: V_{012} = 当光耦合器接通时,耦合器输出的低电平 V_{112} = 对 SN7400 输入的低电平电压

图 4-122 光耦合器用于接口电路

74 系列数据表

TTL	V_{IL}	I_{1L}	$V_{ m IH}$	$I_{ m IH}$	V _{OL}	I_{OL}	V_{OH}	Ion
系列	V	mA	V	μ A	v	mA	v	μ A
74	0.8	-1.6	2	40	0.4	16	2.4	- 400
74ALS	0.8	-0.1	2	20	0.5	8	2.4	- 400
74AS	0.8	-0.5	2	20	0.5	20	2.5	- 2000
74LS	0.8	-0.3	2	20	0.5	8	2.7	- 400
74S	0.8	- 2	2	50	0.5	20	2.7	- 1000

计算数值

TTL	4N25	电源电压
$V_{\text{BH}(\text{min})} = 2\text{V}$	$CTR_{(min)} = 20\%$	$V_{\rm CC}$ = 5V ± 5%
$V_{\rm IL(max)} = 0.8 \text{V}$	$V_{\mathrm{F(min)}} = 1.2\mathrm{V}$, $10\mathrm{mA}$	
$I_{\mathrm{BH}(\mathbf{m}_{\mathrm{pax}})} = 40 \mu A$	$V_{\rm F(typ)} = 1.25 \rm V$, $10 \rm mA$	
$I_{\mathrm{IL}(\mathrm{max})} = -1.6\mathrm{mA}$	$V_{\rm F(max)} = 1.5 \text{V}$, 10mA	
$I_{OH(max)} = 400 \mu A$	$I_{\text{OH(max)}} = 50 \text{nA}$	
$V_{OL(typ)} = 0.2V$	$V_{\rm OL(max)} = 0.5 \rm V$	
$V_{OL(max)} = 0.4V$		

TIL601~TIL604, LS600, LS602, LS611~LS619型 N-P-N 面接触硅光晶体管应用电路

图 4 – 126 电路中的输入发射光由 AsGa 红外发射器提供,发射器的上升时间和下降时间 少于 50ns,调节入射发射光使 $I_L=800\mu A$ 。输出波形由示波器监视,示波器的特性: $t_r \leq 25 ns$, $R_{in} \geq 1 M\Omega$, $C_{in} \leq 2 p F$ 。

最大绝对额定值(TA=25℃)

集发电压

50V

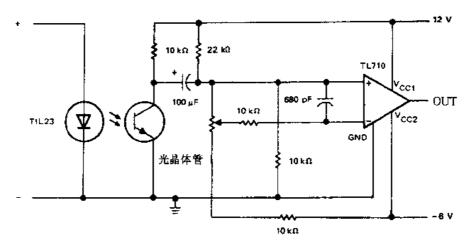


图 4-123 光耦合放大电路

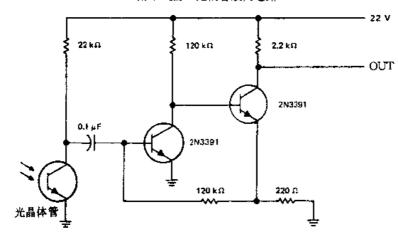


图 4-124 光脉冲检测器

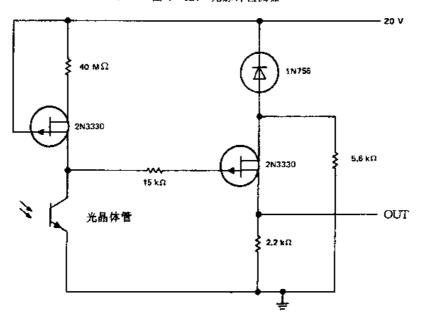


图 4-125 低电平检测器和前置放大器

发集电压 器件连续功耗 工作温度 7V 50mW - 65 ~ 125℃

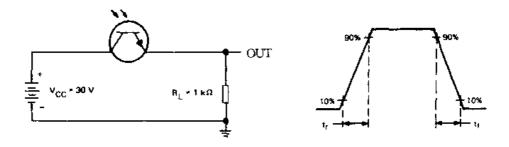


图 4-126 测试电路和电压波形图

存储温度

- 65 ~ 150℃

引线焊接温度(10s)

240℃

技术参数

符号	多 数	单位	測试条件	型号	最小	典型	最大
V _{(BR)(E0}	集发击穿电压	V	$I_{\rm C} = 100 \mu {\rm A}$, $E_{\rm c} = 0$	All	50		•
V _{(BR)ECO}	发集击穿电压	v_	$E = 100 \mu \text{A}, E_{\text{e}} = 0$	All	7		
7	partial and	nA	$V_{CE} = 30 \mathrm{V}, E_a = 0$	All			25_
I _D	日 暗电流	μ A	$V_{\rm CE} = 30 {\rm V}$, $E_{\rm c} = 0$, $T_{\rm C} = 100 {\rm ^{\circ} C}$	All		3	
			i	T(L601	0.5		3
		ļ		TIL602	2		5
				TIL603	4		8
	 		+	TIL604	7		
			J	LS600	0.8		
				18602	0.5		
				LS611	0.5	1	2
$I_{\mathtt{L}}$	光电流	mA	$V_{\rm CE} = 5 \text{V}$, $E_{\rm c} \approx 20 \text{mW/cm}^2$	LS612	_1	2_	3
				LS613	2	3	4
			}	LS614	3	4	5
			•	LS615	4	5	6
		f	(LS616	5	6	7
				LS617	6	7	8
				LS618	7	8	9
				LS619	8	9	
V _{CE(unt)}	集发饱和电压	V	$I_C = 0.4 \text{mA}, E_c = 20 \text{mW/cm}^2$	All		0.15	

开关参数(T_A = 25℃)

符号	参 数	单位	测试条件	典型值
$t_{\rm r}$	上升时间		V = 20V / = 200 A P = 13-0	8
$t_{\rm f}$	下降时间	μs	$V_{cc} = 30 \text{ V}, I_{L} = 800 \mu\text{A}, R_{L} = 1 \text{ k}\Omega$	6

计算数值

SN7400	TIL602	电源电压
$V_{\rm IH(min)} = 2\rm V$	I _D =3μA(暗电流)	$V_{CC} = 5V \pm 5\%$
$V_{\Pi,(\max)} = 0.8 \mathrm{V}$	$I_{\rm OH} = I_{\rm D} + (1 - n/100)I_{\rm OH}$	
$I_{\rm BH(max)} = 40\mu A$	(其中 n = %光间歇)	
$I_{\rm IL(max)} = -1.6 \text{mA}$	$V_{OL(max)} = 0.8 \text{V}$	
$I_{OH(max)} = 40\mu A$	$I_{\mathrm{OL}(\mathrm{min})} = 2\mathrm{m}A$	
$V_{\text{OL}(\text{typ})} = 0.2V$		
$V_{OL(max)} = 0.4V$		

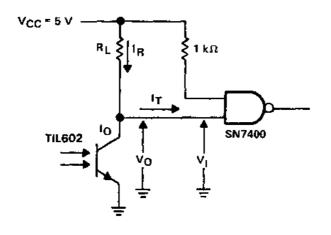


图 4-127 光晶体管用于接口电路

生产厂家:TEXAS INSTRUMENTS(北京办事处)

4.4 红外接收发射电路

BL0509/BL0510 型通用红外遥控接收器电路

用途:用于音响、空调、玩具等各种电气设备的遥控接收。

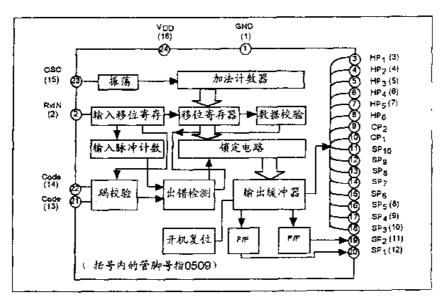
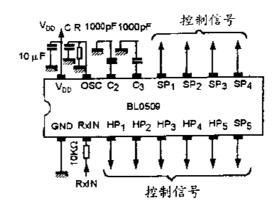
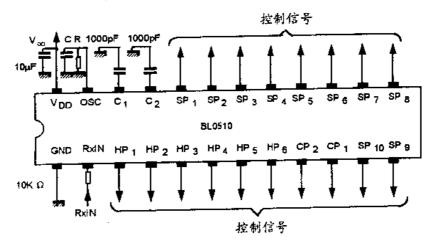



图 4-128 BL0509/BL0510 型电路方块图

BL0509/BL0510 是用于红外线遥控接收器的 CMOS 大规模集成电路,与发射电路 BL9148 相配可组成一个遥控系统。BL0509 是 16 脚双列直插封装,能控制 10 个功能。BL0510 是 24 脚双列直插封装,能控制 18 个功能。除此以外,两块电路的原理和框图完全相同。


特点

高度的抗干扰能力:对日光灯的电子镇流器节能灯光谱和电视机等干扰源,具备高度的抗干扰能力,不会出现误码输出情况。

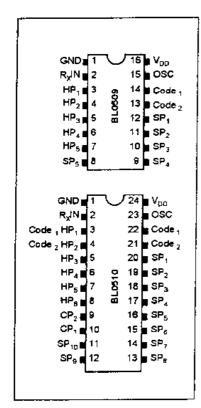
R = 39k, C = 1000pF

图 4-129 BL0509 型应用连接电路

R=39k, C=1000pF

图 4-130 BL0510 型应用连接电路

电路通电复位时,全部输出口无脉冲输出,无误动作。可并行输出多键控制信号(BL0509并行输出5个功能,BL0510能并行输出6个功能)


输出单发脉冲、保持脉冲和周期脉冲(周期脉冲仅限于 BL0510)

外接并联 RC 构成单端振荡器

含用户码检测电路,以鉴别不同机器发送的码,用户码可选择"0,0","0,1","1,0"及"1,1",用户码可以接电容或浮空代表"1"。

管脚说明

管脈	神 号	- 符 号	输入/输出		· 说 明
BL0509	BL0510	का उ	1/0		
1,16	1,24	GND, V_{DD}		地/电源	提供电源
2	2	RxIN	I	接收信号输入	滤除载波的信号从此端输人
3 ~ 7		HP ₁ ~ HP ₅	0	连续信号输出	只要输入相应接收信号,输出一直保持高电平
	3~8	HP ₁ ~ HP ₆			
	9,10	CP ₁ , CP ₂	0	周期信号輸出	输入一次相应接收信号,输出翻转一次
8~12		SP ₁ ~ SP ₅	0	 単发信号输出	输入一次相应接收信号,输出保持约 107ms 高电平
_	11 ~ 20	$SP_1 \sim SP_{10}$, 2214 3 123	
13,14	21,22	CODE	I	码输入	传输码与本端设定的码比较,只有相同,输入才被接收
 15	23	osc	-	振荡	本端到地并联电阻和电容以产生振荡

电路:

接收信号输入电路

由光接收元件接收的信号经放大和检波,去除 38kHz 的载波,然后接到信号输入端。接收信号输入电路内含斯密特触发器,对接收信号进行整形。

振荡电路

发射信号的时间检测和内部工作时钟都由此振荡电路决定。应用 BL0509/BL0510 时,只需简单地在单端振荡端并联 R 和 C 到地,即可产生稳定振荡。

接收信号的检查

(a) 接收数据检查

遥控发射电路 BL9148 发送的信号每组数据为 12 位,每次 发射两组。在检查接受信号时,首先将第一组接收数据寄存到 12 位移位寄存器内。然后将第二组数据与第一组接收数据逐位比较。若相同,则相对应的输出从低电平变为高电平。若不相同,则产生出错信号,立即使系统复位。

(b) 用户码比较

因为发送信号有 C_1 、 C_2 和 C_3 供用户编写的码位信号,所以接收端必须要有相应的码信号与之对应。不同的机器采用

图 4-131 管脚图

不同的编码,以便区分。BL9148 配 BL0509/BL0510 的用户码分别有四种选择。

用户码表

	BL9148 🔁 BL0509		BL9148 fic BL0510			
C _I	C ₂	C ₃	C ₁	C ₂	C ₃	
1	. 0	1	0	ι	1	
1	1	0	1	0	1	
1	1	1	1	1	I	
I	0	0	0	0	1	

注; BL0509/BL0510C 端接电容到地, C设为"1", 接地为"0"。BL0509的 C, 和 BL0510的 C。内部设为"1"。

当发送和接收的用户码互相符合时,电路内部会产生锁定脉冲,以便锁定输入数据和使输出从低电平变为到高电平。如果用户码不符合,则无锁定脉冲产生,输出停留在低电平。

开机初始化

用户码输入端 C_1 、 C_2 (以 BL0510 为例。若是 BL0509 应为 C_2 和 C_3)内部,在开机时必须输出正脉冲以便使系统初始化。为了产生这个初始化信号,必须在未设为"0"的 C_1 和 C_2 端接一个 $0.001\mu F \sim 0.022\mu F$ 的电容,这样可保证在开机瞬间该两端同时为低电平,使电路内部产生初始化脉冲。随后 C_1 和 C_2 停留在设定的电平上。如前所述, C_1 和 C_2 同时设为"0"是不允许的,故两端至少有一端应接电容。

输出脉冲

(a) 单发脉冲 SP₁~SP₁₀

在 12 位接收脉冲经检查正确后,即在相应的输出端产生一个宽约 107ms 的正脉冲。

(b) 连续脉冲 HP1~HP6

当接收到连续发送信号后,在第一个锁定脉冲产生的同时,在相应的输出端产生高电平,直至最后一个锁定脉冲结束以后 160ms 再回复到低电平。而当多键操作时,各相应的 HP端能并行同时输出连续脉冲。

(c) 周期脉冲 CP1、CP2(仅 BL0510)

每接收一次单发信号,相应的 CP 输出电平即翻转一次,该周期脉冲常用于控制电源开关、静噪等场合。

键与码的关系

健 号					数 据	位				功能	بلهد واو مخت
14年 5	Н	S ₁	S ₂	K ₁	K ₂	K ₃	K4	K ₅	K ₆	功 能	輸出端
1	ì	0	0	1	0	0	0	0	0	连续信号	HP ₁
2	1	0	0	0]	0	0	0	0	连续信号	HP ₂
3	1	0	0	0	0	1	0	0	0	连续信号	HР ₃
4	l	0	0	0	0	0	1.	0	0	连续信号	HP ₄
5_	1	0	0	0	0	0	0	1	0	连续信号	HP ₅
6	I	0	0	0	0	0	0	0	1	连续信号	н₽₀
7	0	1	0	1	0	0	0	0	0	单发信号	SP ₁
8	0	1	0	0	1	0	0	0	0	单发信号	SP ₂
9	0	1	0	0	0	ı	0	0	0	单发信号	SP ₃
10	0	1	0	0	0	0	1	0	0	单发信号	SP ₄
11	0	1	0	0	0	0	0	1	0	单发信号	SP ₅
12	O	1	0	0	0	0	0	0	1	単发信号	SP ₆
13	0	0	1	1	0	0	0	0	0	单发信号	SP ₇
14	0	0	ľ	0	1	0	0	0	0	单发信号	SP ₈
15	0	0	l	0	0	1	0	0	0	单发信号	SP ₉
16	0	0	1	0	0	0	1	0	0	单发信号	SP _{i0}
17	0	0	1	0	0	0	0	1	0	周期信号	CP _i
18	О	0	1	0	0	0	0	0	1	周期信号	CP ₂

注:1)键号是指 BL9148 按键号; 2)BL0509 仅具备键号 1~5 和 7~11 的功能。

最大绝对额定值(T_A = 25℃)

参 数	符号	单 位	数 值
电源电压	$V_{ m DD}$	v	6
输人/输出电压	V _{IN} V _{OUT}	V.	$V_{\rm SS} = 0.3 \sim V_{\rm DO} + 0.3$
功耗	P_{D}	mW	200
工作温度	Topr	°C	- 20 ~ 75
存贮温度	T_{Big}	°C	- 55 ~ 125

BL0508 A1 型远红外线遥控发射器电路

用途:用于电视机及电气遥控操作电路。

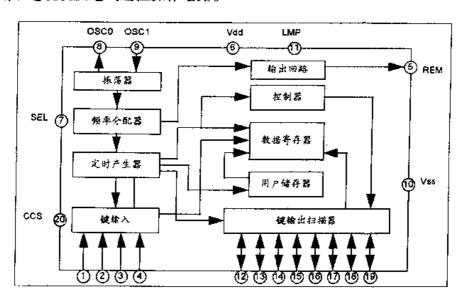


图 4-132 BL0508 A1 型电路方块图

BL0508AI 是一块红外遥控发射大规模集成电路,它具有 32 个单键和 3 个双键操作。此发送码由引导脉冲、16 位用户码、16 位数据码组成,使用微处理器解码,具有广泛的应用领域。(BL0508AI 与 LC7462 兼容)。

特点

低电压工作 V_{DD} : 2.0~3.3V 低功耗 $I_{DD} \leq 1 \mu A$ (等待状态)

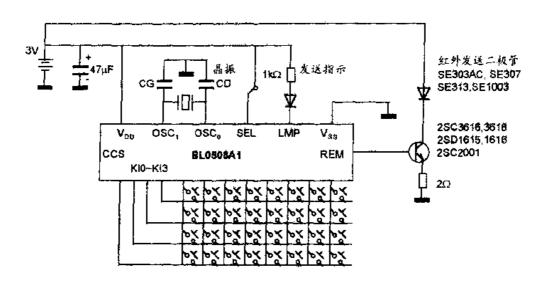


图 4-133 应用电路原理图

抗干扰性强,误码率极低

外围元件少

只需使用 400~500kHz 陶瓷振荡器即可产生振荡, 不需做频率调整。

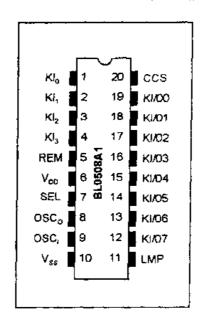


图 4-134 管脚图

管脚说明

编号	符号	输入/输出	说 明			
6,10	V _{DD} , GND	<u>"</u>	电源、地	提供电源		
8.9	0SC 0/I		振荡端	连接晶振器产生振荡信号		
1~4	KI ₀ ~ KI ₃	I	健輸人端	键矩阵输入端		
12 ~ 19	KI/O ₀ - KI/O ₇	νo	键输入/输出端	键矩阵输出端和用户码输入端组成 8×4 的 32 键矩阵		
5	REM	0	輸出端	发送码的输出端		
20	ccs	I	用户码端			
11	l.MP	0	指示端	有輸出信号时,有指示信号		
7	SEL	1	选择键	通过连接至 Vun为"1"		

电路:

振荡器(使用陶瓷谐振器)

	外接电	容(pF)	振荡电压范围(V)		
i _{ye} : ₩	CG	CD	最 小	最大	
CSB455E	220	220	2.0	3.3	
CSB480E	220	220	2.0	3.3	
P46CRK455 - M11	120	300	2.0	3.3	
KBR - 455BILR	220	220	2.0	3.3	

BL0508A1 的谐振回路设计采用 400~500kHz 的陶瓷谐振器,由于在 IC 和陶瓷振荡器间的变化的相互影响有可能引起非正常谐振。请选用附表推荐值工作。在没有键按下时,振荡器将停振,以维持极小的工作电流(≤1µA)。

输出端:REM

输出发送码是由引导码、用户码和数据码三方面组成的。

选择端:SEL

数据码 D₇ 位由这脚控制。

SEL 端接 V_{DD}, D₇ 被设置于"0"

用户码系统端:CCS

CCS 确定内部 C₀C₁C₂ 的码。

CCS连 KI/O	C ₂	C ₁	C ₀
KI/O ₀	0	0	0

CCS 端开路, C₂C₁C₀ 也为 0.0.0。

内部 ROM 内容

ROM3	C_7	C ₆	C ₅	C ₄	C ₃	K1/O ₇	KL/O ₇
ROMO	0	0	I	1	1	No	No

No:不接

ROM2

СО	C1	02	(3	C4	C5	C/6	C7
0	0	0	0	0	0	0	0

指示端:

当 REM 进行发送码时,端出低电位"L"。

发送码

发送码是由引导码、16 位用户码和 16 位数据码组成,16 位用户码由高 8 位用户码和低 8 · 402 ·

位用户码组成,16 位数据码由高 8 位数据码和低 8 位数据码(高 8 位的相反码)组成(详见用户码说明)。这些码一起发送,形成一个出错率极低的系统。

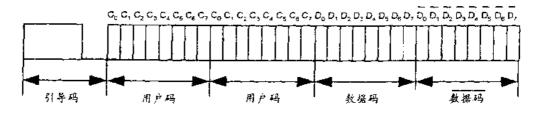


图 4-135 发送码的格式

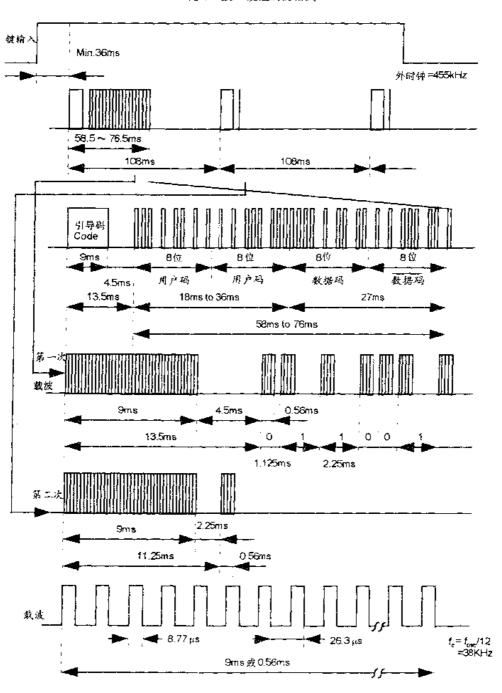


图 4-136(a) 输出波形,单键操作时序图

键数据码(单键)

-		旌	接方式	• •		-			数技	居码			
键	ΚI ₀	KI,		Kl ₃	KI/O	D ₀	D_1	\mathbf{D}_2	D ₃	D ₄	D_5	D_6	D ₇
KI	*					0	0	0	0	0	. 0	0	0
K2		*	 			1	0	0	0	0	0	0	0
K3			*		KI/Q ₀	0	1	0	0	0	0	0	_0
K4				*		1	1	0	0	0	0	0	0
K5	*					0	0	I	0	0	0	0	.0
K6		+	 -	:		1	0	!	O	0	0	0	0
K7			*		K1/O₁	0	1	l	0	0	0	0	0
K8		·-·-		*		1	1	1	0	0	0	0	0
К9	*			1		0	0	0	1	0	0	0	0
K10		*		<u> </u>		1	0	0	1	0	0	00	0
KII		i	. *		K1/O₂	0	1	0	1	0	0	. 0	0
K12				*		1	1	0	1	0	0	0.	0
K13	*					0	0	1	1	0	0	0	0_
K14		*	_~-			1	0	1	. 1	0	0	0	0
K15		<u> </u>	*	 -	K1/O ₃	0	1	ı I	1	0	0	0	0
K16	·			*	<u> </u>	1	ı	ı	1	0	0	0	0
K17	- -	 	!			0	0	0	0	1	0	0	. 0
K18		*	i				0	0	0	1	0	0	0
K19			*	 	KI/04	0	1	0	0	1	0	0	0
K20	<u>-</u>	~	<u> </u>	*		1	1	0	0	1	0	0	0
K21	*					0	0 _	1	0	I	0	0	0
K22		*				1	0	1	0	1	0	0	0
K23			*	1	KI/O ₅	0	J	i	0	1	0	0	0
K24	- -	 		*		1	1	i	0	11	0	0	0
K25	*	i				0	0	0	11	1 ,	0	0	0
K26		*			1	1	0	0	1	1	0	0	0
K27	-	<u> </u>	¥		KI/0 ₆	0	1	0	1	i	0	0	0
K28		 	1	*	1	1	1	0	1	1	0	0	0
K29	*	†		<u>† </u>		0	0	1		1	0	0	0
K30	-	*		1	1 1/1	J.	0	1	1	1	0	0	0
K31	<u> </u>	1	*		KI/O ₇	0	1	1	1	1	0	0	0
K32				*	1	1	1	1	1	1	0	0	. 0

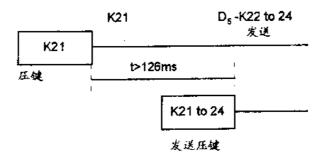
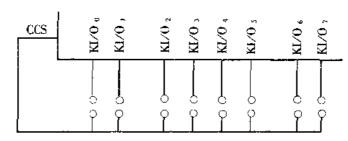


图 4-136(h) 双键操作时序图

数据码(双键)


双语吗(外阴	<i>:)</i>							·-
键	Do	D ₁	D_2	D_3	D_4	D ₅	D ₆	D ₇
K21 + K22		0	1	0	1	1	0	0/1
K21 + K23	<u> </u>	- -	†-··- <u> </u>	0	l	1	0) 0/1
	1	1	1	0		1	0	0/1
K21 + K24	1	: *	! <u> </u>					

用户码说明

由 $KI/O_0 \sim KI/O_5$ 这 6 位是否连接上拉电阻的状况来确定用户码的低 8 位状态,连接为"1",不连接为"0",即如是"1";Cn' = Cn,如是"0"; $Cn' = \overline{Cn}$ 。 $(n = 0 \sim 5)$

C0,	C1'	C2'	C3'	C4'	C5'	C6'	C7'
1/0	1/0	1/0	1/0	1/0	1/0	1/0	1/0
KL∕O ₀	KL/O ₁	KI/Q ₂	KI/O ₃	KI/O ₄	KL/O ₅	KL∕O ₆	KI/07

应用实例

(a) 用户码高 8 位

				,			
C_0	i C _I	C ₂	C _a	C ₄	i C₅	l C	C ₇
	<u> </u>			·		<u> </u>	
0	0	0	1	1	1	0	0

(b) 用户码低 8 位确定码

C ₀ '	C ₁ '	C ₂ '	C ₃ ,	€,	Cs'	C€,	C ₇ ,
0	0	0	0	0	0	0	0

用户码

															
0	0	0_	1	1	1	0_	0	11	1	<u> </u>	0	0	0	ı	1
C ₀	Cı	C ₂	C ₃	C ₄	C ₅	C6	C ₇	Co'	C ₁ ,	C ₂ ,	C3,	C4,	C ₅	C',	C,
			髙	8	位			Ce	C_i	C_2	C_2	C ₄	C ₃	C ₆	\mathbf{C}_{2}

最大绝对额定值

多 数	符号	单 位	数 值
电源电压	$V_{\scriptscriptstyle { m DD}}$	V	6.0
输入电压	$V_{ m IN}$	v	-0.3 ~ V _{DD}
最大功耗	P_{D}	mW	250
工作环境温度	$T_{ m opr}$	°C	- 20 ~ + 75
存贮温度	Tatg	r	- 40 ~ + 125

工作参数

多数	符号	单 位	最 小	典 型	最大
电源电压	V_{DD}	V	2.0	3.0	3.3
振荡频率	$f_{ m osc}$	kHz	400	455	500
輸入电压	$V_{ m IN}$	v	0		V_{DD}
用户码选择上拉电阻	Rup	kΩ	160	200	240

参 数	符号	测试条件	单位	最小	典型	最大
工作电压	v_{DD}		V	2.0	3.0	3.3
工作电流(1)	I_{DDi}	$f_{\rm osc} = 455 {\rm kHz}$	mA		0.1	1.0
工作电流(2)	I_{002}	$f_{\text{core}} = \text{STOP}$	μ A	<u>!</u>		1.0
REM 髙电平輸出电流	$I_{\rm OMI}$	$V_0 = 1.5$ V	mA	-5.0	-8.0	
	I_{OLi}	$V_0 = 0.3V$	μA	15	30	
LMP商电平输出电流	I ₀₅₀₂	$V_0 = 2.7 \text{ V}$	μA	- 15	- 30	
LMP低电平输出电流	I_{0L2}	$V_0 = 0.3 \text{V}$	mA	1 1	1.5	
KI 高电平输入电流	I_{IMI}	$V_{\text{IN}} = 3.0 \text{V}$	μA	10		30
KI低电平输入电流	$I_{0.1}$	$V_{\rm IN} = 0 {\rm V}$	$\mu \mathbf{A}$			-0.2
KI高电平输入电压	V_{00}		V	$0.7V_{DD}$		V _{DD}
KI低电平输入电压	$V_{\mathrm{IL}1}$.5	V	0		$0.3 V_{DD}$
KI/0 高电平输入电压	$V_{\rm DC}$		V	1.3		$V_{ m DD}$
KI/O 低电平输入电压	$V_{\rm fig}$		V	0		0.4
KI/O 高电平输入电流	I_{BB}	$V_{\rm IN} = 3.0 { m V}$	μ A	2		7
KL/O 低电平输入电流	I_{112}	$V_{\rm IN} = 0 \mathrm{V}$	μA			-0.2
KI/O 高电平输出电流	I_{OH3}	$V_0 = 2.5 \mathrm{V}$	mA	1.0		2.5
KI/0 低电平输出电流	I_{013}	$V_0 = 1.7V$	μA	35		100
CCS高电平输入电压	V_{1H3}		V	1.1		
CCS高电平输入电流	J _{THG}	上拉 $V_{\rm IN}$ = 3.0V	μ A	L		0.2
CCS低电平输入电流	$I_{\mathrm{II}3}$	上拉 V _{IN} = 0V	μ A	-3		-3
CCS高电平输入电流	1114	下拉 V _{IN} =3.0V	μA	10		30
CCS低电半输入电流	I_{114}	下校 V _{IN} = 0V	μΑ			-0.2

生产厂家:上海贝岭

GM3043 型 CMOS 遥控红外发射器电路

用途:用于电视、音响、空调、录像、玩具和专用测试设备。

GM3043 型 CMOS 遥控红外发射器

GM3043 是一个 CMOS 集成电路,用于遥控红外发射电路,它可发射 8960 指令[(32 键 + 3) ×

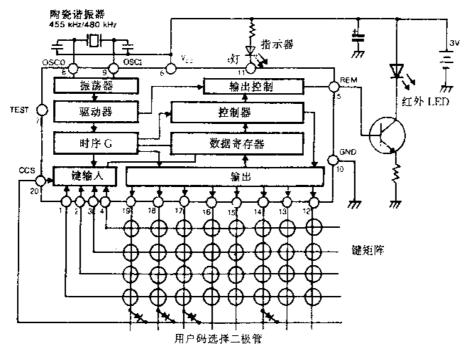


图 4-137 应用电路原理图

256 用户码]。对数字指令,用于16位系统,发射二倍码(第二次反向)用于防止错误工作。

特点: 低电压工作: $V_{DD} = 2.0 \sim 3.0V$;低功耗: $I_{DD} < 1\mu A$ (等待态);32 个功能键,3 个双动作键;256 位用户码,由外部二极管选择;16 位脉冲位置调制码;高效率传输;红外 LED 占空比为 3%;20 引脚 SOP 型封装。

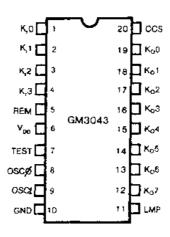


图 4-138 管脚图(顶视)

管脚说明:

编号	名 称	说 叨
1 ~ 4	$K_i 0 \sim K_i 3$	输入键,用下拉电阻到地
5	REM	遥控输出
6	V_{DD}	心电源
7	TEST	测试端
8	osco	振荡输出陶瓷谐振器
9	OSCI	振荡输入(400~500kHz)
10	LMP	灯输出,用于传输指示
11:	GND	地
12 ~ 19	$K_00 \sim K_07$	输出键
20	ccs	用户码输入选择 通过二极管连接输出键(K ₀ 0~K ₀ 7) 通过内电阻,这端电位拉起到 V _{DD} 。

最大绝对额定值(T_A ≈ 25℃)

多 数	单位	符号	数值	参数	单位	符号	最小	典型	最大
电源电压	V	$V_{ m DD}$ – GND	4.0	电源电压	V	$V_{\rm DD}$	2.0	3.0	3.3
输入电压	<u>V</u>	$V_{\rm IN}$ – GND	$-0.3 \sim V_{\rm DD}$	振荡频率	kHz	$f_{\rm OSC}$	400	455	500
输出电流	mA	$I_{\mathrm{OH(REM, IMP)}}$	-15.0	灯输出电流	mA	$I_{\mathrm{OL(1MP)}}$		1	
功耗	mW	$P_{\rm d}$	250						
工作温度		$T_{ m opr}$	- 20 ~ + 75						
存储温度	9 <u>0</u>	T _{sig}	- 40 ~ + 125						

技术参数($T_{\Lambda} = 25\%$, $V_{\rm DD} = 3.0 \mathrm{V}$)

参 数	单位	符号	测试条件	最小	典型	最大
电源电流	mA	$I_{ m DD(OP)}$	$f_{\rm OSC} = 455 \text{kHz}$		0,1	1.0
电源电流	μΑ	$I_{\mathrm{DD}(\mathrm{ST})}$	fosc = 停振]
<u> </u>	V	$V_{\rm IH(KI)}$		$0.7V_{\mathrm{DD}}$		V _{DD}
输入低电量	V	$V_{\rm IL(M)}$		0		$0.3V_{00}$
输入下拉电阻	kΩ	$R_{(KI)}$		150	900	1500
输出电流	m A	I _{OH(REM)}	$V_{\text{OII}(\text{REM})} = 1.5\text{V}$	- 5		
输出低电平	v	V _{OL(LMP)}	$I_{\rm OL} = 1.0 {\rm mA}$			0.3

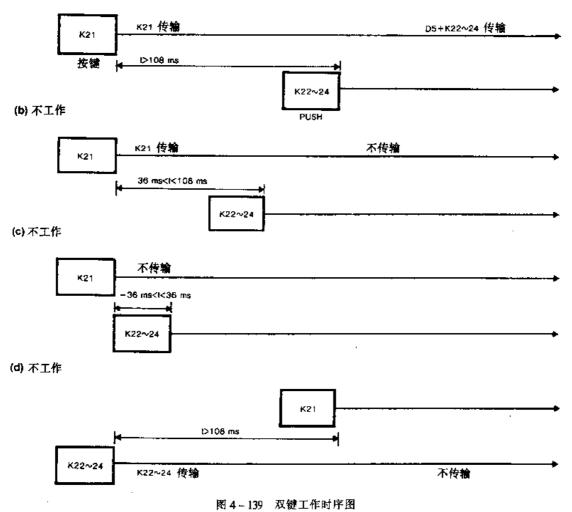
双动作键码

键	DO	DI	D2	D3	D4	D5	D6	D7
K21 + K22	1	0	1	0	1	1	0	0
K21 + K23	0	1	1	0	l	1	0	0
K21 + K24	ı	1	1	0	1	1	0	0

用户码

EX:

D0	DI	D2	D3	D4	D5	D6	D7
1	0	1	0	1	1	0	0


健数据码(单键)

			连	妾					数	据码			
建	K _t O	K _I 1	K _i 2	K ₁ 3	Ko	D0	DI	D2	D3	D4	D5	D6	D7
K1	*					0	0	0	0	0	0	0	0
K2	1	# L	ļ]		1	0	0	0	0	0	0	0
К3			*		K ₀ 0	0	1	0	. 0	0	0	0	0
K4				*		1	1	0	0	0	0	0	0
K5	*					0	0	1	0	0	0	0	0
K 6		*				1	0	1	0	0	0	0	0
K 7			*		K ₀ 1	0	1	1	0	0	0	0	0
K8				*		1	1	1	0	0	0	0	0
К9	*					0	0	0	1	0	0	0	0
K10		*				ı	0	0	1	0	0	0	0
K11			*		K ₀ 2	0	1	0	1	0	0	0	0
K12				*		1	1	0	1	0	0	0	0
K13	*					0	0	1	1	0	0	0	0
K14		*				1	0	i	1	0	0	0	. 0
K15			*		K ₀ 3	0	1	ı	1	0	0	0	0
K16				*		1	1	1	1	0	0	0	0
K17	*			-		0	0	0	0	1	0	0	0
K18	·	*				1	0	0	0	1	0	0	0
K19			*		K ₀ 4	0	1	0	0	1	0	0	0
K20				*		1	1	0	0	1	0	0	0

£14h			连	姜					数	据码			
键	K _I O	K _i l	K _I 2	K ₁ 3	Ko	DO	D1	D2	D3	D4	D5	D6	D7
K21	*					0	0	1	0	1	0	0	0
K22		*			to é	1	0	1	0	1	0	0	0
K23			*		K ₀ 5	0	1	1	0	1	0	0	0
K24				*		1	1	1	0	1	0	0	0
K25	*					0	0	0	1	1	0	0	0
K26		*			** *	ı	0	0	1	1	0	0	0
K27			*		K ₀ 6	0	1	0	ì	1	0	0	0
K28				*		1	1	0	1	1	0	0	0
K29	*					0	0	1	1	1	0	0	0
K30		*				1	0	1	1	1	0	0	0
K31			*		K ₀ 7	0	1	1	1	1	0	0	0
K32				*		1 ;	1	J	1	1	0	0	0

双键工作时序

(a) 工作

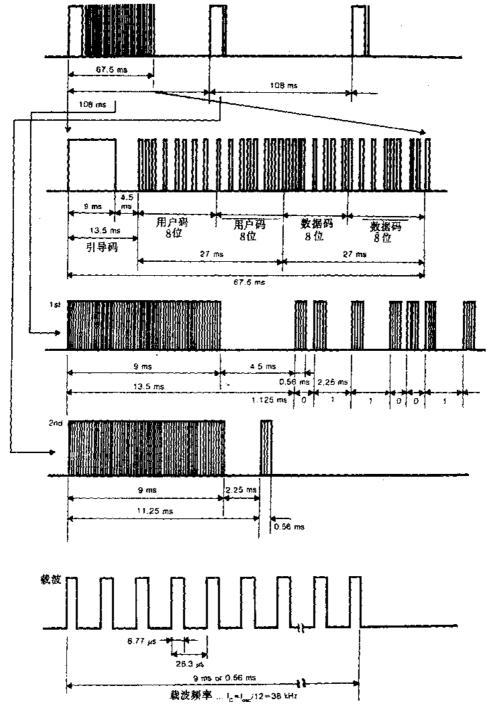


图 4-140 输出波形图

GM3044 型 CMOS 遥控红外发射器电路

用途:用于电视、音响、录像、游戏机和玩具等场合。

GM3044 型 CMOS 遥控红外发射器

GM3044 是 CMOS 电路,用于红外发射器的控制电路。用于数字指令,可用 16 位码系统,

图 4-141 应用电路原理图

发送二倍码(第二次反向),防止误码操作。

特点:低电压工作: $V_{DD} = 2.0 \sim 3.0V$;附有频率选择端;发射极有 LED 驱动器;32 个功能键 $(8 \times 4$ 矩阵);有用户码;16 位脉冲位置调制码;无需用户码选择二极管;20 引脚 SOP 型封装。

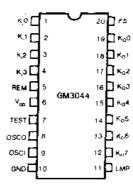


图 4-142 管脚图(顶视)

管脚说明

编号	名称	说
1~4	$K_10 \sim K_13$	输入键,通过下拉电阻到地
5	REM	遥控输出
б	V _{DD}	正电源,2.0~3.0V
7	TEST	通常为高态,上拉电阻到 Vop。为了测试,设置低态
8	osco	振荡输出陶瓷谐振器
9	OSCI	振荡输入(400~500kHz)
10	GND	地
11	LMP	灯输出。用于传输指示。
12~19	$K_00 \sim K_07$	输出键。在按键后 36ms 通过 REM 输出发射
		频率选择。当设置高态,基本频率降低到正常频率的一半。因此,64个功能键有效。当用 32 键
20	FS	型式时,设置低态。

最大绝对额定值($T_A = 25 \, ^{\circ}$)

参,数	单位	符号	数值
电源电压	v	V _{DO} - GND	4.0
功耗	m₩	$P_{\rm d}$	500
工作温度	€	T _{ope}	- 20 ~ + 75
存储温度	%	$T_{ m sig}$	- 40 ~ + 125

技术参数

参 數	单位	符号	测试条件	最小	典型	最大
电源电压	v	V_{DD}		2.0	3.0	3.3
电源电流	mA	I _{DD(OP)}	$f_{OSC} = 455 \text{kHz}$:	0.1	1.0
电源电流	μА	$I_{\mathrm{DD(ST)}}$				1
输人高电平	v	V _{IH(KI)}	1~4端	0.7V _{DD}		V _{DD}
输入低电平	v	V _{IL(KI)}	1~4端	0		0.3V _{DD}
输入下拉电阻	kΩ	$R_{(KI)}$	1~4端	150	900	1500
·····································	mA	I _{OH(REM)}	$V_{OH(REM)} = 1.5V$	6	15	
灯输出电流	mA	I _{OL(LMP)}	$V_{OL(LMP)} = 0.3V$	1	2	_

双动作键码

键	DO	D1	D2	D3	D4	D5	D6	D7
K21 + K22	1	0	1	0	1	1	0	0
K21 + K23	0	. 1	1	0	1	1	0	0
K21 + K24	1	1	1	0	1	1	0	0

用户 ROM 数据码

EX:

CO	C1	C2	C3	C4	C.S	C6	C7
0	1	1	1	0	1	1	0

	E 30X 1//A 1		连扎	 ≹					数排	居 码			
键	K _I O	K _i 1	K ₁ 2	K _t 3	K _o	D0	DI	D2	D3	D4	D5	D6	D7
KI	*					0	0	0	0	0	0	0	0
K2	i	*				1	0	0	0	0	0	0	0
кз			*		K ₀ 0	0	1	0	0	0	0	0	0
K4	-		<u> </u>	*		1	1	0	0	0	0	0	0
V.	*				_	0	0	1	0	0	0	0	0
K5 K6		*				1	0	1	0	0	0	0	0
K7			*		K ₀ 1	0	1	1	0	0	0	0	0
K8				*		1	1	1	0	0	0	0	0
	*			-		0	0	0	1	0	0	0	0
K9 K10	<u>-</u>	*				1	0	0	1	0	0	0	0
K 11			*		K ₀ 2	0	ŀ	0	1	0	0	0	0
K12				*		1	1	0	1	0	0	0	0
V12	*	-				0	0	1	1	0	0	0	0
K13 K14		*			:	1	0	1	1	0	0	0	0
KI5			*	_	K ₀3	0	1	1	1	0	0	0	0
K16				*		1	1	1	1	0	0	0	0
	*					0	0	0	0	1	0	Ç.	0
K17 K18		*		-		1	0	0	0	1	0	0	0
Ki9			*		K₀4	0	1	0	0	1	0	0	0
K20	_			*		1	1	0	0	1	0	0	0
	*	:				0	0	1	0	1	0	0	0
K21 K22	_	*			•	1	0	1	0	1	0	0	0
K23			*	-	K ₀ 5	0	1	1	0	1	0	, 0	0
K24			 -	*	; 	1	1	1	0	1	0	0	0
	*	-	ļ ·-			0	0	0	1	1	0	0	0
K25 K26	-	*	<u> </u>			1	0	0	1	1	0	0	О
K27		-	*	 	K ₀ 6	0	1	0	1	1	0	0	0
K28				*		1	1	0	. 1	1	0	0	0
	*	1	 	 -		0	0	1	1	1	0	0	0
K29 K30	_	*	 			1	0	1	1	1	0	0	0
K31			+	 	K ₀ 7	0	1	1	1	1	0	0	0
K32	-	ļ . 	 	*		1	1	1	1	1	0	0	0

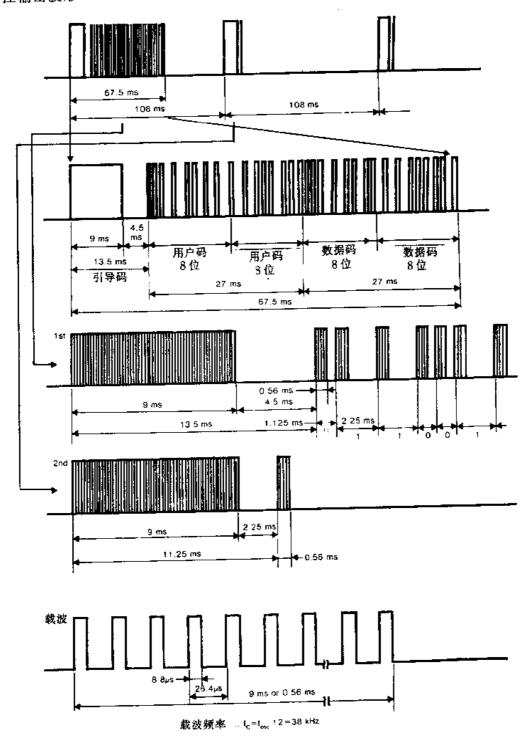


图 4-143 输出波形图

GL3276A 型遥控前置放大器应用电路

用途:用于红外遥控系统接收前置放大,能直接接收光二极管信号。

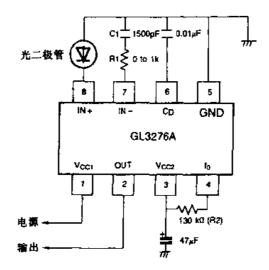


图 4-144 GL3276A 型应用电路

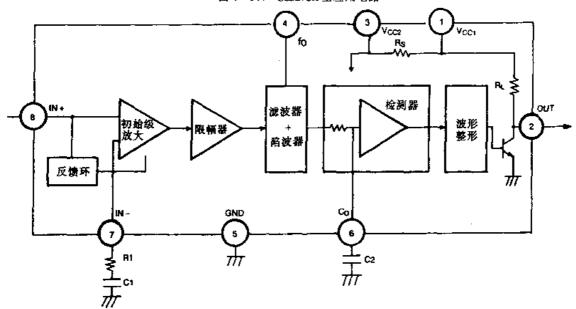
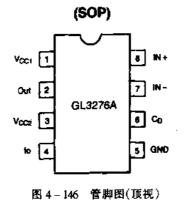



图 4-145 GL3276A 型电路方块图

GL3276A 型双极型模拟集成电路

GL3276A 是一个双极型模拟集成电路。芯片上集成有高增益初始放大器、限幅器、带通滤波器、检测电路和波形整形电路。

特点:内有陷波电路,由高频荧光灯引起的故障机率小;内有带通滤波器,其中心频率可由一个外部电阻改变,f_a=30~80Hz,f_a微调能减少中心频率的变化;外接元件少,内有拉起电阻和电源滤波电阻,外接电容器的容量小;集电极开路输出,有拉起电阻。

管脚说明

编号	名称	说 明
l	V _{CC1}	电源输入,外加 5V 电压到管脚 1
3	Vaz	电源输出,外加 5V 电压通过内电源滤波电阻输出至脚 3
5	GND	地
8	IN+	同相输入
7	IN -	反相输入
4	f_0	带通滤波器頻率设定
6	Co	检测电容
2	OUT	输出

最大绝对额定值(T_A = 25℃)

参数	单位	符号	数值
电源电压	v .	$V_{\rm OC}$	6.0
输出电流	mA	Ioirr	2.5
平均功耗	mW	$P_{ m D}$	270
工作温度	УС	$T_{ m OFR}$	- 20 - + 75
存储温度	°C	$T_{ m STC}$	- 40 ~ + 125

推荐工作条件

参数	单位	符号	最小	典型	最大
电源电压	Y	V _{CC}	4.5	5.0	5.5
输入频率	kHz	$f_{ m IN}$	30	38	80

技术参数(V_{CC} = 5.0V, T_A = 25℃)

参 数	单位	符号	测试条件	最小	典型	最大
电源电流	mA	toc			1.2	2.8
#A 1 141 FF	v	1/	$f_{\rm IN} = 0$ A	2.0	2.5	3.1
输入电压	Y	$V_{ m IN}$	$I_{\rm IN} = -330 \mu A$	0.6	0.8	1.7
电压增益	JID.	4	$f_{\text{IN}} = 38 \text{kHz}$	72	76	80
	dB	Ay	$V_{\rm JN} = 30 \mu V_{\rm P-P}$			
带通滤波器带宽) 11	_	- 3dB 带宽	2.0	2.5	3.0
	kHz	kHz f _{BW}	$V_{\rm IN} = 30 \mu \rm V_{P-P}$			
6A 1997 EL.	1.0	kΩ f _{IN}	f _{IN} = 38kHz 连续波	80	110	160
输人阻抗	K1.1		$V_{\rm IN} = 0.2 V_{\rm P-P}$			
			f _{IN} = 38kHz 脉冲串波	440		770
HA. 114 BJ. 458	ha	tpg/1	$V_{\rm IN} = 500 \mu V_{\rm P-P}$			
輸出脉宽		_	fin = 38kHz 脉冲串波	440		<i>7</i> 70
	μ S	μS t _{PW2}	$V_{\rm IN} = 50 \mathrm{mV_{P-P}}$			
输出低电平	v	$V_{\rm OL}$			0.2	0.4
	v	V_{OH}		4.8	5.0	

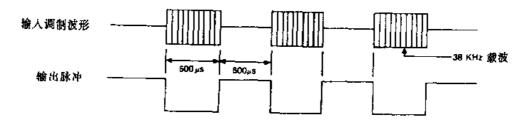



图 4-147 输入/输出波形图

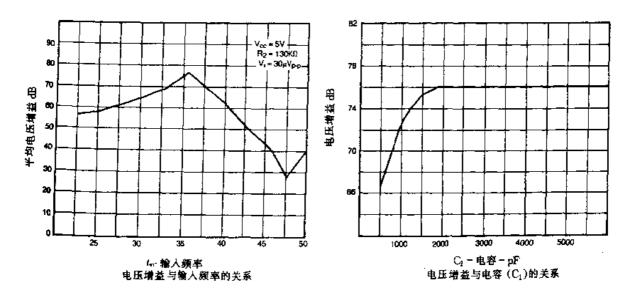
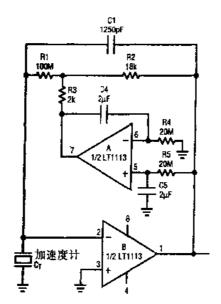


图 4-148 典型特性曲线图


生产厂家:LG Semicon(H.K)Ltd 乐金半导体(香港)有限公司

第五章 其他传感器应用电路

5.1 加速度传感器应用电路

加速度传感器放大电路

用途:用于加速度的计量和测试。

注:输出灵敏度 $0.8\mu V/PC$ 或 8.0mV/C, DC 输出 $\leq 2.7mV$, 1kHz 时的输出噪声电压 = $6\mu V/\sqrt{Hz}$ 图 5-1 DC 伺服加速度放大器

电路中的电荷输出传感器是一个加速度计。因精密加速度计是一个电荷输出器件,利用反相放大转换传感器将电荷转换成一个电压输出,具体说就是利用 C1 将传感器电荷转换成电压;C1 等于传感器电容加上运放的输入电容。噪声增益为 1+C1/CT。放大器的低频带宽取决于 R1 与 C_1 的乘积。

ADXL50 型带有信号调节的单片加速度传感器电路

用途:用于加速度测量、里胎配置和座垫收缩检测、振动分析以及碰撞测量等场合。

ADXL50 是一个单片集成的加速度测量系统电路,他有三个外接电容和一个 5V 电源。加速度测量范围可达 \pm 50g,器件灵敏度由制造工厂调至 19mV/g,满量程输出范围: \pm 0.95V 对应于 \pm 50g 的输入加速度。0g 输出对应于 \pm 1.8V。ADXL50 有一个 0.25V ~ 4.75V 输出的内部缓冲放大器,用于建立 0g 电平。用外接电阻改变输出灵敏度。外接电容可接入电阻网络,起滤

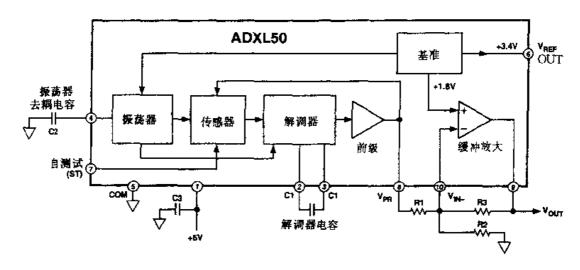


图 5-2 电路功能方块图

波作用。用 5V 电源供电。

特点:单片集成的加速度测量系统;有数字指令自测试功能;频率响应 DC ~ 10kHz;外接无源元件构成后置滤波;可承受的极限加速度为 2000g(不加电);其他有效传感器有 ADXL05 ($\pm 5g$)和 ADXL181($\pm 800g$, $\pm 150g$)。

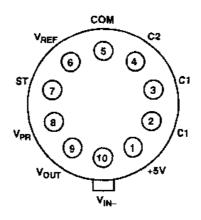


图 5-3 管脚图(顶视)

管脚说明

1.+5V 电源,2.Cl 接解调器电容,标称值为 0.022μ F,3.Cl 接解调器电容,标称值为 0.022μ F,4.C2 外接旁通电容,标称值为 0.022μ F,5.COM 电源公共端,6.V_{REF}内部 3.4V 电压基准,7.ST 数字自测试输入,CMOS 或 TTL 兼容,8.V_{PR}为 ADXL50 前放输出,提供输出 19mV/g,9.V_{OUT}独立缓冲放大器输出, $10.\text{V}_{\text{IN}}$ —独立缓冲放大器反相输入。

电路为 ADXL50 和 AD654 组成的加速度频率变换电路。电路中 3dB 带宽用 R3 和 C5 设置,有 0g 和刻度系数调节电位器。采用的设计公式为:

$$0g$$
 频率 = $\frac{0.25}{R_T C_T}$
刻度系数 $(Hz/g) = \frac{\Delta \,$ 頻率 $}{g} = \frac{19R3}{10000R1 \, R_T C_T}$
 $3dB$ 加速度带宽 $BW = \frac{1}{2\pi R3C5}$
例如:设 $0g$ 频率 = $10kHz$
刻度系数 = $100Hz/g$ $BW = 200 \, Hz$

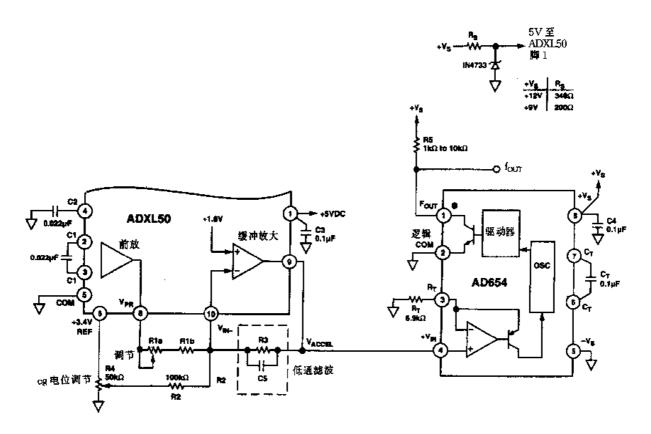


图 5-4 · ADXL50 型 ± 50g 加速度頻率变换电路

50g 引起的频率变化为 50×100Hz = 5kHz

 $f_{OUT}($ X $\dagger \pm 50g) = 10kHz \pm 5kHz$

令 $C_T = 0.01 \mu F$, Og 频率为 10kHz

$$R_{\rm T} = \frac{0.25}{10 \text{kHz} C_{\rm T}} = 2.5 \text{k}\Omega$$

令 $R_3 = 49.9 \text{k}\Omega$,刻度系数 100Hz/g

$$R1 = \frac{19 \text{mV/g} \times R3}{100 \text{Hz/g} \ 10000 R_{\text{T}} C_{\text{T}}} = 52.7 \text{k}\Omega$$

R1 用一个 42.2kΩ 固定电阻和一个 20kΩ 电位器代替,对 200Hz 带宽

$$C5 = \frac{1}{2\pi \ 200 \text{R3}} = 0.016 \mu\text{F}$$

0g 頻率	SF	$C_{\mathbf{T}}$	Rls	R1b	R2	R3
Hz	H₂∕g	$\mu { m F}$	${ m k}\Omega$	$\mathbf{k}\Omega$	${ m k}\Omega$	kΩ
10	10	10	5	12.1	100	2 Μ Ω
100	10	1	10	34.8	100	499
100	100	1	5	12.1	100	2ΜΩ
1000	10	0.1	50	107	100	165
1000	100	0.1	10	34.8	100	499
1000	0001	0.1	5	12.1	100	$2M\Omega$
10,000	10	10.0	500	1 M Ω	100	169
10,000	100	0.01	50	107	100	169
10,000	1000	0.01	10	34.8	100	499
100,000	10	0.001	50	107	100	1.69
100,000	100	0.001	50	107	100	16.9
100,000	1000	0.001	50	107	100	169

电参数($T_A = T_{RA} \sim T_{RX}$, $T_A = 25$ °C适用 J型, $V_S = 5$ V, 加速度 = 0g)

参 数	条件	单位	ADXL50J/A			
		7-12.	最小	典型	最大	
传感器输入 ************************************						
测量范围		£	- 50		+ 50	
非线性	保证满量程直线性,50gFs	%/FS		0.2		
直线误差		(°)		± 1		
横向灵敏度		%	<u>L</u>	± 2		
灵敏度						
在 V _{PR} 初始灵敏度	+25°C	mV/g	16.1	19.0	21.9	
温漂		%/读数	<u> </u>	0.75/1.0		
0g 和偏值电压						
初始失调)在 V _{PR}	v	1.55/1.60	1,80	2.05/2.00	
对温度变化	$V_{\rm S} = 4.75 \text{V} \sim 5.25 \text{V}$	mV	1	± 15/35		
对电源变化		mV/V		10	32	
噪声	4					
噪声电压密度 聯 表 / 1991年 ## 97 \	在Van	mg/√Hz		6.6	12	
噪声(100Hz 带宽) 噪声(10Hz 带宽)	$BW = 10 \text{Hz} \sim 1 \text{kHz}$	mg ma	ļ.	66		
频率响应		mg ms	<u> </u>	20		
州平明 四 - 3dB 帯寛	$C1 = 0.022 \mu \text{F}$	Hz	800	1300		
- 3dB 帯寛	C1 = 0.0068µF	kHz	3007	10		
传感器谐振频率		kHz	Ĺ <u>. </u>	24		
自测试输入						
在 V _{PR} 輸出变化	compliant and the property of the sale	Y	-0.85	-1.00	- 1.15	
逻辑 1 电压 逻辑 0 电压	ST 脚逻辑从 0 至 1 至公共端	V	2.0			
沒得 0 电压 輸入电阻		V			0.8	
+3.4 基准		<u>kΩ</u>	 	.50	.	
輸出电压	· •	v	3.350	3.400	3.450	
輸出温潔	DC , $V_3 = +4.75V \sim 5.25$ 3	_{za} V	3.330	± 10	5.450	
电源抑制比	251113 7 11751 51.25 24	mV/V		1	10	
输出电流		μΑ	500			
前放輸出	·					
电压波动	Mad =3- Arry	v	0.25		$V_S-1.4$	
电流输出	源或沉	μ A	. 30	80		
容性负载驱动	ļ		33			
缓冲放大	 	pF		100		
変件放入 - 輸入失调电压	D %-/ 15 ZS 1 0001/)	_ V		. 10	. 25	
输入 偏置电流	Delta(来至 1.800V)	nA		± 10 5	± 25 20	
开环增益	DC	dB		30 80	20	
增益带寬		kHz	1	200		
输出电压波动	$I_{OUT} = \pm 100 \mu A$	v	0.25		V _S - 0.25	
容性负载驱动		ρF	1000		-	
电源抑制比	$DC, V_S = +4.75V \sim +5.25V$	mV/V		1	10	
电源	;	***			. A	
工作电压 额定电流] ·	V mA	4.75	10	5.25 13	
		4117.7				
工作,了型		ac [0		+ 70	
A型		i i	- 40		+ 85	
用户可要求		\ \c^c \]	- 40 - 40		+ 125	

ADXL05 型带有信号调节 ± 1g 至 ± 5g 的单片加速度传感器电路

用途:用于加速度测量和振动测量。

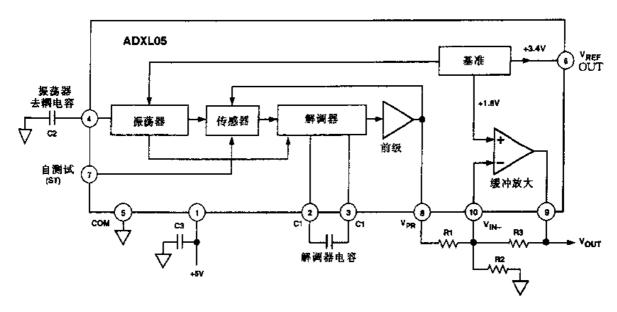


图 5-5 电路功能方块图

ADXL05 是一个单片集成的加速度测量系统电路。测量加速度量程有 $\pm 1 g$ 或 $\pm 5 g$ 。最低噪声是 $500 \mu g$ \sqrt{Hz} 。可测交流加速度(振动型)和直流加速度(初始力或重力)。有三个外接电容。

特点:5×10⁻³g分辨率;输出量程可选:200mV/g~1V/g;用一个单片集成电路构成加速度测量系统;有数字指令自测试功能;单电源+5V工作;极限加速度:1000g。

频率输出的加速度传感器电路

电路为 ADXL05 型加速度传感器,接至 CMOS555 定时器,其输出为频率信号。元件值适用于 \pm 1g 应用范围。加速度传感器脚 8 的输出为 200 $\mathrm{mV/g}$ (标称值),通过调节可达 400 $\mathrm{mV/g}$ g。脚 9 的 0g 偏压电平约 1.8V,电容 C4 和电阻 R3 构成 16Hz 低通滤波器,降低噪声和提高分辨率。

CMOS555 为电压控制振荡器, R5, R6 和 C5 设定为正常工作频率。将 + 1.8V(0g)输入信号加至 555 的脚 5, 适当选择 R5 和 R6, 使占空比约为 50%。为了防止电源变化引起的频率变化, 555 的工作电源采用加速度传感器的 + 3.4V 基准。

电路的输出频率取决于 R5, R6 和 C5 的充电和放电时间。

加速度传感器脚 9 输出刻度系数是 \pm 400mV/g, 因此输出电压将是 \pm 1.8 \pm 0.4V。555 脚 3 输出刻度系数约为 16500Hz \pm 2600Hz/g。

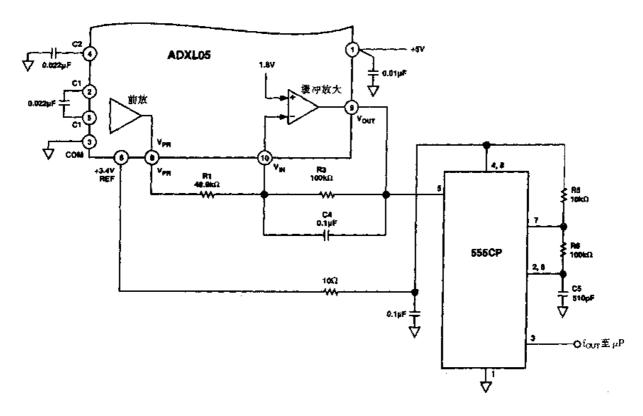


图 5-6 低成本加速度传感器频率输出电路

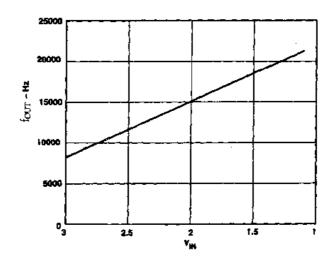


图 5-7 555 V_{IN}输入电压与输出频率的关系

高性能加速度传感器频率变换电路

输入为加速度,输出则为对应的频率。电源电压为 9V 或 12V。ADXL05 将 ± 5g 的加速度直接转换成对应的模拟输出电压;模拟电压又控制 AD654 的输出频率,输出频率信号在 AD654 的脚 1。ADXL05 脚 8 的输出电压在无加速度时是 + 2.5V; 当有加速度时,每个 g(正或负)值电压上下变化 200mV; 脚 9 输出刻度系数是由电阻 R3 和 R1 设置的,电阻 R2 用于改变 0g 输出电平(相对于 + 2.5V,提供最大输出摆动),电容 C5 和电阻 R3 构成低通滤波器,提高电路的信噪比。

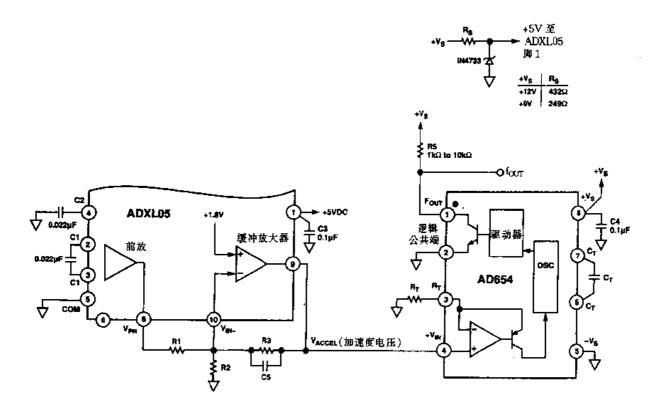


图 5-8 ADXL05 型加速度频率变换电路

设计公式(参考):

SF 刻度系数(Hz/g) =
$$\frac{\Delta$$
 頻率 = $\frac{200R3}{1000R1R_TC_T}$

3dB 加速度带宽 $BW = \frac{1}{2\pi R3C5}$

R2 在 + 2.5V 0g 电位时 = 2.57R3

加速度、频率与元件推荐值

0g 頻率	SF	C_T	Rı	R2	R3
Hz	H2/g	μF	kΩ	kΩ	kΩ
10	10	10	14.7	464	182
100	10	1	40.2	127	49.9
100	100	1	14.7	464	182
1000	10	0.1	133	42.2	16.5
1000	100	0.1	40.2	127	49.9
1000	1000	0.1	14.7	464	182
10,000	10	0.01	1370	43.2	16.9
10,000	100	0.01	137	43.2	16.9
10,000	1000	0.01	40.2	127	49.9
100,000	10	0.001	. 137	0.43	0.169
100,000	100	0.001	137	4.32	1.69
100,000	1000	0.001	137	43.2	16.9

ADXL05 技术参数(T_A = T_{MIN} ~ T_{MAX}, T_A = 25℃, 只适用 J级, V_S = 5V, 加速度 = 0g)

参 数	测试条件	单位	最小	典型	最大
传感器输人					
衡量范围		g	- 5		+ 5
非线性	保证满量程最好线性,5gFS	%FS		0.2	
校直误差	· ·	(°)		± 1	
横向灵敏度		%		± 2	
灵敏度					
初始灵敏度,在 V _{PR}	+ 25℃	mV/g	175	200	225
初始灵敏度,在 V _{out}	$+25\%$, $R_3/R_1=5$	V/g	0.875	1.000	1.125
温漂		10-2/读数		±0.5	
Og 偏值电压	在 V _{PR}				
[「] 初始偏置		V	1.50	1.80	2.10
对温度变化		mV		$\pm 25/40$	
对电源变化	$V_{\rm S} = 4.75 \sim 5.25 \rm V$	mV/V	·	10	32
噪声特性					
噪声电压密度	在 V _{PR}	μg∕√Hz		500	1000
在 100Hz 带宽噪声	$BW = 4Hz \sim 1 \text{kHz}$	mg mms		5	
在 10Hz 带宽噪声		mg mms		1.6	
·····································					
3dB 带宽	$C_1 = 0.022 \mu F$	Hz	1000	1600	
3dB 带宽	$C_1 = 0.010 \mu F$	\mathbf{kHz}		4	
传感器谐振频率		kHz		12	
自測试輸入		•			
输出变化,在 V _{PR}	ST 脚从逻辑"0"到"1"	v	- 0.85	- 1.00	- 1.15
逻辑"1"电压	2144700244 0 21 1	v	2.0		
逻辑"0"电压		V			0.8
输入阻抗	至公共端	kΩ		50	
+3.4V 基准					
输出电压		V	3.350	3.400	3.450
输出温漂	DC, $V_S = 4.75 \sim 5.25 \text{V}$	mV		± 5	
电源抑制比		mV/V		1	10
输出电流	源	μ A	500		
价放输出					7/ 1
电压摆幅	源和沉	V	0.25	**	$V_{\rm S} - 1.4$
电流输出	MAN THE U.S.	μ A	30	80	
容性负载驱动		pF		100	
爱冲放大器					
输入失调电压	标称 1.800V 的 Δ	\mathbf{mV}		± 10	± 25
输入偏置电流		nA		5	20
开环增益	DC	dB		80	
单位增益带宽		kHz		200	
输出电压摆幅	$I_{OUT} = \pm 100 \mu A$	V	0.25	•	$V_{\rm S} - 0.2$
容性负载驱动	- -	pF	1000		
电源抑制比	DC, $V_{\rm S} = 4.75 \sim 5.25 \rm V$	mV/V		1	10
- 源					
工作电压范围		v	4.75		5.25
静态电流		mA		8.0	10.0
<u></u>					
工作温度,」		°C	0		70
规定特性,A		ૡૻ	- 40		85
军用品		č	- 40		125
平 // 中//			- 40		

生产厂家: ANALOG DEVICES

NAH 系列小型封装固态加速度传感器应用电路

用途:汽车系统:灵巧万向节,冲撞传感器 ABS 与气包系统 机床的振动监测 生活消费品

地震监测 生物医学仪器 计算机外围设备 军事武器与装备

特点:量程 ± 2g; ± 50g

固态,可靠性高

成本低,体积小

先进的硅片微细加工悬臂梁设计

输入 2.0mA 电流时,输出信号可达 60mVFSO

集成微细加工使得抗冲击性能优良,可达 2000g

集成化空气阻尼没有流体阻尼的高温敏感性

温度补偿从0到+70℃

谐振频率大于 500Hz(2g),2500Hz(50g)

横轴灵敏度 < 3% FSO

非线性度 < 0.25% FSO(典型值)

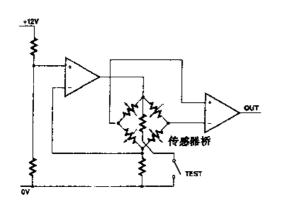


图 5-9 ±2g和±50g电路

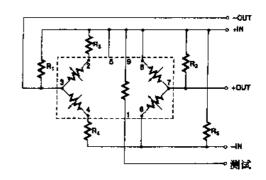
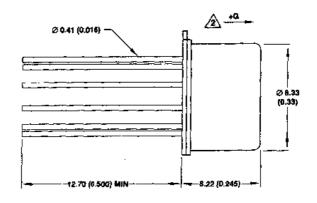


图 5 + 10 ± 50g 自测试电路


- 注:1, 测试电压相对+输入, 都必须为负;
 - 2. 测试端拉到 0V 以给电桥供电。为了高精度,读数应保持 20~500 毫秒;
 - 3. 只有±50g量程才能提供自测试;使用±2g时,1、9脚不连接。

Lucas Nova 传感器 NAH 系列压阻加速度计装在一个标准的 TO - 5 封装内,以适合于安装在印刷线路板上。它是由一个单独的、微小的悬臂梁式芯片组成,此芯片产生与加速度成正比的毫伏电平输出。 ± 50gNAH 系列加速度计具有自测试特点。跟所有的 Lucas Nova 传感器公司的硅传感器一样,NAH 系列加速度计采用 SenStableTM加工技术,提供优良的稳定输出。还采用了三维的刻蚀和硅熔融粘合晶片技术,以形成机械、化学、电气和温度特性互相匹配的小型加速度计芯片。

集成化的空气阻尼和在三根轴线方向上都可达到 2000g 的超量程保护,使得这种小型加速度计适合于很宽范围的运动和振动检测。极小的尺寸、高可靠性和坚固度使 OEM 用户能以较低的成本获得优越的性能。

对于每一个传感器都提供了特定的阻值,起零位和温度补偿作用,用户可以配备信号调节 电路以放大输出信号。

注:单位 mm(英寸)

注:1. 尺寸单位 mm(英寸)

2. 在此方向上的加速度产生正的输出。

图 5-11 封装结构图

技术参数

基本参数			备注
加速度范围	g	±2	0 ± 2g
	g	± 50	0 ± 50 g
加速度极限	g	2000	任何方向
电参数 除非另有说明,均在 25%	C下,2mA 电流	<u>.</u> .	
輸入电流	mA	2.0	最大 3.0mA
输入阻抗	Ω	1300	± 25%
繪出阻抗	Ω	2000	± 25%
电桥阻抗	Ω	2000	± 25%
环境条件			
温度范围;工作温度〈7〉	C	- 40 ~ + 100	
补偿温度	%	0 ~ + 70	
机械性能			
<u> </u>		1	_
机械性能 1	0 脚 TO - 5 封装,柯伐镍基	合金涂合层	

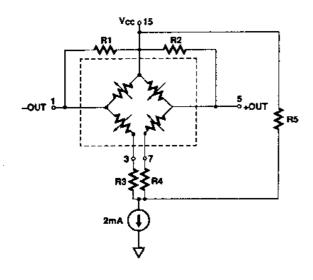
性能(2)	经补偿过的参数(1)							
<u> </u>	I		2g		T	±.	50g	
多数	单位	最小	典型	最大	最小	典型	最大	备注
零位加速度输出	mV	- 2	± 1	2	-2	± 1	2	,
灵敏度	mV/g	4	6	8	0.5	0.8	1.2	3
非线性度	%FSO	-0.5	± 0.25	0.5	-0.5	± 0.25	0.5	4
頻率响应	Hz		0 ~ 200			0 ~ 1000		
固定的谐振频率(未经阻尼)	Hz		550			2500		1
组尼比	1	0.4	0.7	1.0	0.4	0.7	1.0	1
横轴灵敏度	%FSO	~ 3	± 1	3	- 3	±i	3	}
零位的温度精度	%FSO		± 2		1	± 2		
FSO 的温度精度	%FSO		±2			± 2		
迟滞	%FSO	-0.5	±0.1	0.5	-0.5	±0.1	0.5	· ·
版 劲检波	mg/g^2		±1.5		Į	± 0.15		5
零位的短期稳定性	μ V /V		± 5		j] ±5		6
自測试輸出	g				4	5	6	8

- 注:1. 下列所有数值都是补偿过的电桥电路的参数
 - 2. 除非另有说明,全部测试在 25℃下,2mA 恒定电流;
 - 3. 正加速度给出正电压, 负加速度给出负电压;
 - 4. 最佳拟合直线;

- 5. 在恒定的交变振动下,零位偏移;
- 6. 正常的零位/电桥电压---100 小时;
- 7. 超出补偿范围,性能有所下降;
- 8. 以 5VDC 电压激励。

NAC 系列硅加速度传感器(陶瓷封装)应用电路

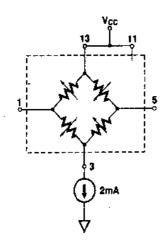
用途:汽车


生活器具

地震监察

医疗仪器

计算机外围设备


军事武器与核反应

注:1.15 脚接到芯片底部

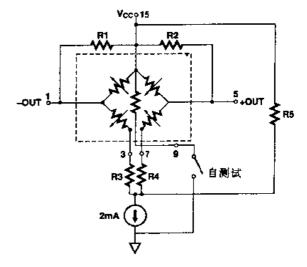
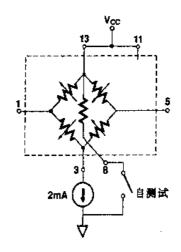

2. R1~ R3值随传感器提供

图 5-12 NAC-103 电路

注:1.13 脚连接到芯片底部


2.11 脚与 13 脚必须由用户短接在一起 图 5-14 NAC-101 电路

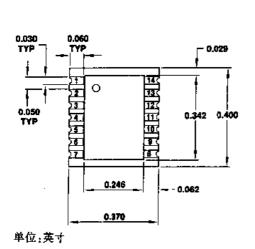
注:1.15 脚接到芯片底部

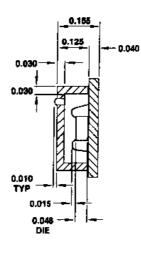
- 2.R₁~R₅值随传感器提供
- 3. 在合上自测试开关 50 毫秒后,输出读数。

图 5-13 NAC-206 具有自测试的电路

注:1.13 脚连接到芯片底部

- 2.11 脚与 13 脚必须由用户短接在一起
- 3. 闭合自测试开关 50 毫秒后,输出读数。

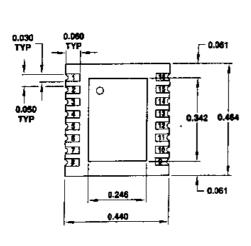

图 5-15 NAC-201 具有自测试的电路

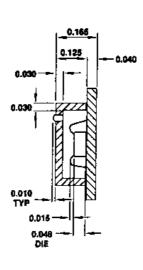

特点:尺寸小、耗电少

量程: ±2g与±50g

电性能跟 NAH 系列加速度计相同:

- ---非线性度 < 0.25% FSO(典型值)
- ——横轴灵敏度 <3%FSO(最大值)
- ±50g 器件具有自测试特性, ±2g 电压 5V_{DC}, ±50g 电压 12V_{DC}
- 工作电流 2.0mA 时,输出信号可达 60mVFSO
- 集成化的零点与温度补偿,从-30~+85℃
- 三根轴线方向上的最大加速度极限值为 2000g




管脚说明

脚号	功能
1	负輸出
2	NC
3	负电源 B
4	NÇ
5	正输出
6	NC
7	NC
8	自拠试(C)
9	NC
10	NC
11	电源
12	NC
13	电源
14	NC

注:1. 所有尺寸单位为英寸 2.NAC - 103 的第 8 脚不连接。

图 5-16 NAC-103, -206 封装结构图

注:1. 所有尺寸单位为英寸
2.NAC-101 的第 9 脚不连接
图 5-17 NAC-101/-201 封装结构图

管脚说明

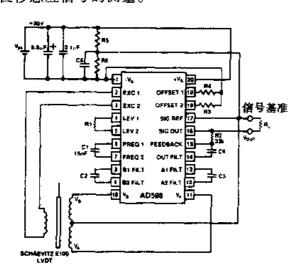
_
:

技术参数

-般特性:			
参数	单位	数值	备 注
加速度 NCA - 101, - 103	g	± 2	0 ± 2g
范围 NAC - 201, - 206	g	± 50	$0 \pm 50 g$
加速度极限	g	2000	任何方向上
电参数 除非另有说明,测试条件:	输人 2mA,25℃		
輸入电流	mA	2.0	最大 3.0mA
輸入阻抗 NAC 101 , 103	Ω	2000	± 25%
输入阻抗 NAC – 201, – 206	Ω	1300	± 25%
輸出阻抗	Ω	2000	± 25%
电桥阻抗	Ω	2000	± 25%
环境条件			
温度范围	_		
工作温度〈9〉	C	−40 ~ + 100	
补偿温度	%C	- 30 ~ + 85	

技术参数

性能(i)		±	20g			± :	50g	
参数	单位	最小	典型	- 最大	最小	典型	最大	备注
加速度零位输出								
NAC - 101, -201	mV	- 40	0	40	-40	0	40	
NAC - 103, - 206	mV	- 2	±1	2	- 2	±1	2	
满量程输出	-						l	ĺ
NAC - 101, -201	mV ,	12	20	28	50	75	100	ĺ
NAC - 103, - 206	μV	8	12	16	30	45	60	
非线性	% FSO	-0.5	± 0.25	0.5	-0.5	±0.25	0.5	
频率响应	Hz	200	į ,		500			
传感器的固有频率		400	600		1000	1500		
阻尼比		0.4	0.7	1.0	0.4	0.7	1.0	İ
振动调整	mg/g²		±1.5		i 	±1.5		(2)
横轴灵敏度	%FSO	- 3	±l	3	- 3	±1	3	(3)
零位的热精度	[
NAC - 101, -201	%FS0		± 3			±3		(4)
NAC = 103, -206	%FSO	- 4	!	4	- 4	,	4	(5)
满量程的热精度	ı				1			
NAC - 01, - 201	%FSO	-	±1		Į	± 1		(4)
NAC - 103,206	%FSO	-4		4	-4		4	(5)
热迟滞	%FSO		±0.5		•	±0.5		(6)
白测试输出	9	_	_	_	4	5	6	(7)
零位的短期稳定性]		! !					
NAC - 101, - 201	μV		± 20			± 20		(8)
NAC - 103, - 206	μV		± 15			± 15		(8)


- 注:1. 除非另有说明,所有量值都是在 25℃和 2mA 恒定输入电流下测得;
 - 2. 在恒定的交变振荡下的零位偏移;
 - 3. 当以规定的角度 9.7°安装时;
 - 4. 取决于补偿的方法,当使用所提供的电阻值并采用恒流供电时,热精度相当于 NAC 103 与 NAC 206 系列加速度计;
 - 5. 在 30℃至 + 85℃之间(以 25℃为基准);
 - 6.-30℃至+85℃;
 - 7. 以 5V_{DC}恒压供电;
 - 8. 标称零点/桥压;--100 小时;

生产厂家: Lucas Nova - Sensor 公司 康宇測控仪器仪表工程公司

5.2 线性变换位移传感器(LVDT)和倾角传感器应用电路

AD598 型 LVDT 信号调节器应用电路

用途:用于差动测量系统,如测量物体厚度,利用两个 LVDT 和一个 AD598 组成测量系统。 为了测量一个平面上各点的变形或相邻物体距离而采用的多路测量系统。适用于线位移和角位移感应信号的测量。

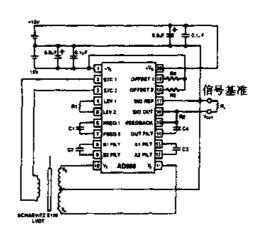


图 5-18 单电源供电时的接线图

图 5-19 双电源供电时的接线图

在图 8-18 和图 8-19 中, Schaevitz E100 LVDT 是一种线位移差动变压器, 其输出电压的幅值与机械位移成线性关系。根据作用原理, 线位移传感器可分为电感式、电阻式、电容式和压电晶体式, 这里示出的是电感式线位移传感器。

AD598 在使用过程中有关参数的选择与注意事项:

双电源工作方式(图 8-18)

- 1. 首先要确定 LVDT 位置测量系统所要求的机械频带 f_{SYS} ,例如: $f_{\text{SYS}} = 150 \text{Hz}_{\text{c}}$
- 2. 选择 LVDT 的最低激磁频率 f_{EXC} 。一般选择 f_{SYS} 的 10 倍频作为激磁频率,即 f_{EXC} = $10f_{\text{SYS}}$ 。这里激磁频率 f_{EXE} = $250\text{Hz} \times 10$ = 2.5kHz。
- 3. 根据 2.5kHz 激磁频率再来选择合适的 LVDT。例如, Schaevitz E100 LVDT 的激磁频率范围为 50Hz 到 10kHz, 对本例来讲非常合适。
- 4. 确定 LVDT 次级电压 V_A 和 V_B 之和。根据生产厂家提供的产品说明(E100 是 3 V_{ms})按照典型驱动水平 V_{PRI} 激励 LVDT,将铁芯移动到中心位置时,理论上 $V_A = V_B$ 。实际上 $V_A \neq V_B$,存在一定误差。测量 V_A 、 V_B 的电压,并且计算 V_A 和 V_B 的和。对于 E100 来讲, V_A + V_B = 2.70V,根据这个结果就可以确定 AD598 的输出电压。
- 5. 确定 LVDT 激磁电压的最佳值 $V_{\rm EXC}$ 。给 LVDT 加上激磁电压 $V_{\rm PRI}$ 后,将铁芯移动到机械的满量程位置,并且测出次级的最大输出电压 $V_{\rm SEC}$ 。然后计算 LVDT 的电压变比 VTR:

$$VTR = V_{PR1} = V_{SEC}$$

.

对于 E100 来讲, $V_{\rm SEC}=1.71{\rm Vrms}$, $V_{\rm PRI}=3{\rm Vrms}$,选取 $V_{\rm SEC}=3{\rm Vrms}$,这样就确定了 LVDT 的激磁电压最佳值 $V_{\rm SEC}$:

$$V_{\rm SEC} = {
m VTR} imes V_{
m SEC}$$

 $V_{
m SEC} = {
m VTR} imes V_{
m SEC} = 1.75 imes 3 = 5.25 {
m Vrms}$

进一步校验电源电压,并且要求电压 V_A 和 V_B 的峰值电压至少要比电源电压 + V_S 和 - V_S 分别小 2.5 V_S 。

6. 根据激励电压幅度与 R1的关系来确定 R1。

选择 $C1 = 35\mu F \cdot Hz/f_{EXC}$

$$C2 = C3 = C4 = 10^{-4} \text{FHz}/f_{\text{SYS}}$$

如 $f_{SYS} = 250$ Hz

$$C2 = C3 = C4 = 0.4 \mu F$$

$$R2 = \frac{V_{\text{OUT}}(V_{\text{A}} + V_{\text{B}})}{S \times V_{\text{PRI}} \times d \times 500 \mu \text{A}}$$

式中 d 为满量程时的铁芯位移 V_{PRI} 为初级线圈的驱动电压 S 是 LVDT 的灵敏度 R 3和 R 4选择如下:

$$V_{\text{OS}} = 1.2\text{V} \times R \ 2 \times (\frac{1}{R3 + 5\text{k}\Omega} - \frac{1}{R4 + 5\text{k}\Omega})$$

令 R4 开路(R→∞)即可求出 R3,同样可求出 R4。

7. 单电源供电方式(图 5-18)

根据图 5-19 可取:

 $R5 + R6 \le V_{PS}/100\mu A$

 V_{PS} 是电源电压,单位为 V_{o}

 $R6 \times 100 \mu A = V_{REF}$

V_{REF}是基准电压

求出 R6,再估算 R5

C5-般取值为 0.1~1.0 µF

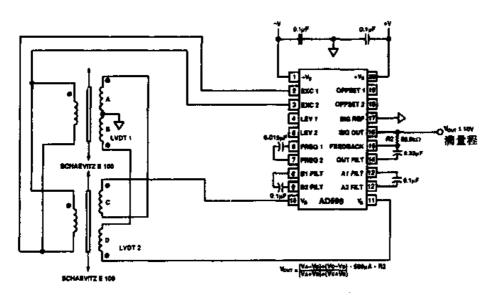


图 5-20 差动测量系统接线原理图

电路为线位移差动变压器(LVDT)用于位置测量系统的原理图。为了测量物体厚度,利用两

个 LVDT 和一个 AD598 组成一个差动测量系统,系统能精确地测出 LVDT 触点所经过的距离。

电路满量程时的输出电压 $V_{\text{OUT}} = \pm 10V$,它是两个独立的 LVDT 信号(每个 LVDT 波动为 $\pm 5V$)之和,输出电压的摆幅取决于电阻 R2。

$$V_{\rm OUT} \approx (\frac{V_{\rm A} - V_{\rm B}}{V_{\rm A} + V_{\rm B}} + \frac{V_{\rm C} - V_{\rm D}}{V_{\rm C} + V_{\rm D}}) \times R2 \times 500 \mu {\rm A}$$

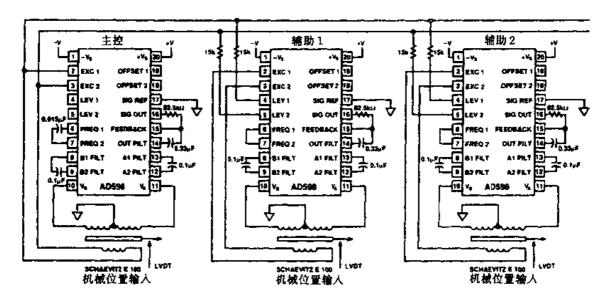


图 5-21 多 LVDT 测量系统接线原理图

多路 LVDT 系统工作时,如果 LVDT 激励信号的频率相同,就避免了分布磁场的耦合问题。 主 AD598 的振荡器输出信号的频率和幅度由 R1 和 C1 决定。引脚 4 和 5 分别通过 15kΩ 电阻 与主 AD598 的引脚 2 和 3 对应相连,这样所有辅助 AD598 的激励信号幅度与主 AD598 相同。

编号	符号	说明	编号	符号	说明
1	- V _s	电源	11	V _A	次级电压
2	EXC1	激励 1	12	A2FILT	A2 滤波
3	EXC2	激励 2	13	ALFILT	AI 滤波
4	LEV1	电位1	14	OUT TILT	输出滤波
5	LEV2	电位2	15	FEEDBACK	反馈
6	FREQI	頻率1	16	SIG OUT	信号输出
7	FREQ2	频率2	17	SIG REF	信号基准
8	B1 FILT	B1 滤波	18	OFFSET2	失调调节2
9	B2 FILT	B2 滤波	19	OFFSET1	· 失调调节 1
10	V _R	次级电压	20	+ Vs	电源

AD598 管脚说明

AD598型 LVDT 信号调节电路

AD598 是一个单片线位移差动变压器(LVDT)信号调节子系统。AD598 与 LVDT 配合,将 LVDT 的机械位移转换成单极性或双极性输出的高精度直流电压。器件增加几个外接无源元件。就能设定频率和增益。在芯片内部,AD598 将 LVDT 处理的次级输出信号按比例转换成直流信号。AD598 还可用于旋转差动变压器(RLVDT)。

AD598 内有一个驱动 LVDT 初级的低失真正弦波振荡器。LVDT 次级输出由两个正弦波组成,用它直接驱动 AD598。AD598 的除法器将来自 LVDT 次级的两个信号差除以这两个信号和。

主要特点:

- 1.AD598 只要求几个外接无源元件,不要调节。就可解决线性差动变压器(LVDT)和旋转差动变压器(RLVDT)的信号调节。
- 2.AD598 适用于许多不同类型的 LVDT。AD598 具有 $24V_{ms}$ 电压驱动 LVDT 初级,接收 LVDT 的次级输入电压可低于 $100mV_{ms}$ 。
- 3. 外接电容决定 LVDT 的激励频率范围 20Hz~20kHz。AD598 的输入信号不需要与 LVDT 初级的驱动信号同步。这表示利用外初级激励信号也能工作,如用 400Hz 电源。
 - 4.AD598 采用比率译码线路,这样初级对次级的相移和传感器零电压不会影响总电路特性。
- 5. 多个 LVDT 可共用一个 AD598 来驱动,不论串联或并联,只要消耗的功率不超过它的允许值即可。激励输出有过热保护。
 - 6. 在设计简单的机电伺服回路时,可将 AD598 作为一个积分环节来处理。
- 7. AD598 能在遥测和电气接口远离 LVDT 的恶劣环境中应用。它能通过电缆驱动 91 未以外的 LVDT 正常工作。另外 AD598 的输出直流电压能够通过电缆传输到 304 米以外的地方。
 - 8.AD598的工作温度范围; AD598JR 为 0~70℃, AD598AD 为 -40~85℃。

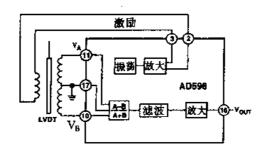


图 5-22 电路功能方块图

技术参数($T_A = 25\%$, $V_{DD} = \pm 15$ V, $C_1 = 0.015\mu$ F, $R_2 = 80$ k Ω , $R_L = 2$ k Ω)

参 数	单位		AD598J			AD598A		
参数	■ 単江	最小	典型	最大	最小	典型	最大	
转移函数	v	$V_{OUT} = \frac{V_A - V_B}{V_A + V_B} \times 500 \mu \text{A} \times R_2$						
	%/FS		0.6	2.35		0.6	1.65	
輸出电压	· v	± 11			± 11			
输出电流	mA	8			6			
短路电流	mA		20			20		
非线性	ppm/FS		75	± 500		75	± 50	
增益误差	%/FS		0.4	±1		0.4	± 1	
增益漂移	ppm/℃/FS		20	± 100		20	± 50	
失调	%/FS		0.3	±1		0.3	± 1	
失调温漂	ppm/℃/FS		7	± 200		. 7	± 50	
激励电压抑制	ppm∕dB		100			100		
电源抑制		!						
PSRR 增益	ppm/V	300	100		400	100		
PSRR 失调	ppm√V	100	15		200	15		
共模抑制								
CMRR 增益	ppm/V	100	25		200	25		
CMRR 失调	ppm∕V	100	6		200	6		
输出纹波	mV mms		4			4		

<u> </u>			AD598J			AD598A		
参 数	单位	最小	典型	最大	最小	典型	最大	
★励输出特性				2.4	2.1		2.4	
激励电压	V rms	2.1		2.4				
激励电压		1.2		2.1	1.2		2.1	
R1 = 开路	V rms	1.2 2.6		4.1	2.6		4.1	
$R1 = 12.7k\Omega$	V ms			20	14		20	
$R1 = 487\Omega$	V rms	14	600	20	•	600		
激励电压 T _C	ppm∕°C		000		30	•••		
输出电流	mA rms	30			12			
T _{MIN} ~ T _{MAX}	mA rms	12	<i>(</i> 0		12	60		
短路电流	mA.		60	± 100		30	± 10	
DC 失调电压(T _{MIN} ~T _{MAX})	mV		30		20	50	20k	
频率	Hz	20	-00	20k	20	200	202	
頻率 TC	ppm∕°C	1	200			-50		
全谱波失真	dB		<u>50</u>		-	- 50		
信号输入特性				2 5	0.1		3.5	
信号电压	V ms	0.1		3.5	0.1	200	3.0	
输入阻抗	kΩ		200	-		1	5	
输入偏置电流	μA		l	5		2	10	
信号基准偏置电流	μ A	_	2	10	0	2	20	
激励频率	kHz	0		20				
电源				16	13		36	
工作电压	V	13		36	± 13		50	
双电源工作(±10V输出)	V	± 13			± 13			
单电源工作		1			17.5			
0~10V输出	v	17.5			17.5			
0~-10V輸出	V	17.5		15	17.3	12	15	
电流	mA.		12	15		12	18	
T _{MDN} ~ T _{MAX}	mA			16	<u> </u>		_ 10	

生产厂家: ANALOG DEVICES

LVDT 信号调节电路

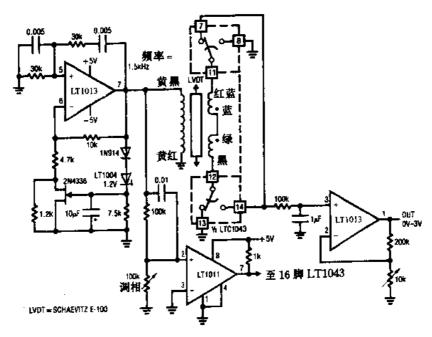


图 5-23 LVDT 信号调节器

生产厂家:LINEAR TECHNOLOGY

AD698 型通用 LVDT 信号调节电路

用途:用于线位移与角位移传感器信号的测量。

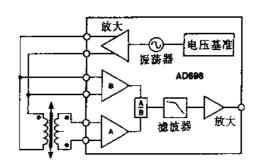


图 5-24 AD698 电路功能方块图

AD698 是一个单片线位移差动变压器(LVDT)信号调节子系统。AD698 与 LVDT 配合,将 LVDT 的机械位移转换成单极性或双极性输出的、高精度直流电压。器件增加几个外接无源元件,就能设定频率和增益。AD698 将 LVDT 的初级输出信号按比例转换成直流信号。器件 LVDT 以半桥型式工作,反向串联(4线)。

AD698 内有一个低失真的正弦波振荡器,用于驱动 LVDT 的初级,AD698 的两个同步解调通道用于检测初、次级的幅度。

AD698 技术参数(T_A = 25℃, V_{CM} = 0V, 直流±15V)

	34 N	AD698SQ			AD698AP		
参	单位	最小	典型	最大	最小	典型	最大
转移函数	V	$V_{OUT} = \frac{A}{B} \times 500 \mu A \times R_2$					
总误差 T _{MIN} ~ T _{MAX}	%FS		0.4	1.65		0.4	1.65
信号输出特性							
输出电压范围	v	±11			±11		
输出电流,T _{MIN} ~T _{MAX}	mA		11			11	
短路电流	mA		20			20	
非线性 T _{MIN} ~T _{MAX}	ppm/FS		75	± 500		75	± 50
增益误差	%/FS		0.1	±1.0		0.1	± 1.
增益漂移	ppm/℃/FS		20	± 100		20	± 10
输出失调	%/FS		0.02	±1		0.02	± 1
失调漂移	ppm/°C/FS		5	± 25		5	± 25
激励电压抑制	ppm∕dB		100			100	
电源抑制比(±12V-±18V)							
PSRR 增益	ppm/V		50	300		50	300
PSRR 失调	ppm/V		15	100		15	100
共模抑制比(±3V)-				!			
CMRR 增益	ppm/V		25	100		25	100
CMRR 失调	ppm√V		2	100		2	100
输出纹波	mV rms		4			4	

ماند ماند	单 位	1_	AD698SQ			AD698AP		
多数 	平 位	最小	典型	最大	最小	典型	最大	
激励输出特性(在2.5kHz)								
激励电压范围	V rms	2.1		24	2.1		24	
激励电压(电阻是1%绝对值)	, ins	2.1		24	2.1		24	
(R1 = 开路)	V rms	1.2		2.15	1.2		2.15	
$(RI = 12.7k\Omega)$	V ms	2.6		4.35	2.6		4.35	
$(R1 = 487\Omega)$	ν mms	14		21.2	14		21.2	
激励电压温度系数	<i>ppm</i> ∕℃		100			100		
輸出电流	mA ms	30	50		30	50		
$T_{MIN} \sim T_{MAX}$	mA me		40		•	40		
短路电流	mA		60			60		
直流失调电压					1			
$T_{MIN} \sim T_{MAX}$	mV	1	30	± 100		30	± 100	
頻率	Hz	20		20k	20		20k	
頻率 TC	ppm√°C		200			200		
全谐波失真	dB		- 50			- 50		
信号输入特性						-		
A/B 比适用满量程		0.1		0.9	0.1		0.9	
信号电压B通道	V mus	0.1		3.5	0.1		3.5	
信号电压A通道	V rms	0.0		3.5	0.0		3.5	
輸入阻抗	kΩ		200			200		
输入偏 覺电流	μ A	}	1	5		1	5	
信号基准偏置电流	μ A		2	10		2	10	
激励频率	Hz	0		20k	0		20k	
电源要求		1			·			
工作范围	v	13		36	13		36	
双电源工作(±10V)	v	± 13		1	± 13			
单电源工作		1						
0~10V输出	ν	17.5			17.5			
010V 输出	v	17.5			17.5			
电流(空载)	mA		12	15		12	15	
T _{MIN} T _{MAX}	mA			18			18	

主要特点;

- 1、AD698 单片电路就能解决 LVDT 信号调节电路问题。芯片上的电路只用无源元件就能完成机械位置到直流电压的转换。
 - 2. AD698 适用于多种型式的位置传感器,适用于任一个 LVDT,包括半桥和反向串联(4

- 线)。AD698 有宽范围的输入、输出电压及频率。
- 3. 单个外接电容决定激励频率范围 $20 Hz \sim 20 kHz$ 。 AD698 的输出达 $24 V_{ms}$,可用来差动驱动 LVDT 初级。 AD698 可适用于输入电平为 $100 mV_{ms}$ 的场合。
- 4. 多个 LVDT 可共用一个 AD698 来驱动,不论串联或并联,只要消耗的功率不超过它的允许值即可。激励输出有过热保护。
 - 5. 工作温度范围: AD698AP 为 40~85℃, AD698SQ 为 55~125℃。

线性变换位传感器(LVDT)位置测量电路

用途:用于位置测量和位移测量。

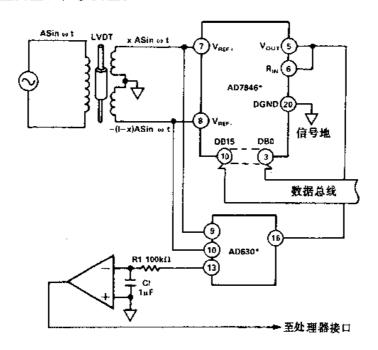


图 5-25 LVDT 位置测量电路

电路中的 AD7846 是 LC²MOS 16 位结构的 DAC; LVDT 是线性变换位移传感器。AD630 是同步解调器和一个比较器构成的 16 位 LVDT 的数字变换器。LVDT 用一个固定频率和一个固定幅度的正弦波(通常为 $2.5kHz,2V_{PP}$)激励。次级线圈中心抽头接地,反相输出,信号幅度由铁芯在 LVDT 中的位置决定,或 LVDT 在线圈中的位置决定,信号经 AD630 至处理器接口。如果 DAC 的输出与 V_{REF} ,相同,反相输入比较器的输出将是正的;如果 DAC 的输出与 V_{REF} 。同相,输出将是负的。通过连续启动转换 DAC 的每一位,决定导通或关断比较器的输出,从而可得到铁芯位置的 16 位测量结果。

AD7846 型 LC MOS16 位电压输出 DAC

AD7846 是一个 16 位 DAC 结构的模拟器件。它有基准 V_{REF-} 和 V_{REF+} 输入及输出放大器。有单极性输出: $0 \sim 5V$, $0 \sim 10V$; 及双极性输出: $-5 \sim 5V$, $-10V \sim 10V$ 。

特点:工作温度范围内确保 16 位转换的单调性;综合线性误差为±2LSB;有反馈功能与微处理机兼容功能;有倍增功能;低功耗(典型 100mW)。

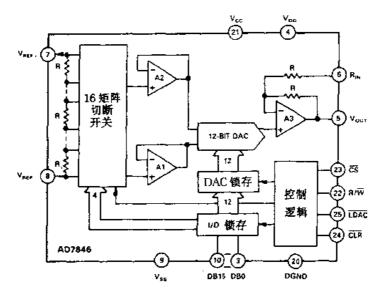
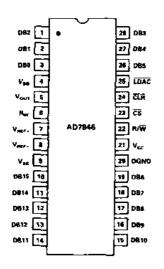



图 5-26 AD7846 功能方块图

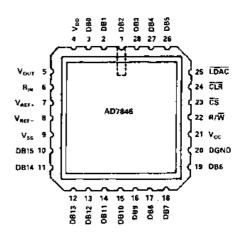


图 5-27 管脚图(顶视)

管脚说明

- m-+ m-		<u> </u>
编号	符号	说明
1-3	DB2-DB0	数字输入脚、DBO 是 LSB
4	V _{DD}	用于模拟电路的正电源,+15V。
5	V _{OOT}	DAC 输出电压脚
6	R _{IN}	输入至 DAC 输出放大器求和电阻,用来选择输出电压范围
7	V _{REF+}	V _{RFF} , 输入, DAC 规定用 V _{REF+} = 5V
8	V _{RFF}	V_{REF} - 输入,对单极性工作,将 V_{REF} - 接到 $0V$,对双极性工作,将 V_{REF} - 接到 $-5V$ 。
9	V _{SS}	用于模拟电路的负电源,-15V。
10 – 19	DB15-DB6	数字输入脚, DB15 是 MSB
20	DGND	数字地
21	V _{cc}	用于数字电路的正电源、+5V。
22	R∕₩	R√W输入,用于负载数据到 DAC 或反相读 DAC 锁存数据
23	\overline{\sigma}	芯片选择输入,选择器件
24	CLR	清除輸入, DAC 可清除至 000…000 或 100…000。
25	LDAC	非同步负载输入
26 – 28	DB5-DB3	数字输入脚

儑	+	绐	24	额	4	佔
BA.	\sim	517.	V.I	117.	XE-	ΙП

V _{DD} 至 DGND(数字地)	$-0.3 \sim 17V$
V _{CC} 至 DGND	-0.3~7V
V_{SS} 至 DGND	$+0.3 \sim -17V$
V _{REF} +至 DGND	± 25V
V _{REF} -至 DGND	± 25V
V _{OUT} 至 DGND	± 25V
$R_{\rm IN}$ \cong DGND	± 25V
锁存数字输入电压至 DGND	$-0.3 \sim V_{\rm OC} + 0.3 V$
锁存数字输出电压至 DGND	$-0.3 \sim V_{CC} + 0.3V$
功耗	
至 + 75℃	1000mW
+ 75℃以上降额	10mW/℃
工作温度	-65 - 125℃(S)
存储温度	- 65 ~ 150°C
引线焊接温度	300℃

技术参数(V_{DD} = 14.25 ~ 15.75V, V_{SS} = - 14.25 ~ - 15.75V, V_{CC} = 4.75 ~ 5.25V, 输出负载用 $2k\Omega$, 1000pF 至地, V_{REF+} = + 5V, R_{IN} 至地, 技术参数 T_{min} ~ T_{max})

参 数	単位	型。号			
<i>≫</i> ××	平 1年	J,A型	K,B型	S型	
分辨率	位	16	16	16	
单极性输出		-			
相对精度在 25℃	LSBmax	± 16	±4	± 16	
$T_{\text{min}} \sim T_{\text{max}}$	LSBmax	± 16	±8	± 16	
差分非线性误差	LSBmax	± 1	±0.5	±1	
增益误差在 25℃	LSBmax	± 16	± 8	± 16	
$T_{min} \sim T_{mex}$	LSBmax	± 16	± 16	± 24	
失调误差在 25℃	LSBmax	± 16	± 8	± 16	
T _{train} ~ T _{max}	LSBmax	± 16	± 16	± 24	
増益 TC	ppmFSR/℃典型	± 2	±2	± 2	
失调 TC	ppmFSR/℃典型	± 2	± 2	±2	
双极性输出					
相对精度在 25℃	LSBmax	±8	± 2	±8	
$T_{min} \sim T_{max}$	LSBmax	±8	±4	±8	
差分非线性误差	LSBmax	±1	±0.5	± 1	
增益误差在 25℃	LSBmax	± 8	± 4	±8	
$T_{min} \sim T_{max}$	LSBmax	± 12	±8	± 16	
失调误差在 25℃	LSBmax	±8	±4	± 8	
$T_{\text{exim}} \sim T_{\text{mass}}$	LSBmax	± 12	±8	± 16	
双极性零误差在 25℃	LSBmax	±8	±4	± 8	
$T_{\text{reig}} \sim T_{\text{resx}}$	LSBmax	± 12	±8	± 16	
增益 TC	ppmFSR/℃典型	±2	±2	± 2	
失调 TC	ppmFSR/℃典型	±2	± 2	± 2	
双极性零 TC	ppmFSR/℃典型	±2	± 2	± 2	

参数	単位	<u> </u>	型号			
多 数	中 12	J,A型	K,B型	S型		
基准输入				1		
輸入电阻	kΩmin	20	20	20		
	kΩmax	40	40	40		
V _{REE} + 范围	v	$V_{SS} + 6 \sim V_{DD} - 6$	$V_{SS} + 6 \sim V_{DD} - 6$	$V_{SS} + 6 \sim V_{DD} - 6$		
V _{REF} - 范围	v	$V_{SS} + 6 \sim V_{DD} - 6$	$\int V_{SS} + 6 \sim V_{DD} - 6$	$V_{SS} + 6 \sim V_{DD} - 6$		
輸出特性						
输出电压摆幅	Vmax	$V_{SS} + 4 \sim V_{DO} - 3$	$V_{SS} + 4 - V_{DD} - 3$	$V_{SS} + 4 \sim V_{DD} - 3$		
阻性负载	kΩmin	2	2	3		
容性负载	pFmex	1000	1000	1000		
输出电阻	$\Omega_{ m typ}$	0.3	0.3	0.3		
短路电流	mAtyp	= 25	± 25	± 25		
数字输入						
V ₂₁ (输入高压)	Vmin	2.4	2.4	2.4		
V _I (输人低压)	Vmax	0.8	0.8	0.8		
I _D (輸入电流)	μ Amax	± 10	± 10	± 10		
C _{IN} (輸入电容)	pFmax	10	10	10		
数字输出						
V_{0L} (输出低电平)	Vmax	0.4	0.4	0.4		
V _{0H} (輸出高电平)	Vmin	4.0	4.0	4.0		
浮空态漏电流	μΑтах	± 10	± 10	± 10		
浮空态输出电容	pFmax	10	10	10		
电源要求						
$V_{ m DD}$	Vmin/Vmax	+ 11.4/ + 15.75	+11.4/+15.75	+11.4/+15.75		
V_{SS}	Vmin/Vmax	- 11.4/ - 15.75	- 11.4/ - 15.75] - 11.4/ - 15.75		
v_{∞}^{-}	Vmin/Vmax	+4.75/+5.25	+4.75/+5.25	+4.75/+5.25		
I _{DD}	mA max	5	5	5		
$I_{\mathfrak{B}}$	mA max	5	5	5		
I_{∞}	mA max	1	1	1		
电源灵敏度	LSB/V max	1.5	1.5	2		
功耗	mW typ	100	100	100		

生产厂家: ANALOG DEVICES

AccuStar®电子倾角传感器

AccuStar[®]电子倾角传感器为一测量角度的高精度传感器,其小巧的外形和坚固耐用的结构,非常适合于安装空间要求严格和环境条件苛刻的场合。传感器的核心是一个已获专利的、基于电容原理无可动部件的敏感器件。当绕其灵敏轴旋转时,敏感器件的电容值发生线性变化,再通过电子线路将其转换为角度值输出,这个既可作系统的一个部件,也可独立安装的传感器将敏感器件和 CMOS 电路封装在坚硬的塑料外壳内,以确保其可靠性。

传感器输出信号的形式有模拟、比率、脉宽和串行输出,它不仅能表示倾角值,而且还能表征倾斜方向。

用途:建筑机械,天线定位,机器人,车轮校直

特点:外形直径仅 50mm, 坚固耐用的塑料外壳, 精度高, 仅重 57g。

全量程

 $\pm 60^{\circ}$

线性量程

± 45°

分辨率

 0.001°

线性 0~10° ±0.1° 10 ~ 45° $\pm 0.1\%$ $45 \sim 60^{\circ}$ 单调 零点重复性 0.05° 灵敏轴误差 <1%(45°以下) 时间常数 0.3s频率响应(-3dB) 0.5Hz $< \pm 2^{\circ}$ 旋转灵敏度

模拟式输出倾角传感器电路

模拟式输出倾角传感器是一种双极性直流电压工作的、内置信号调理功能的敏感器件,供电电压为 $\pm 8 \sim \pm 15$ VDC,输出 ± 3.6 VDC,其输出灵敏度为 60 mV/度,且不依赖于电源电压,全部设计均可抑制 EMI 和 ESD(EMI 为电磁干扰,ESD 为静电干扰),电路内置稳压电路,双极性输入/输出。

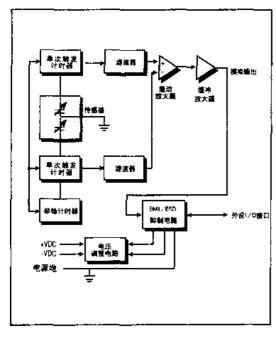


图 5-28 模拟输出倾角传感器电路方块图

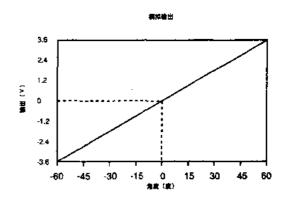


图 5-29 模拟输出倾角传感器电压角度关系图

技术参数

电源电压	
标称	± 12VDC
允许范围(恒压)	±8~ ±15VDC
电流	5mA/回路
灵敏度	60mv/度
最小负载电阻	10kΩ
0°输出电压	OVDC
接线	
接线	电源地线
红	+8~ + 15VDC
灰	-8 ~ - 15VDC
绿	信号輸出(参考于电源地)

比率式输出倾角传感器电路

比率输出倾角传感器是一个类似电位器的外加信号调理的传感器。有电源线、电源地线和信号线。其中,信号线的输出也是以电源地线为参考的。因此,所供电源必须经过稳压调整,在0°即量程中点时,其输出为电源电压的1/2。这种低功耗仅0.5mA电流的传感器非常适合于电池供电场合,所有比率输出传感器均含有EMI和ESD抑制的电路,以确保器件正常稳定工作。

电路为三线制和低功耗

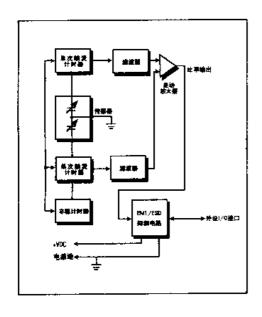


图 5-30 比率输出倾角传感器电路方块图

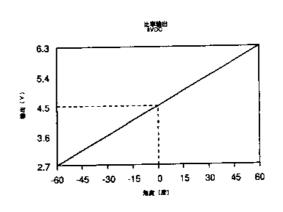


图 5-31 比率输出倾角传感器电压角度关系图

技术参数

电源电压(标称)	9VDC	
供电范围(恒压)	5 ~ 15VDC	
供电电流	0.5mA	
灵敏度(9VDC供电时)	30mV/度	
最小负载电阻	10kΩ	
0°输出电压	1/2VDC	
接线		
	电源地线	
红	电源正电压 5~15VDC	
黄	信号输出(参考于电源地)	

数字脉宽输出倾角传感器电路

这种传感器是将倾角值量化为脉宽直接正比于角度值的脉冲。当给单次触发计时器 1*

或 2^* 发送一触发脉冲时,电路便产生相对应的 PW1 或 PW2 脉冲。当对这两个单次触发计时器同时给予触发时,便可读出 PWI 和 PW2 的差值 Δ PW。倾斜方向输出线可告知用户此时是顺时针还是逆时针方向,全部设计均可 EMI/ESD 抑制。

电路内置调整电路,脉宽输出。

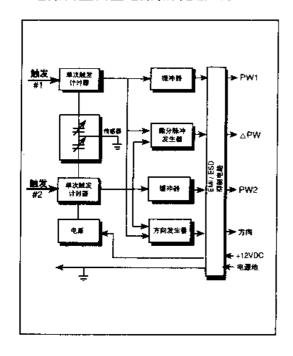
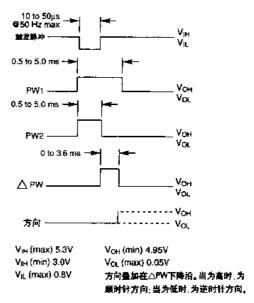



图 5-32 数字脉宽输出倾角传感器电路方块图

电压输出兼容TTC,每一输出均可驱动一低功 耗肖特管或多CMOS电路

图 5-33 数字脉宽输出倾角传感器脉冲波形图

技术特性

电源电压	
标称值	12VDC
电压范围	8 – 15VDC
电流	5mA
灵敏度	60μs/度 ± 10%
负载电阻	10kΩ
零点输出	$\Delta PW = 0s$
	PW1 = PW2
触发脉冲	10~50µs,50Hz(最大)
PW1/PW2	0.5 ~ 5ms
ΔPW	0 ~ 3.6ms
方向表征	高电平:顺时针
	低电平:逆时针
接线	
黑色 地	绿色 方向
红色 8 – 15VDC	灰色 PW1
棕色 触发1	白色 PW2
兰色 触发 2	黄色 ΔPW

串行数据输出倾角传感器电路

这种倾角传感器是将角度量化为相应的包括一个方向位和 16 个数据位的串行数据。它采用三根传输线将数据传送至微控制器或 PC 机 I/O 卡进行处理,兼容 TTL 和 CMOS 逻辑电平。完整的握手信号可很好地解决分时与传送问题。标准型用稳定的 + 5VDC 供电,可提供内置稳压电路型。全部设计均可抑制 EMI/ESD。

电路兼容微控制器,并具有良好的抗噪性能。

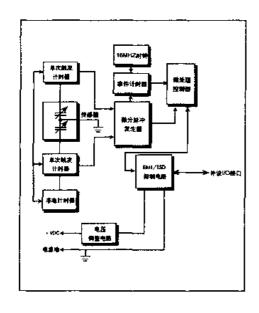


图 5-34 串行数据输出倾角传感器电路方块图

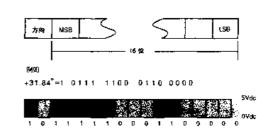


图 5-35 计数脉冲与角度关系

技术特性

供电电压范围	+ 5VDC, ± 5%
电流	15mA
灵敏度 	1000 个计数脉冲/度
输出	CMOS/TTL
の輸出	0个计数脉冲
二进制数据位数	16 位 + 1 位方向位(事行)
接线	
A.	电源地
红	电源 + 5VDC
黄	数据线
Á	请求/保持
<u> </u>	就绪/等待
	

AccuStar® Ⅱ 双轴倾角传感器

AccuStar[®] Ⅱ 传感器是将两个单轴倾角传感器巧妙地组合在一起,形成一个拱状的外形,这种基于电容原理的传感器能够输出与两轴倾角成线性关系的信号。

在电路设计上,除了四个用于零点和灵敏度调整的电位器封于拱形壳外,其余电路全部以表面安装形式封装在壳内。它具有四个连接点,提供比率输出和脉宽数字输出。

用途:建筑机械、土木工程、地球物理、倾角和坡度测量等领域。

特点:两个倾角传感器置于一个封装内,直流供电同一型号可同时提供比率和脉宽数字输出

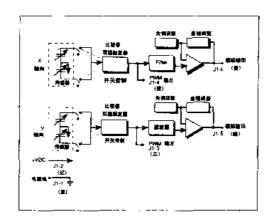


图 5-36 双轴倾角传感器电路方块图

技术参数

量程	± 20°	
分辨率	0.01°	
线性:	_	
0 ~ 10°	± 0.2°	
10 ~ 12°	± 2.5%	
12 ~ 15°	± 3.0%	
15 ~ 20°	单调 	
零点重复性	± 0.1°	
时间常数	0.3s	
频响(3dB)	0.5Hz	
环境性能		
工作温度范围	– 20 ~ 75℃	
储存温度范围	- 55 ~ 75℃	
零点温度系数	0.01°/℃	
灵敏度温度系数	0.10%/°C	

5.0~15.0VDC
3.5mA
_
IOOmV/度±10%
10kΩ(推荐值为 1MΩ)
1/2 电源电压 ± 10%
50%
0.7%/度(标称)
$t_2/(t_1+t_2)$
t _{1 <} t ₂ 从 0.2 到 0.7ms 范围
内变化
≘ikHz(标称)

* 若供电电压不是 9VIX, 此时应对零点和满量程重 新调整。

> 生产厂家: Lucas Nova - Sensor 公司 康宇測控仪器仪表工程公司

5.3 接近开关传感器应用电路

OM386B/387B 型电感接近检测传感混合集成电路

用途:用于工厂自动化和过程自动化。

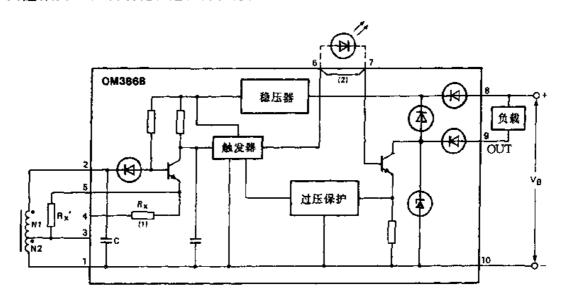


图 5-37 OM386B 型电路图

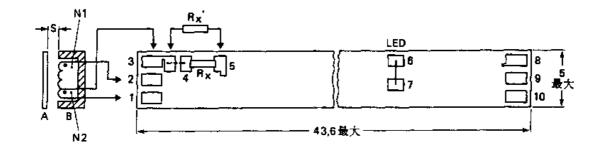


图 5-38 OM387B 型电路图

- 注:(1) Rx 集成在芯片上,用于调节。用集成电阻 Rx 时,必须连接脚3和脚4。
 - (2) 如果连 LED,脚 6和脚 7之间所接元件要去掉。

图中 A 为金属执行件, B 为断开铁心截面或带有线圈的铁心截面。机械外形和连接: OP386B 的脚 8 和脚 10 是正和负电源; OP387B 的脚 8 和脚 10 是负和正电源。S 是工作距离。

混合集成电路是圆柱形结构,用于电感接近检测。电路由稳压器、振荡器、整流器、施密特

注:单位 mm

图 5-39 OM386B/OM387B 外形连接图

触发器、输出级和保护电路组成。当电流通过负载(电磁继电器线圈、LED或光耦合器)时可控制电路工作。

特点:过载短路保护;用稳压二极管对输出晶体管进行瞬变保护;三线连接负载错接保护; 调节距离有两种方法,即调节芯片上的电阻或安装电阻;连接 LED 用于功能控制。

主要参数

参 数	符号	单 位	数值
直流电源电压范围	V _B	v	10 ~ 30
在 V _B = 3~10V 时输出电流	Io	mA	max. 250
工作距离(由 Rx 值和振荡线圈决定)	s	mm	1~5
迟滞(开关距离的迟滞)	Н	% s	3 ~ 10
工作頻率(开关数)	f	kHz	< 5
基片工作温度	$r_{\rm s}$	°C	-40~ +85
基片长	• L	mm	43.4±0.2
基片宽	W.	mm	4.8 ± 0.2
电路基片高	h	scarstr	max. 1.7

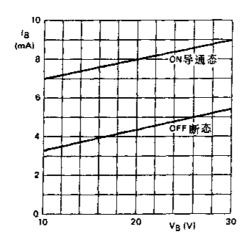


图 5-40(a) 电源电流与电源电压的关系(T₅=25°C)

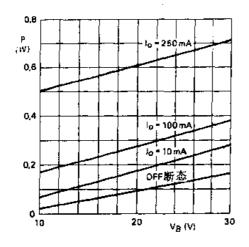


图 5-40(b) 功耗与电源电压的关系

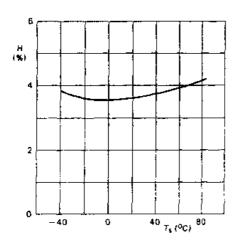


图 5-40(d) 迟滞与基片温度的关系

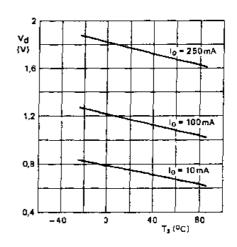


图 5-40(c) 电压降与基片温度的关系

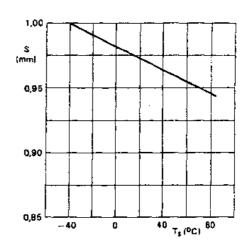


图 5-40(e) 工作距离与基片温度的关系

最大绝对额定值

直流电源电压, V_B

输出电流, Io

存储温度, $T_{\rm sig}$

工作温度, T_A

工作条件

直流电源电压, V_B

最大 30V

最大 250mA

- 40 ~ 125℃

-40~85°C

24V

外接电阻 R_X 和振荡线圈(器件嵌入黄铜管)见工作距离表基片温度, T_S 25°C 技术参数

电源电流

输出级"ON", IB

典型 8.4mA

输出级"OFF", IB

典型 4.8mA

电压降

 $I_0 = 250 \text{mA}$, $V_{\rm d}$

最大 1.9V

 $I_0 = 10mA$, V_d

最大 1.0V

工作(开关)距离

型号	振荡线	报荡线圈转数 平均工作距离 在 R _X (工作距离 在 R _X (Ω)		推荐铁芯	振荡頻率
	Ni	N2	200	250	300		(kHz)
M8	32	16	1	1.5	-	∳5.8mm	800
M12	40	10	2	3	-	3B7/3H1	600
M18	45	4	3	4	5	3B7/3H1	600

OM386M/OM387M 型电感接近检测传感混合集成电路

用途:用于工厂自动化和过程自动化。

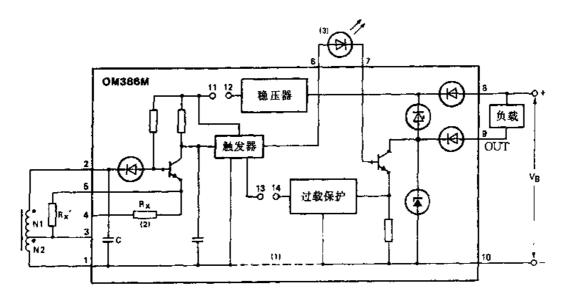


图 5-41 OM386M 型电路图

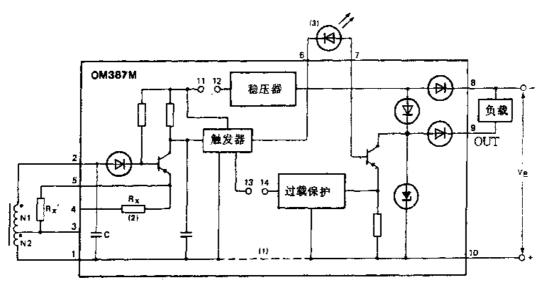
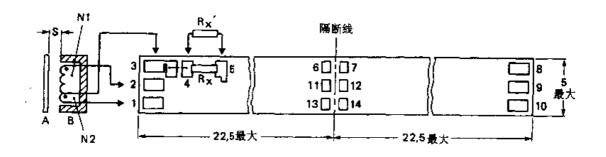



图 5-42 OM387M 型电路图

- 注:(1) 装配后互连脚 1和脚 10。
 - (2) Rx 集成在基片上,用于调节。用集成电阻 Rx 时必须互连脚 3 和脚 4。
 - (3) 如不用 LED,则需连至脚 6 和脚 7。

混合集成电路为圆柱形结构,有 M8 安装孔。OM386M 用正电源,OM387M 用负电源。电路由稳压器、振荡器、整流器、施密特触发器、输出级和保护电路组成。电路的输出驱动电磁继电器线圈、LED 和光耦合器。

特点:短路和过载保护:用稳压二极管对输出晶体管进行瞬变保护;调节距离有两种方法可选;调节集成芯片上电阻或安装一个电阻;连接 LED 用于控制。

注:单位 rum 图 5 – 43 外形尺寸和连接图

A 为金属执行件,B 为铁心截面或带有线圈的铁心截面。

机械外形和连接: OM386M 的脚 8 和脚 10 为正负电源, OM387M 的脚 8 和脚 10 为负正电源, s 是工作距离。

基片长:22.3±0.2mm,宽:4.8±0.2mm,高:3.8mm

OM388B/OM389B型电感接近检测传感混合集成电路

用途:用于工厂自动化和过程自动化。

混合集成电路为圆管形结构,有 M12 安装孔。OM388B 用正电源供电,OM389B 用负电源供电。电路由稳压器、振荡器、整流级、施密特触发器、输出级和保护电路组成。

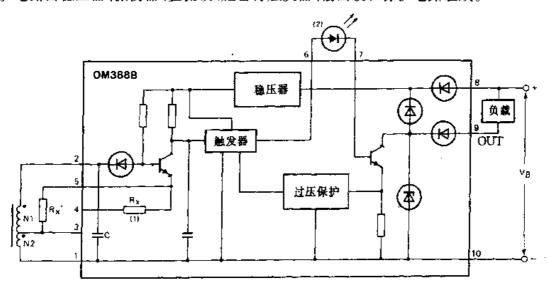


图 5-44 OM388B型电路图

特点:短路和过载保护;用稳压二极管对输出晶体管进行瞬变保护;三线连接错接保护;调节工作距离有两种方法可选,即调节芯片上的集成电阻或安装电阻;连接 LED 用于控制。电路用于驱动电磁继电器、LED 和光耦合器。

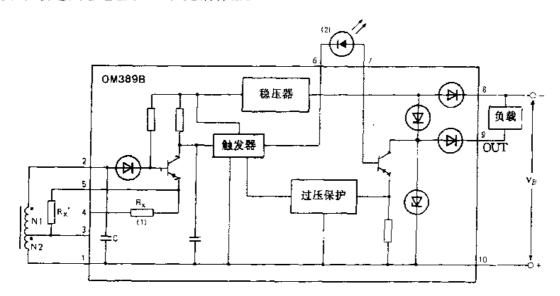
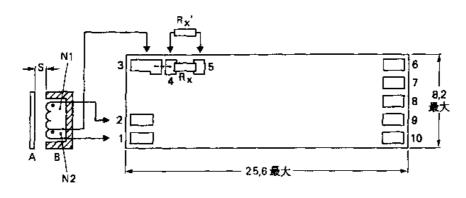



图 5-45 OM389B 型电路图

- 注:(1) R_X 为集成在芯片上的电阻,用于调节工作距离。用 R_X 时脚 3 和脚 4 必须互连。
 - (2) 如不用 LED, 连至脚 6 和脚 7。

注;单位 mm

图 5-46 外形尺寸和连接图

A是金属执行元件,B是铁芯截面或带有线圈的一半铁芯。

机械外形连接时,OM388B的脚 8 至脚 10 为正电源,OM389B的脚 8 至脚 10 为负电源。 S 是工作距离。

OM390/OM391 型电感接近检测传感混合集成电路

用途:用于工厂自动化和过程自动化。

混合集成电路为圆筒形结构,有 M18 安装孔。OM390 用正电源供电,OM391 用负电源供电。电路由稳压器、振荡器、整流级、施密特触发器、输出级和保护电路组成。电路负载可接电磁继电器、LED 或光耦合器,用于控制和检测。

特点:短路和过载保护;用稳压二极管对输出晶体管进行瞬变保护;三线连接错接极性保护;调节工作距离有两种方法可供选择:调节集成在芯片上的电阻或安装电阻。

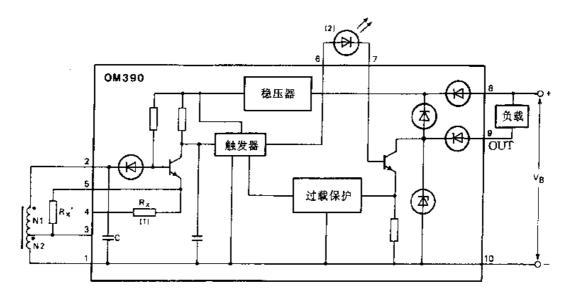


图 5-47 OM390 型电路图

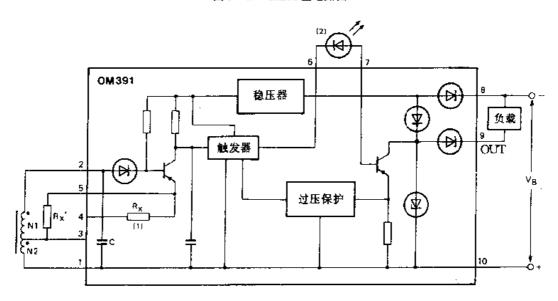
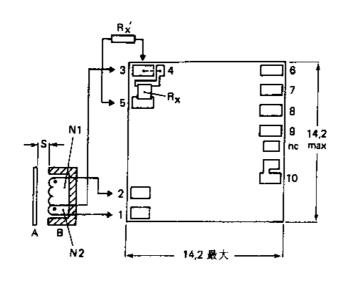


图 5-48 OM391 型电路图

- 注:(1) Rx 是芯片上的集成电阻,用于调节工作距离。当用 Rx 时,脚 3 和脚 4 必须互连。
 - (2) 如不用 LED, 脚 6 和脚 7 必须互连。


A 为金属执行元件, B 为铁心截面或带有线圈的一半铁心。

S是工作距离。

OM2860/OM2870 型电感接近检测传感混合集成电路

用途:用于工厂自动化和过程自动化。

混合集成电路为圆筒形结构,有 M5 安装孔。OM2860 为正电源供电,OM2870 为负电源供电。电路由振荡器、整流级、施密特触发器、输出级和电源滤波器组成。当电路激励时,电流通过负载,可用于电磁继电路、发光二极管 LED 和光耦合器等控制电路。

注:单位 mm 图 5-49 外形尺寸和连接图

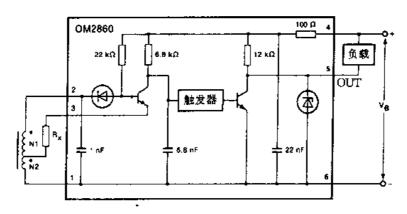


图 5-50 OM2860 型电路图

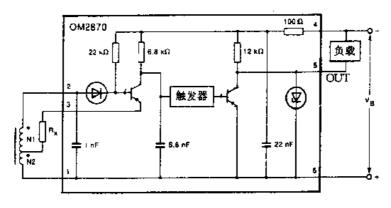
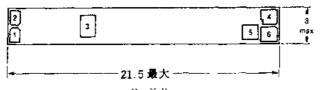



图 5-51 OM2870 型电路图

主要技术参数

符号	参 数	条 件	单位	最小	典型	最大
V _B	直流电源电压		V	4.7		30
	输出电流	$V_{\rm B} = 24 {\rm V}$	mA			250
f switch-mass	工作频率		kHz			5
Ts	基片工作温度		2	- 40	-	85

注:单位 mm

图 5-52 外形尺寸和连接图

最大绝对额定值

符号	多 数	单位	最小	最大
V _B	直流电源电压	V	-	30
I ₀	輪出电流	mA		250
$T_{ m stg}$	存储温度	L.	- 40	+ 125
$T_{\rm S}$	基片工作温度	°C	- 40	+ 85

技术参数($V_B = 24$ VDC, $T_S = 25$ °C)

符号	参数	条件	单位	典型	最大
I_{B}	电源电流	输出级"ON" "OFF"	mA mA	9.0 7.7	_ _
$V_{\rm d}$	电压降	$I_0 = 25 \text{mA}$ $I_0 = 10 \text{mA}$	V V	- -	1 0.25

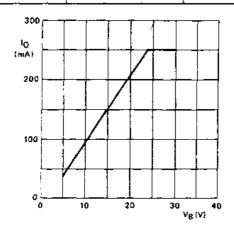
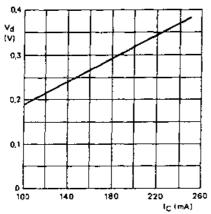



图 5-53(a) 輸出电流与电源电压的关系(T_S=25℃)

图 5-53(b) 电源电流与电源电压的关系(T_S=25℃)

Ic (mA)
图 5 - 53(c) 电压降与集电极电流的关系(V_B = 24V, T_S = 25℃)

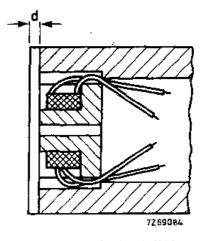


图 5-53(d) 铁芯插入铜管图

生产厂家: Philips Semiconductors

5.4 液体检测传感器应用电路

ULN2429 型液体检测器集成电路应用

用途:用于汽车、家庭和工业部门检测液体中的各种物质成分,如自来水、海水、弱酸、碱盐水、雨水污水、水果酒、啤酒和咖啡等物质的成分检测。

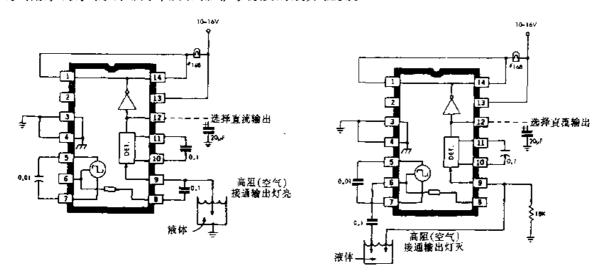
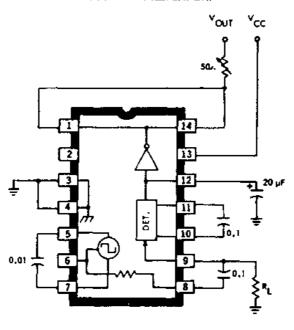
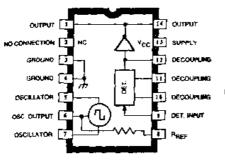


图 5-54 典型应用电路




图 5-55 测试电路

ULN2429 型液体检测器

ULN2429 设计用于汽车低冷却液检测器,它是单片双极型集成电路,特别适用于恶劣环境中的液体检测,有反向电压保护、内部稳压、温度补偿和高频噪声抗干扰等性能。用一个简单·456·

探头插入导电液体中进行监测,探头用一个交流信号驱动,防止电镀现象产生。液体中的某种物质成分是否存在可通过载荷探头电阻与一个内电阻(脚 8)或外电阻(脚 6)的比较结果来确定。高输出电流是典型方波信号,用于 LED、白炽灯和扬声器。电容连接脚 12 输出直流驱动电感负载,如继电器和螺线管。

特点:高输出电流; AC 或 DC 输出; 单线探头; 少量外接元件。

管脚说明:

- 1.输出,2.不连接,3.接地,4.接地,5.振荡器,
- 6.振荡器输出,7.振荡器,8.基准,9.检测输入,
- 10. 去耦,11. 去耦,12. 去耦,13. 电源,14. 输出。

图 5-56 管脚图

最大绝对额定值			
电源电压, $V_{\rm CC}$		输出电流, I_{OUT}	
(连续)	- 50 ~ 16V	(连续)	700mA
(1h,25℃)	24V	(1h,25℃)	1.0A
$(10\mu s)$	50V	功耗, P_{D}	1.33W
输出电压, $V_{ m our}$	30V	工作温度, T_{A}	- 40 ~ 85℃
		存储温度, $T_{\rm S}$	- 65 ~ 150℃

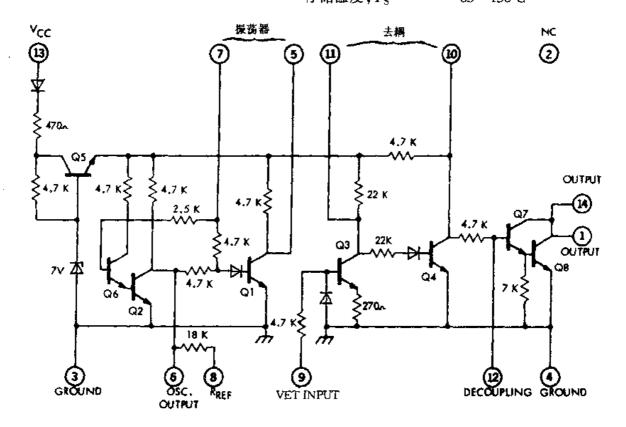
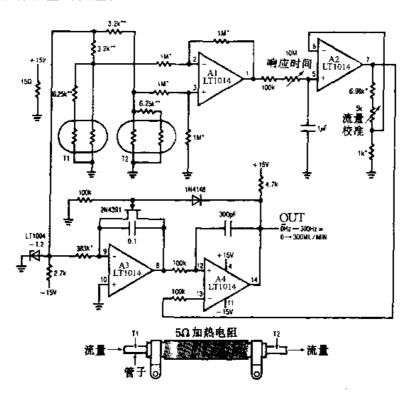


图 5-57 ULN2429 型电路图


技术参数(T_A = 25℃, V_{CC} = V_{OUT} = 12V)

参数	符号	测试点	测试条件	单位	最小	典型	最大
电源电压范围	V_{cc}	13	工作	v	10	-	16
电源电流	Icc	13	$V_{\rm OC} = 16 \text{V}$	mA	-	_	10
振荡输出电压	Vosc	6	$R_{\rm L} = 18 {\rm k}\Omega$	V _{pp}		3.0	
輸出电压	Vour	1,14	$R_{\rm L} \ge 30 \text{k}\Omega$, $I_{\rm OUT} = 500 \text{mA}$	v		0.9	1.5
输出电流	Iout	1,14	$R_{\rm L} \le 10 \text{k}\Omega$, $V_{\rm OUT} = 30 \text{V}$	μA			100
振荡频率	fosc	6	$R_{\rm L} = 18 {\rm k}\Omega$	kHz	_	2.4	_

生产厂家: Allegro Microsystems, Inc.

热敏电阻流量测量电路

用途:用于液体流量的测量。

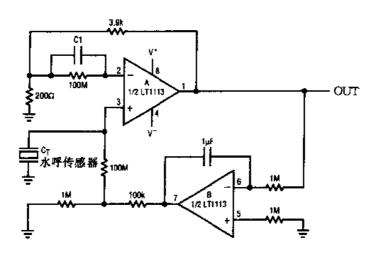

注:电路中*薄膜电阻精度为1%。**装有 ysi 热敏电阻网络。Tl, 72 ysi 热敏电阻网络为#44201,在管中流速与在Tl-T2 温差电阻成反比。Al-A2 用于放大, A3-A4 用于线性频率输出。LTl014 为四运放电路。

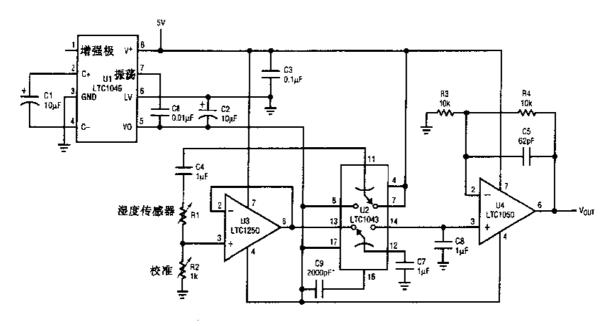
图 5-58 液体流量表

水声传感器放大电路

用途:用于漏水检测和安全防范领域。

电路表示具有 DC 伺服的低噪声水声传感放大器。LT1113 的一半 A 是正向型式放大水声传感器的电压信号。LT1113 的另一半 B 是由于放大器的电压和电流失调和水声传感零输出的直流误差而设置的反馈放大器。C1 由水声传感电容决定。电路用于漏水检测。电路中伺服时间常数大于水声传感电容和 100ΜΩ 源电阻形成的时间常数,可防止伺服消除水声传感的

注; $C1 = CT = 200 \text{pF} \sim 800 \text{pF}$; 在 $T_A < 70 \text{ C}$ 时, DC 输出 $\leq 4 \text{mV}$; 1 kHz 时的输出噪声电压 = $130 \text{nV} / \sqrt{\text{Hz}}$; 电源电压 = $\pm 5 \text{V} \sim \pm 15 \text{V}$ 。 图 5 - 59 水声传感器应用电路


低频噪声。

生产厂家:LINEAR TECHNOLOGY

5.5 湿度传感器应用电路

湿度传感器接口电路

用途:用于湿度测量和控制领域。

注:电阻的单位为 Ω , 1/4W,5%; C9 调节振荡,容量为 2000pF,产生 2.2kHz 振荡频率。

图 5-60 湿度传感器接口电路

电路用于湿度传感器和数据采集系统的接口电路。电路中 U1LTC1046 为 50mA 开关电容

电压变换器,转换电压供给 U2,U3 和 U4。U2LTC1043 为双精密仪器开关电容标准块,和 UI 组成开关电容,供给传感器激励电压,电源开关速率约 2.2kHz。 R_2 调量程,因为传感器电阻为 700Ω 时,相当于 90%的湿度,调 R_2 为 700Ω 时,可提供 2:1 的分压。U3 LTC1250 为低噪声、零 漂移桥放大器,放大湿度传感器信号,供给 U4LTC1050 输入,U4 LTC1050 是精密型、零漂移、内有电容的运算放大器,它的输出可提供 A/D 变换器数字化,然后供给计算机。

生产厂家:LINEAR TECHNOLOGY

5.6 烟雾检测传感器应用电路

A5358 型光电烟检测器电路

用途,用于防火、报警和环卫检测电路。

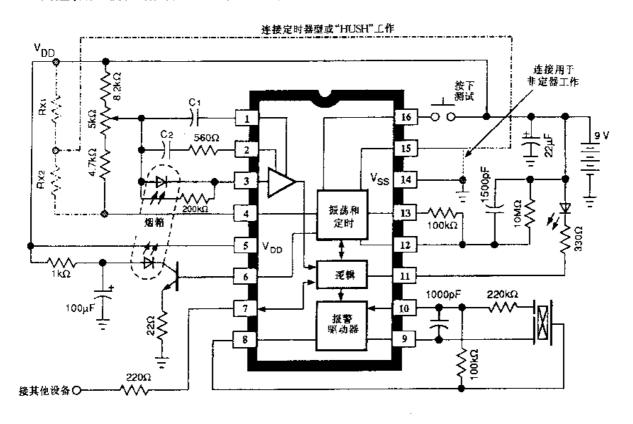
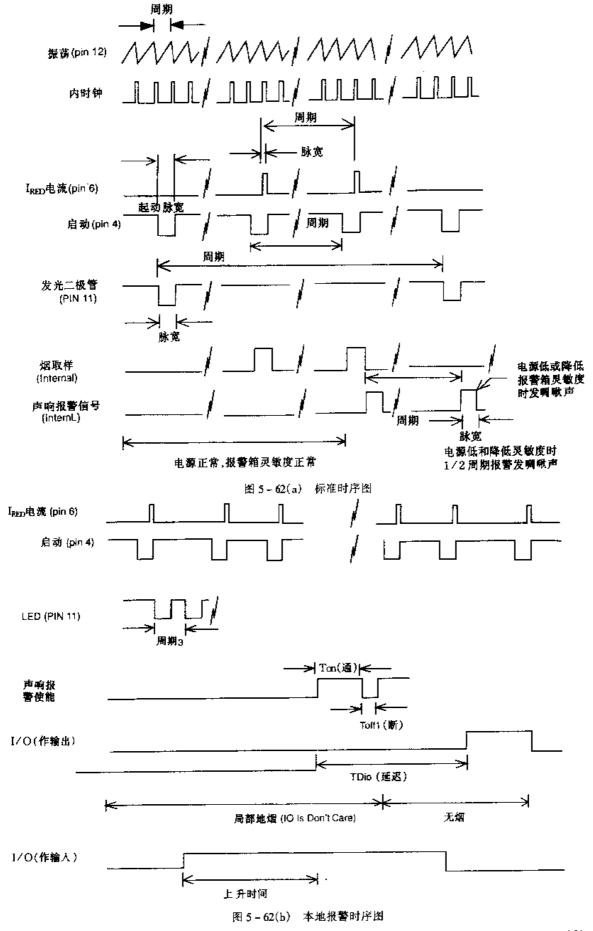



图 5-6i 典型应用电路

A5358 型光电烟检测器

A5358 是一个低电流的 BiCMOS 电路,具有光电型烟检测器的全部特性。器件与红外光电箱组合起来,用于从烟尘中检测散射光。

特点:可连接 75 个检测器;压电报警驱动;内低电池检测报警;电源通复位;内定时器和控制可降低灵敏度;内装电路可减小误触发;6V~12V工作电压范围;接线端均有 ESD 保护电路。

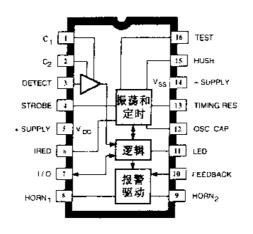


图 5-63 管脚图

管脚说明

脚 1(C_I):外接电容。在测试(Push)型式,决定光电放大器增益。典型值为 0.047μF,一般应根据光箱背景 反射来选择。

脚 $2(C_2)$;在备用型式,电容连接此脚,决定光放大器的增益。低增益时的典型值为 4700pF。一般应根据特定的光检测箱和对烟的灵敏度电平要求来选择。外接电阻必须与 C_2 串联。

脚 3(DETECT): 该脚输入光放大器,连接发光二极管的阴极。

发光二极管工作于零偏压,并有低暗电流和小的电容。

脚 4(SIROBE, 4):供输出备用 $V_{DD}-5V$ 稳压。所有内部和外电路的负端都是相对于此脚而言。

脚 $5(V_{\rm DD})$:该脚连接到正电源端,相对于 $V_{\rm SS}$,从 6V 至 $12V_{\rm S}$

脚 $6(I_{RED})$:对外 npn 晶体管,这脚输出正的基极电流,可驱动 IR 发射器。β大于 100。 I_{RED} 输出无效,报警和可见 LED 输出有效。

脚 7(I/O):该脚允许连接多个检测器。如果本地有烟发生,该脚电位变高。在备用型式,当有输入时,该脚采样每次为 1.35 秒。该脚在芯片上有一个下拉电阻,如果不用,必须从左断开。在应用时,串联限流电阻至其他烟报警电路。

脚 8(HORN₁报警);

脚 9(HORN。报警):

脚 10(FEEDBACK 反馈):8.9.10 脚与外无源元件和压电传感器相连。 $HORN_1$ 连接金属电极, $HORN_2$ 连接 陶瓷电极,FEEDBACK 输入到反馈电极。如反馈脚不用,它必须连接 V_{DD} 或 V_{SS} 。

脚 11(LED):开漏 NMOS 输出,用于直接驱动可见 LED。

脚 $12(OSC\ CAP\ 振荡器电容)$:在该脚和 V_{DD} 之间接一电容,并联一电阻,构成振荡器并设定内时钟。元件值如电路图所示,振荡周期是 11ms。

脚 13(TIMING RES):在该脚和 12 脚间连一电阻,构成振荡器并设定内时钟时间,元件值如电路图所示,周期时间为 105 µs。

脚 14(V_{ss}):该脚连负电源(通常接地)

脚 15(HUSH):如 I/O 脚电位高,此脚控制放大器增益电容。如果脚 15 低,选择标准增益,放大器输出在脚 1。如脚 15 高,选择监控增益,放大器输出在脚 2。

脚 16(TEST):该脚有内下拉器件,用于测试型式和定时器型式。

最大绝对额定值:

电源电压范围 V_{nn}

 $-0.5 \sim 15 \text{V}$

输入电压范围, $V_{\rm IN}$

 $-0.3 \sim V_{\rm DD} + 0.3 \text{V}$

输入电流, $I_{\rm IN}$

10mA

工作温度, T_{Λ}

 $0 \sim 50 \, \text{C}$

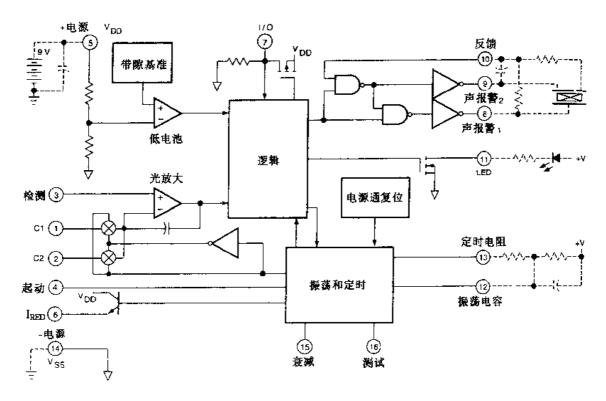


图 5-64 电路功能方块图

存储温度, T_S

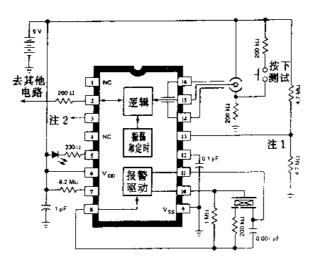
- 55 ~ 125℃

直流参数(T_A = 25°C, V_{SS} = 0V)

参 数	测试条件	符号	测试点	V_{DD}	单位	最小	典型	最大
电源电压范围		V _{DD}	5	-	v	6.0		12
	平均备用		5	12	μΑ		_	12
L作电源电流	选通 ON, IRED OFF	I_{DD}	5	12	mA			2.0
	选通 ON, IRED OFF		5	12	mA	_		3.0
			7	9	V	- <u> </u>		1.5
		1/	10	9	V			2.7
备入低电平		V_{1L}	16	9	V	-	- - - -	7.0
			15	9	V	-	-	0.5
	-		7	9	v	3.2	· -	
		•	10	9	v	6.3	-	_
俞 人高电平		V_{DH}	16	9	v	8.5		-
			15	9	V	1.6		
第由平输 入糧电流	V _{IN} = V _{DD} 选通有效 脚 12, V _{DD}	I _{DH}	1,2	12	nА	-	-	100
d.C. Lamo, char. Cour	$V_{\rm IN} = V_{\rm DD}$		3,10,12	12	пA			100
	V _{IN} = V _{ST} 选通有效 脚 12 V _{OD}	,	1,2,3	12	пA	- 100	-	-
氐电平输入漏电流		I _{IL}	10,12	12	nA	100	-	-
	$V_{\rm IN} = V_{\rm SS}$		15	12	nA	- 100		
	$V_{\rm DN} = V_{\rm DD}$		16,15	9	μA	0.5	_	10
♠入反向电流	V _{IN} = V _{DD} , 无本地烟	$I_{ m I\!N}$	7	9	μA	20		80
	V _{IN} = 17V 无本地烟		7	12	μΑ	_		140
<u> </u>	$I_0 = 10$ mA		11	6.5	v	_		0.6
人高电平 电平输入漏电流 电平输入漏电流	$I_0 = 16 \text{mA}$	V _{OL}	8,9	6.5	V			1.0
H N	$I_{\rm O} = \rm SmA$		13	6.5	v		0.5	_

多数	测试条件	符号	测试点	V _{DD}	単位	最小	典型	
输出高电平	$I_0 = 16 \text{mA}$	V _{OH}	8,9	6.5	V	5.5		_
选通输出电压	无效 $I_0 = -1\mu A$	T/	4	12	V	$V_{DD} = 0.1$		-
	有效、 $I_0 = 100 \sim 500 \mu A$	V_{Sf}		9	V	$V_{DD} = 4.75$	_	V _{DD} - 5.25
电源稳压	有效 V _{DD} = 6~12V	$\Delta V_{\rm ST}(\Delta V_{\rm DD})$. –	dВ	_	- 60	-
选通温度系数	$V_{\rm DD} = 6 \sim 12 \rm V$	a_{ST}	4	-	%/°C	_	0.01	_
I _{RED} 输出电压	I ₀ = IμA	12	6	12	V	_	_	0.1
LRED和山电压	I ₀ = -6mA 有效	V _{IRED}		9	v	2.85	3.1	3.35
稳压器	V _{DD} =6~12V 有效	$\Delta V_{\rm JREO}(\Delta V_{\rm DD})$			dВ		- 35	_
I _{RED} 温度系数	$V_{\rm DD} = 6 \sim 12 \mathrm{V}$	a _{IRED}	6		%/°C	-	+0.40	-
高电平输出电流	V _{pn} =报警,I/0 有效	7	7	9	m A	-6.0	_	_
	$V_{\rm D} = V_{\rm DD} - 3V$	I _{QH}						
断漏电流高	$V_{\rm D} = V_{\rm DD}$	I _{ca.}	11,13	12	μΑ	_	_	1.0
断漏电流低	$V_{\rm b} = V_{\rm SS}$	I _{ce}	11,13	12	μ A	_	_	-1.0
低 V _{DD} 报警阈值		$V_{\rm DD(th)}$	5	-	v	6.9	7.2	7.5
共模电压	任何报警条件	$V_{\rm IC}$	1,2,3	-	V	$V_{\rm DD}-4$		V _{DD} - 2

交流参数(T_A = 25℃, V_{SS} = 0V)


参 数	測试条件	符号	测试点	$V_{ m Db}$	単位	最小	典型	最大
振荡器周期		t _{osc}	12	9	ms	9.4	10.5	11.5
前置脉冲周期	无本地或遥控烟	l _{lod1}	11	9	s	39	_	48
	具有遥控烟	t _{led2}	11	9	- s	None	-	_
	本地烟或测试	t _{lod3}	11	9	8	0.60	0.67	0.74
	定时器型式,无报警	t_{led4}	11	9	s	9.67	10.8	11.8
前置脉冲宽度		$t_{w(led)}$	11	9	ms	9.5	-	11.5
选通脉冲周期	无本地或遥控烟	t _{ell}	4	9	9	9.6	_	11.9
	1/3后取样有效	t _{et2}	4	9	s	2.42	2.70	2.96
	2/3 后取样有效	t #13	4	9	s	1.21	1.34	1.47
	遥控报警	£ _{se4}	4	9	s	9.67	10.8	11.8
	检测盒测试,低电压测试,无 本地报警	i _{se} s	4	9	s	38.9	_	47.1
	按下测试,无报警	t _{m6}	4	9	ms	300	336	370
选通脉冲宽度 I _{RED} 脉冲周期		$t_{w(st)}$	11	9	ms	9.5		11.5
	无本地或遥控烟	t ired)	4	9	8	9.6		11.9
	1/3后有效取样	lired∑	4	9	s	2.42	2.70	2.96
	2/3 后有效取样	Livel3	4	9	s	1.21	1.34	1.47
	遥控报警	t ired4	4	9	9	9.67	10.8	11.8
	检测盒测试, 无本地烟	$t_{ m iredS}$	4	9	5	38.9		47.1
	按下衡试,无报警	t ireds	4	9	ms	300	336	370
RED 脉宽		$t_{\mathrm{w(ired)}}$	6	9	līs	94	_	116
RED上升时间		$t_{ m r(ired)}$	6		μs	_	_	30

交流参数(T_A = 25℃, V_{SS} = 0V)

200 35 34 (1 A - 20 C ; 1 S - C)								
参 数	测试条件	符号	测试点	$V_{ m DD}$	单位	最小	典型	最大
IRED下降时间		$t_{ m f(ired)}$	6		με	<u> </u>	_	200
I/O 到有效延迟	本地报警	l _{d(io)}	7	9	s	_	0	
1/0 上升滑至报警	无本地报警	$t_{r(io)}$	7	9	5	_	_	1.34
声报警加热脉冲周期	低电源和降低检测盒灵敏度	t kom	8,9	9	s	38.9	-	47.1
声报警加热脉冲宽	低电源和降低检测盒灵敏度	$t_{\kappa(non)}$	8,9	9	ms	9.5	_	11.5
声报警通时间	本地或遥控报警	$t_{ m on(horn)}$	8,9	9	ms		252	
声报警断时间	本地或選控报警	t _{off(born)}	8,9	9	ms	_	84	

A5350 型烟雾检测器电路

用途:用于检测烟雾和环卫防尘等场合。

注:1.对特定烟雾盒,用外接电阻分压器调节灵敏度,设定检测灵敏度。

2.在该脚电阻接地或加 V_{DD} ,可调低电池电压阈值。

图 5-65 典型应用电路

图中脚 15 接烟雾检测传感器, 当检测到烟雾时, 脚 8 和脚 10 输出声响报警。

A5350 型烟雾检测器

A5350 是低电流的 CMOS 电路,具有离子烟检测器的全部性能。网络可接 125 个检测器,其中任何一个如检测到烟雾,将发出声响报警。

特点:互连可达 125 个检测器;压电传感器报警驱动;检测器输入有保护;低电池脉冲测试;电源通复位;内有电池反接保护。

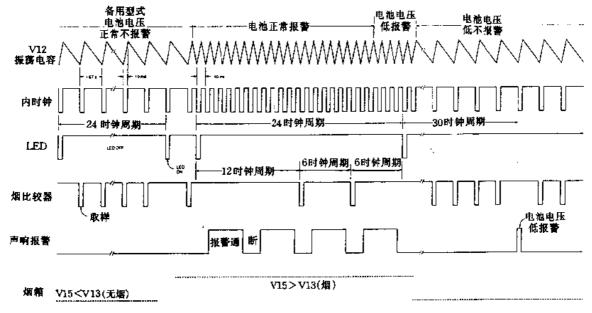
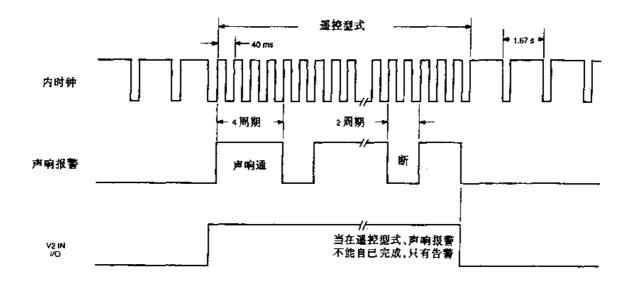



图 5-66(a) 工作时序图

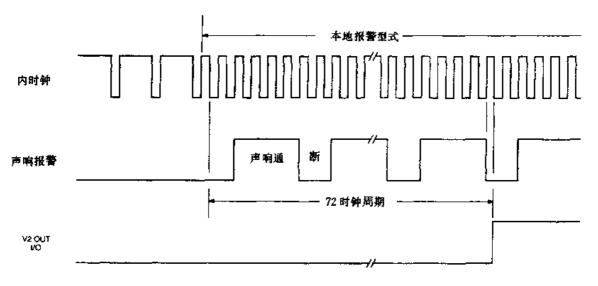
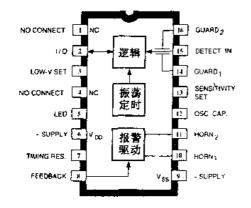



图 5-66(b) I/O 运行时序图

管脚说明:

1.不连接,2.输入/输出,3.低电压设定,4.不连接,5.发光二极管,6.正电源,7.定时器电阻,8.反馈,9.负电源,10.声响报警,11.声响报警2,12.振荡电容,13.灵敏度设定,14.防护1,15.检测器输入,16.防护2。

图 5-67 管脚图

最大绝对额定值 电源电压范围, $V_{\rm DD}$ $-0.5 \sim 15 {\rm V}$ 电池反接 $(10.5 {\rm V})$ $20 {\rm s}$ 输入电压范围, $V_{\rm IN}$ $-0.3 \sim V_{\rm DD} + 0.3 {\rm V}$ 输入电流, $I_{\rm IN}$ $10 {\rm mA}$ 工作温度, $T_{\rm A}$ $0 \sim 50 {\rm C}$ 存储温度, $T_{\rm S}$ $-55 \sim 125 {\rm C}$

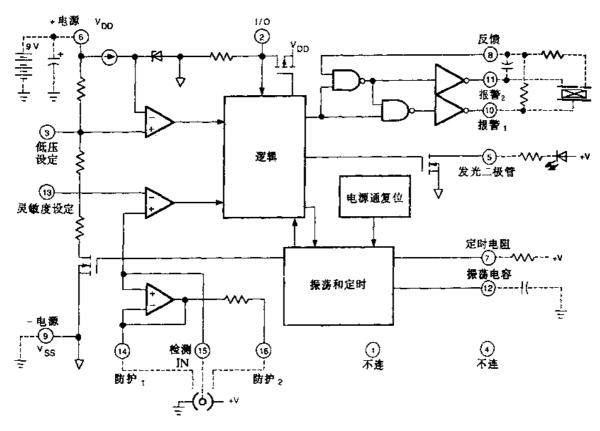
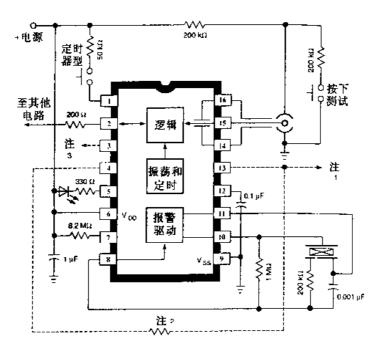


图 5~68 电路功能方块图


参 数	测试脚	测试条件	单位	最小	典型	最大
电源电压范围	6	工作		6.0	9.0	12
检测器输入电流	15	$0 \sim 40\% \text{RH}, V_{\text{IN}} = 0 - 9 \text{V}$	pА	_	_	±1.0
	14 - 15	有效保护	mV	_		± 100
输入偏置电压	16 – 15	有效保护	mV		_	± 100
	15 – 13	检测比较器	тV			± 50
It bear so	14 – 15	保护放大器	v	2.0		$V_{D0} = 0.5$
共模范围	13 – 15	烟比较器	v	0.5		V _{DD} - 2.0
**** (I !\! II !\	14	至 V _{ss}	kΩ	_	10	
有效保护阻抗	16	至 V _{ss}	·kΩ		500	_
<u> </u>		无报警	8	1.34	1.67	2.00
振荡周期	12	报警	7729	32	40	48
报荡脉宽	4		ms	8.0	10	12
低压阈值	6	$T_{\rm A} = 0 \sim 50^{\circ}{\rm C}$	v	7.2		7.8

参 數	测试脚	測试条件	单位	最小	典型	最大
		$I_{\rm OUT} = 16 {\rm mA}$, $V_{\rm DD} = 9.0 {\rm V}$	v	-	0.1	0.5
	100	$I_{\rm OUT} = 16 { m mA}$, $V_{\rm DD} = 7.2 { m V}$	V		_	0.9
声报警输出电压	10 – 11	$I_{\text{ORM}} = -16\text{mA}, V_{\text{DD}} = 9.0\text{V}$	· v	8.5	8.8	_
		$I_{\rm OUT} = -16 \text{mA}, V_{\rm DD} = 7.2 \text{V}$	V	6.3	_	_
去极数格性成功	10 11	报警	ms	120	160	208
声报警接通时间	10 – 11	低电池	ms	8.0	10	12
THE ALL SECTION 10 TO BE COLD	10 11	报警	ms	60	80	104
声报警断 开时间	10 – 11	低电池	s	32	40	48
LED 輸出通电流	5	$V_{\rm DD} = 7.2 \text{V}, \ V_{\rm OCT} = 1 \text{V}$	mA.	10	-	-
LED 输出通时间	5	į.	ms	8.0	10	12
LED 输出断时间	5	无报警,备用 /	s	32	40	48
Turo el ele		无报警 V _{I/0} = V _{DD} − 2V	μΑ	25	-	60
L∕O 电流	2	报警, $V_{\nu 0} = V_{\rm DD} - 2 { m V}$	mA	-7.5		_
1/0 报警电压	2	外报警输入	v	3.0	_	-
1/0 延迟	2	报警 OUT	8	_	3.0	-
. A. MOT. A. No.		V _{DD} = 9V, 无报警, 无负载	μA	-	5.0	9.0
电源电流	6	V _{DD} = 12V, 无报警, 无负载	μA	-	_	12

A5349 型交流烟雾检测电路

用途:用于烟雾检测和安全防范场合。

脚 15 接烟雾检测传感器, 当检测到有烟雾时, 将发出声响报警。脚 14 和脚 16 用于保护 检测器的输入。

注:1.对特定的烟雾检测盒,用外接电阻调节灵敏度,设定灵敏度。

- 2.在定时器型式,选择电阻降低灵敏度。
- 3.在该脚电阻接地或加 V_{DD}可调低电池电压阈值。

图 5-69 典型应用电路

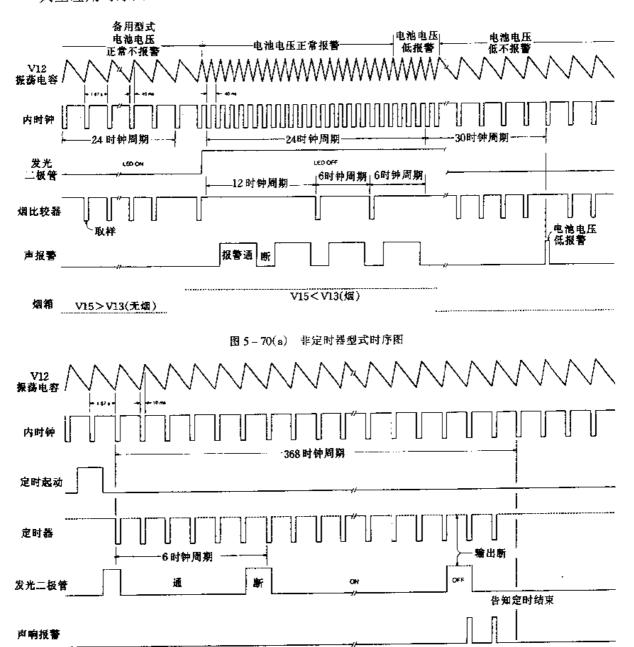


图 5-70(b) 定时器型式时序图

A5349 型交流烟雾检测器

A5349 是一个低电流的 CMOS 电路,具有离子型烟雾检测器所需的全部特性。网络可连 125 个检测器,其中任何一个如检测到烟雾,将引起声响报警。

特点:可连接 125 个检测器;压电传感器报警驱动;检测器输入有防护;低电源电压检测; 电源通复位;内部定时器和控制可降低灵敏度;内有迟滞降低误触发。

最大绝对额定值

电源电压范围, $V_{\rm DD}$

输入电压范围, $V_{\rm IN}$

 $-0.3 \sim V_{\rm DD} + 0.3 \text{V}$

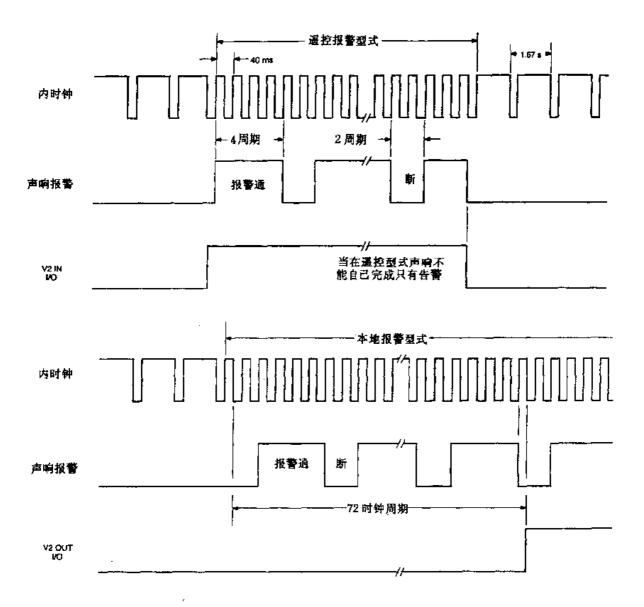
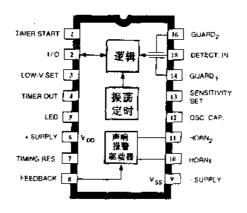



图 5-70(c) 1/0 运行方式时序图

管脚说明:

- 1. 定时器启动, 2. 输入/输出, 3. 低电压设定,
- 4、定时器输出,5.发光二极管,6.正电源,
- 7. 定时器电阻,8. 反馈,9. 负电源,10. 声响报警 1,11 声响报警 2,12. 振荡电容,13. 灵敏度设定,14. 防护 1,15. 检测器输入,16. 防护 2。

图 5-71 管脚图

输人电流, $I_{\rm IN}$ 工作温度, $T_{\rm A}$ 存储温度, $T_{\rm S}$

10mA 0 ~ 50℃ - 55 ~ 125℃

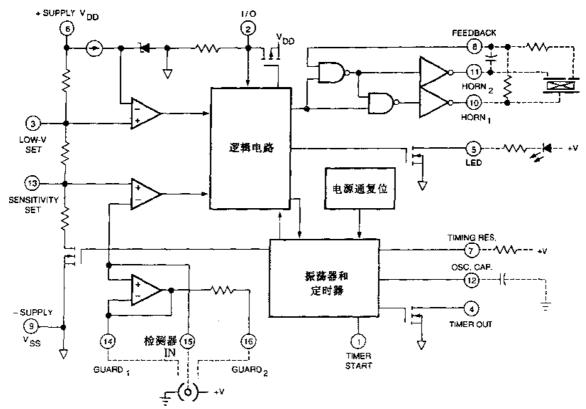
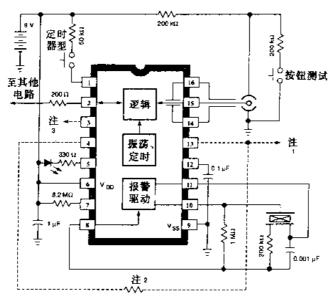


图 5-72 电路方块图


技术参数($T_{\rm A}=25\%$, $V_{\rm DD}=9{
m V}$, $V_{\rm SS}=0{
m V}$, $C_{12}=0.1\mu{
m F}$, $R_7=8.2{
m M}\Omega$)

参 数	測试脚	测试条件	单位	最小	典型	最大
电源电压范围	6	工作	V	6.0	9.0	12
检测器输入电流	15	$0-40\% \text{RH}, V_{\text{IN}} = 0 \sim 9 \text{V}$	pΑ			±1.0
	14 – 15	有效防护	V			± 100
输入偏置电压	16 – 15	有效防护	mV	_		± 100
	15 – 13		mV	<u> </u>		± 50
迟滞	13	无报警	mV_	_ 90	130_	170
共模范围	14 – 15	保护放大器	V	2.0		$V_{DD} = 0.5$
光快 化图	13 – 15		V	0.5		$V_{DD} - 2.0$
实际报警阻抗	14	至 V _{SS}	kΩ		10	-
头阶双音胜犯	16	至 V _{SS}	kΩ	-	500	
长华园 44	12			1.34	1.67	2.00
振荡周期		报警	ms	32	40	48
振荡脉宽	4		nıs	8.0	10	12
定时器周期	4	脚 1 后, 高至低, 无烟	min	8.0	10	12
係压阈值	_ [_ 6	$T_{\rm A} = 0 \sim 50 {\rm ^{\circ}C}$		7.2		7.8
灵敏度调节电压	13	V ₁₃ /V _{DD} ,脚 13 开路	%	48.5	50	51.5
•		$I_{\rm OUT} = 16 \text{mA}$, $V_{\rm DD} = 9 \text{V}$	V	-	0.1	0,5
表相类体加工	10 11	$I_{OUT} = 16mA$, $V_{DD} = 7.2V$	- v	· -	-	0.9
声报警输出电压	10 – 11	$I_{\text{OUT}} = -16 \text{mA}$, $V_{\text{DD}} = 9 \text{V}$	v	8.5	8.8	
	į i	$I_{\rm OUT} = -16 {\rm mA}, V_{\rm DD} = 7.2 {\rm V}$	V	6.3	-	
	1	报警	ms	120	160	208
声报警接递时间	10 – 11	低电池	ms	8.0	10	12
		报警	ins	60	80	104
声报警断时间	10 – 11	低电池	- s	32	40	48
		V _{IH}	v	3.5	_	_
定时器启动逻辑电平] 1 j	V _{II.}	V			1.5
定时器启动输入电流		$V_{\text{IN}} = 9\text{V}$	μA	20		80
定时器输出电流	4	$V_{\text{curr}} = 0.5\text{V}$	μA	500		
LED 输出通电流	5	$V_{\text{DD}} = 7.2 \text{V}, V_{\text{OUT}} = 1 \text{V}$	mA	10		
<u> </u>		本地报警	- 1			
LED 输出通时间	5	定时器型,无报警			8.35	

							-24.00
参	数	测试脚	测试条件	单位	最小	典型	最大
LED 输出断时间		_	无报警,备用				
एटक सहित्य हो भगे ज		J	无报警,定时器型,脚1高至低	5		1.67	
1/0电流		_	无报警 V _{VO} = V _{DD} - 2V	μ A	25	_	60
			报警,V _{L/O} = V _{DD} - 2V	mA	- 7.5	_	_
1/0报警电压		2	外报警输入	V	3.0	_	_
1/0 延迟		2	报警输出	8	-	3.0	_
电源电流		4	<i>V</i> _{pp} = 9V,无报警,无负载	μ A	+	5.0	9.0
电哪电机		6	V _{DD} = 12V, 无报警, 无负载	μA		_	12

A5348 型烟雾报警检测电路

用途:用于火灾报警和环卫检测等场合。

- 注:1.对特定烟雾盒,用外电阻调节灵敏度。
 - 2.在定时器型式,选择电阻可降低灵敏度。
 - 3.在该脚电阻接地或加 V_{DD} 可调低电池电压阈值。

图 5-73 烟雾检测电路

电路中脚 15 是烟雾检测传感器的输入脚,脚 14 和脚 16 用于保护检测器的输入。 典型应用时序图

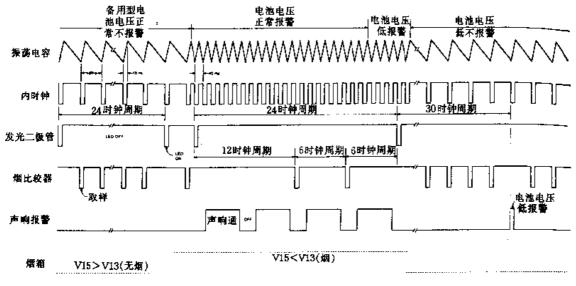


图 5-74(a) 本定时器型时序图

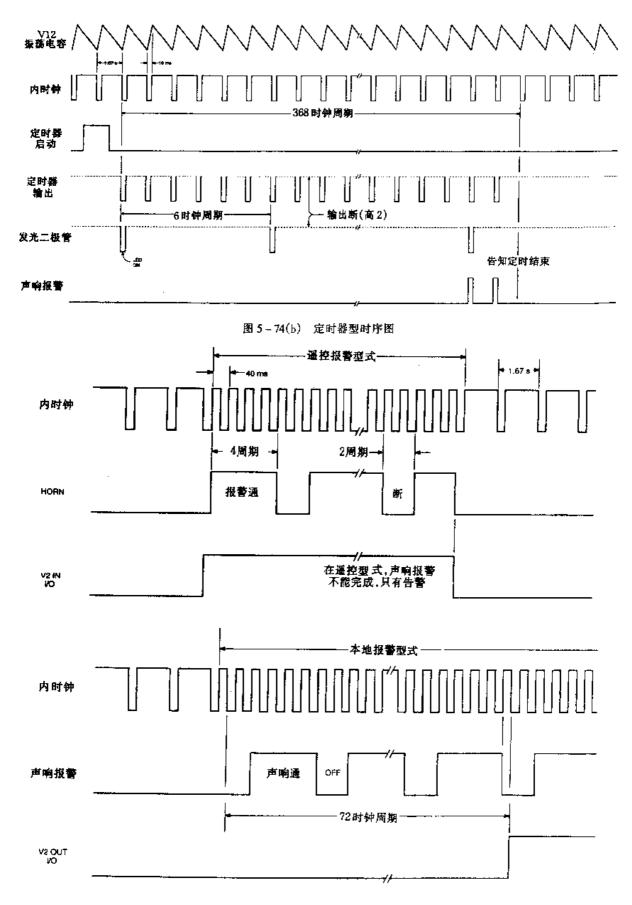
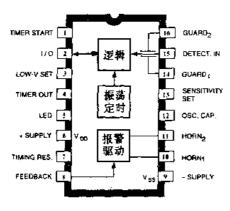



图 5-74(e) L/O 运行时序图

A5348 型烟雾检测器

A5348 是一个低电流 CMOS 电路, 具有离子型烟雾检测器的全部特性。一个网络可连接 125 个检测器, 其中任何一个烟雾检测器如检测到烟雾, 都能引起声响报警。

特点:可连接 125 个检测器;压电传感器报警驱动;检测器输入有保护;低电池脉冲测试; 电源通复位;内部反向电池保护;内部定时器和控制可降低灵敏度;内有迟滞降低误触发。

管脚说明:

1.定时器启动,2.输入/输出,3.低电压设定,4. 定时器输出,5.发光二极管,6.正电源,7.定时器电阻,8.反馈,9.负电源,10.声响报警 1,11. 声响报警 2,12.振荡电容,13.灵敏度设定,14. 防护 1,15.检测器输入,16.防护 2。

图 5-75 管脚图

最大绝对额定值 电源电压范围, $V_{\rm DD}$ $-0.5 \sim 15 {\rm V}$ 电池反接 $(10.5 {\rm V})$ $20 {\rm s}$ 输入电压范围, $V_{\rm IN}$ $-0.3 \sim V_{\rm DD} + 0.3 {\rm V}$ 输入电流, $I_{\rm IN}$ $10 {\rm mA}$

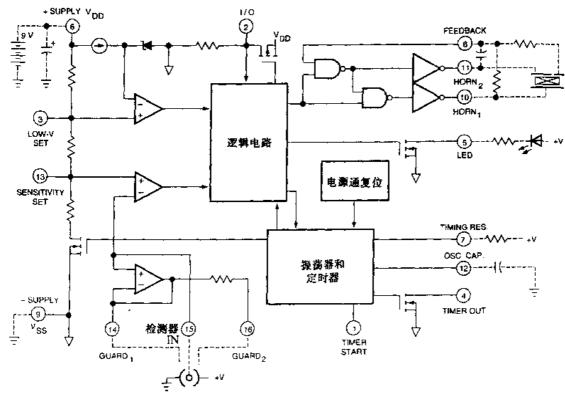


图 5-76 电路功能方块图

0 ~ 50℃

- 55 ~ 125℃

技术参数($T_{\rm A} \approx 25 {\rm ^{\circ}C}$, $V_{\rm DD} = 9 {\rm V}$, $V_{\rm SS} = 0 {\rm V}$, $C_{12} = 0.1 \mu {\rm F}$, $R_7 = 8.2 {\rm M}\Omega)$

参 数	測试脚	测试条件	单位	最小	——— 典型	 最人
电源电压范围	6	工作	v	6.0	9.0	12
	15	$0 \sim 40\% \text{RH}, V_{\text{IN}} = 0 \sim 9 \text{V}$	pA			± 1.0
	14 - 15	有效保护	mV			± 100
输入偏置电压	16 – 15	有效保护	mV			± 100
	15 – 13	检测比较器	Via	_		± 50
	13	无报警	mV	90	130	170
	14 - 15	保护放大器	- v	2.0	-	V _{DD} = 0.5
共模范围	13 - 15	烟雾比较器	v			$V_{DD} = 0.3$ $V_{DD} = 2.0$
· · · · - · · · · · · · · · · · · · ·			+	0.5		· · · · · ·
实际报警阻抗	14	至 V _{SS}	kΩ	_	10	
<u>.</u>	! 16	至 V _{ss}	kΩ		500	
振荡周期	12	无报警	s	1.34	1.67	2.00
····		报警	ms	32		48
振荡脉冲宽度	4		ms	8.0	10	12
定时器周期	4	脚 1 后, 高至低, 无烟	min ,	8.0	10	12
低压阈值	6	$T_{\rm A} = 0 \sim 50^{\circ}{\rm C}$	v	7.2	-	7.8
灵敏度调节电压	13	V _{t3} /V _{DD} 脚 13 开路	%	48.5	50	51.5
- 1		$I_{\text{OUT}} = 16 \text{mA}$, $V_{\text{DD}} = 9 \text{V}$	v		0.1	0.5
卢报警输出电 压	10 11	$I_{\text{OUT}} = 16 \text{mA}$, $V_{\text{DD}} = 7.2 \text{V}$	V	_	_	0.9
严拟者和山 电压	10 – 11	$I_{\text{OUT}} = -16\text{mA}, V_{\text{OD}} = 9\text{V}$	v	8.5	8.8	-
		$I_{\text{OUT}} = -16 \text{mA}, V_{\text{DD}} = 7.2 \text{V}$	V	6.3	_	-
声报警输出通时间	10 – 11	报警	ms	120	160	208
		低电池	ms	8.0	10	12
声报警输出断时间	10 – 11	报警	ms	60	80	104
		低电池	6	32	40	<u>48</u>
定时器启动逻辑电平	. 1	V _{IH}	V V	3,5		
		V _E .	V		<u> </u>	1.5
定时器启动输入电流	1	$V_{\rm IN} = 9V$	μA	20		80
定时器输出电流	4	$V_{\text{OUT}} = 0.5V$	μA	500	<u>-</u>	
LED 輸出通电流	5	$V_{\rm DD} = 7.2 \text{V}, \ V_{\rm OUT} = 1 \text{V}$	mA	10		
LEID 输出通时间	5	.	ms	8.0	10	12
LED 輸出断时间	5	无报警,备用	s	32	40	48
		无报警,定时器型,脚1后高至低	s	8.0	10	12
1/0 电流	2	无报警 V _{VO} = V _{DD} − 2V	μA	25		60
		报警, V _{VO} = V _{DD} - 2V	mA	-7.5		-
1/0报警电压	2	外报警输人	V	3.0		
L/O 延迟 ————————————————————————————————————	2	报警输出	8	-	3.0	
电源电流	6	V _{DD} = 9V, 无报警, 无负载	μΑ	-	5.0	9.0
		V _{DD} = 12V, 无报警, 无负载	μA			12

A5347 型烟雾检测应用电路

用途:用于防火和环卫烟雾的检测。

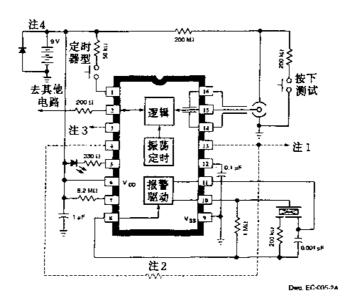


图 5-77 A5347 烟雾检测电路

注:1.用一个外接电阻对特定烟箱调节灵敏度

- 2.在定时器型式,选择电阻减小灵敏度
- 3. 电阻接地或加在该脚 Vpp可调低电池电压阈值
- 4.用外电池时,必须用反接保护

电路中的烟雾传感器接 15 脚, 当烟雾被检测到时, 发出声响报警。脚 16 和脚 14 用于保护检测器的输入。

应用时序图

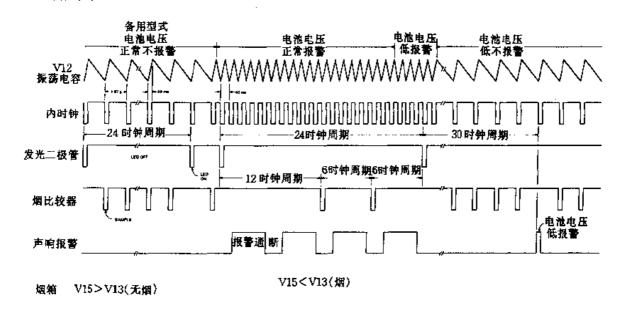


图 5-78(a) 非定时器型时序

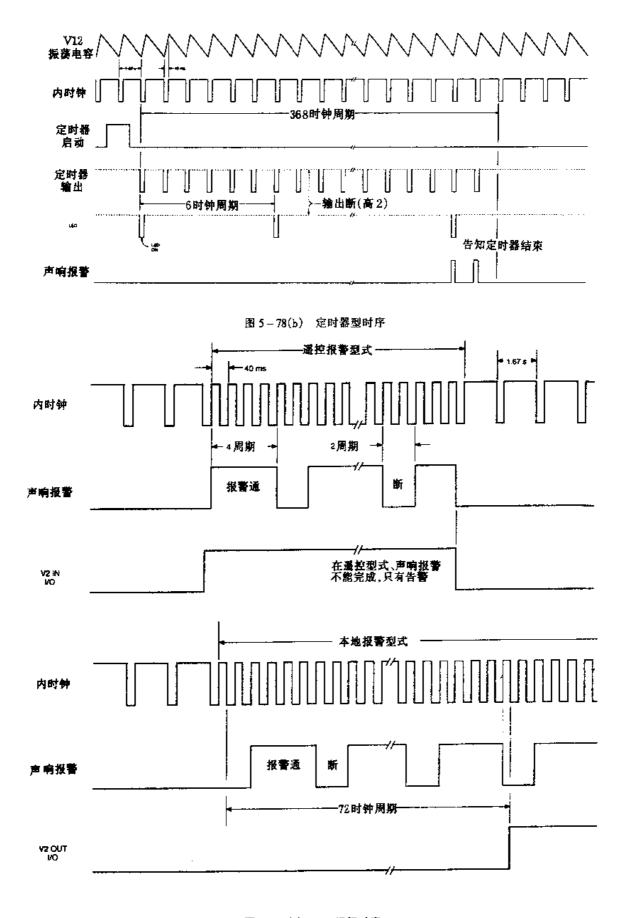
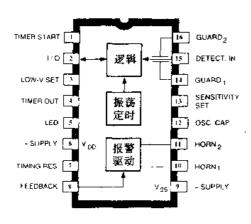



图 5 - 78(c) 1/0 运行时序

A5347 型烟雾检测器

A5347CA 是一个低电流 CMOS 电路,具有离子型烟雾检测器所需的全部性能。一个网络允许连接 125 个敏感烟雾检测器,均会发出声响和报警。工作温度范围为 0~50℃。

特点:互相连接可达 125 个检测器;压电传感器报警驱动器;检测器输入有保护;脉冲测试 用低压电池;电源接通复位;内部定时器和控制器可降低灵敏度;内有迟滞降低误触发。

管脚说明:

1.定时器启动,2.输入/输出,3.低电压设定,4. 定时器输出,5.发光二极管,6.正电源,7.定时器电阻,8.反馈,9.负电源,10.声响报警1,11. 声响报警2,12.振荡电容,13.灵敏度设定,14. 防护1,15.检测器输入,16.防护2。

图 5-79 管脚图

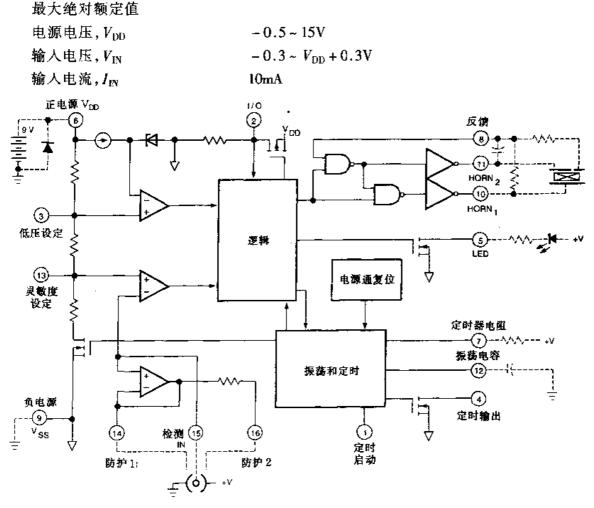
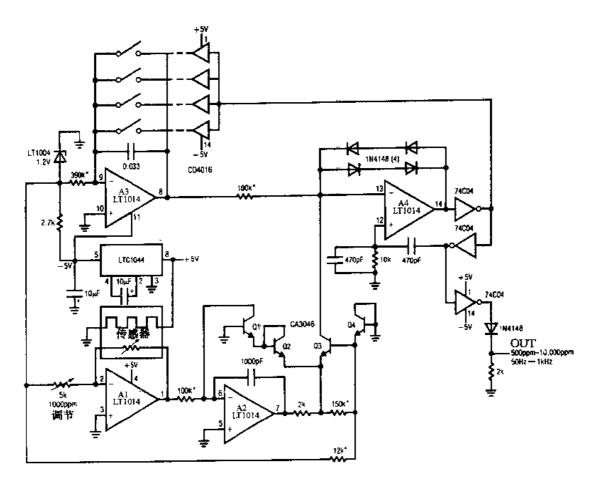


图 5-80 电路功能方块图

存储温度, $T_{\rm S}$

- 55 ~ 125℃

技术参数($T_{\rm A}=25$ °C , $V_{\rm DD}=9{\rm V}$, $V_{\rm SS}=0{\rm V}$, $C_{12}=0.1\mu{\rm F}$, $R_7=8.2{\rm M}\Omega$)


参数	测试脚		単位	最小	典型	最大
电源电压范围	6	工作	V	6.0	9.0	12
检测器输入电流	15	$0 \sim 40\% \text{ RH}, V_{\text{IN}} = 0 \sim 9\text{V}$	pΑ			±1.0
·	14 – 15	有效保护	mV	[_ -		± 100
输入偏置电压	16 - 15	有效保护	mV	_	_	± 100
	15 – 13	检测比较器	mV	_		± 50
迟滞	13	无报警	mV	90	130	170
共模范围	14 – 15	保护放大器	v	2.0		$V_{DD} = 0.5$
大快心国	13 – 15	烟比较器	V	0.5	_	$V_{DD} - 2.0$
实际报警阻抗	14	至 V _{ss}	kΩ		10	
头外 仅 省胜机	16	至 V _{SS}	kΩ	_	500	_
振荡周期	10	无报警	8	1.34	1.67	2.00
你访问别	12	报警	ms	32	40	48
振荡脉冲宽度	4		ms	8.0	10	12
定时器周期	4	脚1后,高至低,无烟	min	8.0	10	12
低压阈值	6	$T_{\rm A} = 0 \sim 50^{\circ}{\rm C}$	V	7.2		7.8
灵敏度调节电压	13	V ₁₃ /V _{DD} ,脚 13 开路	%	48.5	50	51.5
· · · · · · · · · · · · · · · · · · ·		$I_{\text{OUT}} = 16\text{mA}, V_{\text{DD}} = 9\text{V}$	v	-	0.1	0.5
士和学校 的本年		$I_{OUT} = 16 \text{mA}, V_{DD} = 7.2 \text{V}$	V	_		0.9
声报警输出电压] 10 - 11	$I_{OUT} = -16 \text{mA}, V_{DD} = 9 \text{V}$	v	8.5	8.8	_
	:	$I_{\rm OUT} = -16 \text{mA}, V_{\rm DD} = 7.2 \text{V}$	v	6.3	_	_
** +17 着 +54 +() +27 ※ c.+ (コ	10 11	报警	ms	120	160	208
声报警输出接通时间	10 - 11	低电池	ms	8.0	10	12
SECULATION OF THE SECULATION	40 44	报警	ms	60	80	104
声报警输出断开时间	10 - 11	低电池	8	32	40	48
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		$v_{\mathrm{iH}}$	v	3.5	_	_
定时器启动逻辑电平		$V_{1L}$	v			1.5
定时器启动输入电流	ı	$V_{\rm EN} = 9V$	μΑ	20		80
定时器输出电流	4	$V_{\text{OUT}} = 0.5 \text{V}$	μА	500		_
LED 输出通电流	5	$V_{\rm DD} = 7.2 \text{V}, V_{\rm OUT} = 1 \text{V}$	mA	10		
LED 輸出通时间	5		ms	8.0	10	12
r per 66 i li Norma 60		无报警,备用	В	32	40	48
LED 輸出断时间	5	无报警,定时器型,脚1后,高至低	S	8.0	10	12
I/O dt 32		无报警 V _{V0} = V _{D0} − 2V	μA	25		60
1/0 电流	2	报警, V _{VO} = V _{DD} ~ 2V	mA	-7.5		
1/0 报警电压	2	外报警输人	v	3.0	-	_
V0 延迟	2	报警输出			3.0	-
		V ₀₀ = 9V, 无报警, 无负载	μΑ		5.0	9.0
电源电流	6	V _{DD} = 12V, 无报警, 无负载	μΑ	_		12

生产厂家: Allegro MicroSystems, Inc.

# 5.7 气体传感器应用电路

# 气体浓度传感检测电路

用途:用于甲烷和沼气浓度的检测



注:*1%金属膜电阻,传感器#J4-807或#813 LT1014 为运放电路。 图 5-81 线性输出的甲烷、沼气浓度检测器

生产厂家:LINEAR TECHNOLOGY

## NEMOTO NAP-66A 型煤气传感器应用电路

NAP-66A 是接触燃烧式 LP 煤气传感器

用途:应用于各种煤气浓度计、LP煤气泄漏报警器以及核对酒精浓度等场合。

特点:稳定性高,再现性和精度好,煤气浓度的输出信号具有良好的线性,响应速度好,为超小型报警器的设计提供了很大的自由度。

#### 额定值:

电桥外加电压: AC,2.0±0.20V, DC,2.0±0.20V。 电桥外加电流: AC,150~170mA, DC,150~170mA。 工作温、湿度: 温度, -10~50℃, 湿度,95% RH 以

存储温、湿度;温度, -20~60℃,湿度,95% RH 以下。

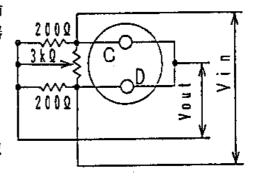



图 5-82 NAP-66A 型传感器工作电路

下。

# NEMOTO NAP - 55A 型煤气传感器应用电路

NAP-55A 是日本根本特殊化学株式会社生产的接触燃烧式传感器。

用途:城市内的煤气泄漏报警器和各种煤气浓度计。

特点:稳定性高,再现性和精度好,煤气浓度的输出信号具有良好的线性,响应速度高,为超小型报警器的设计提供了很大的灵活性。

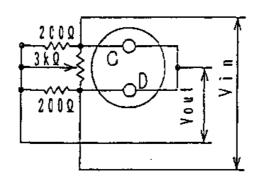



图 5-83 NAP-55A 型传感器电路

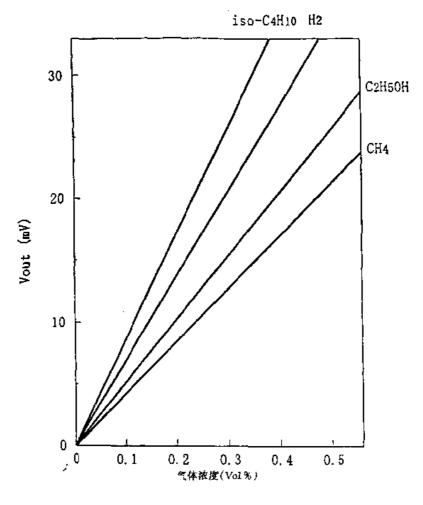
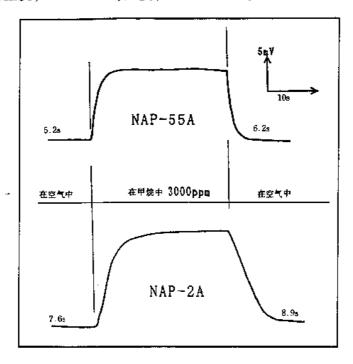




图 5-84 NAP-55A 型的气体灵敏度特性

### 额定值

电桥外加电压: AC, 2.5±0.25V, DC, 2.5±0.25V。 电桥外加电流: AC, 160~180mA, DC, 160~180mA。 (2~5V 外加电压时)

工作温、湿度:温度, -10~50℃,湿度,95%RH以下。 存储温、湿度:温度, -20~60℃,湿度,95%RH以下。



图中的时间 90%响应的时候

图 5-85 NAP-55A 型的响应特性

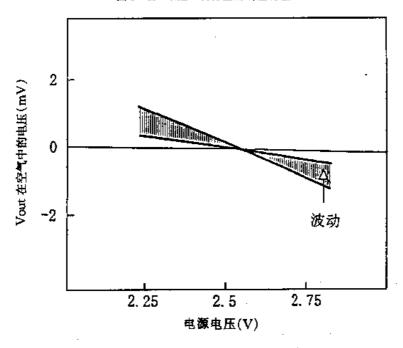



图 5-86 空气中输出值的电源电压变动特性

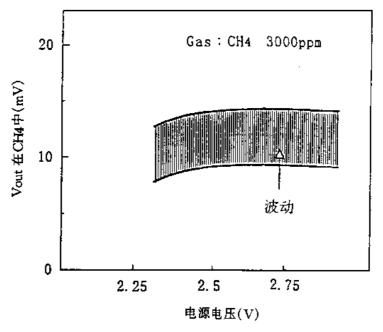



图 5-87 NAP-55A 型在气体中输出值的电源电压变动特性

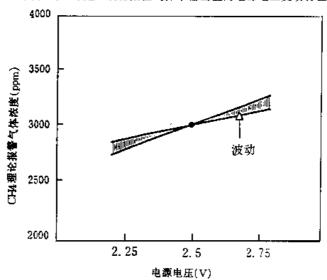



图 5-88 理论报警浓度值电源电压变动特性

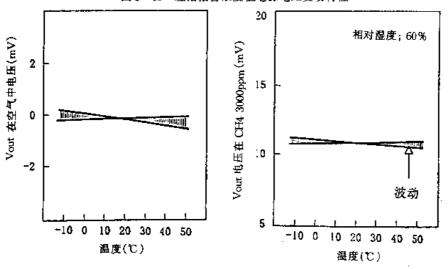



图 5-89 NAP-55A 型温度特性

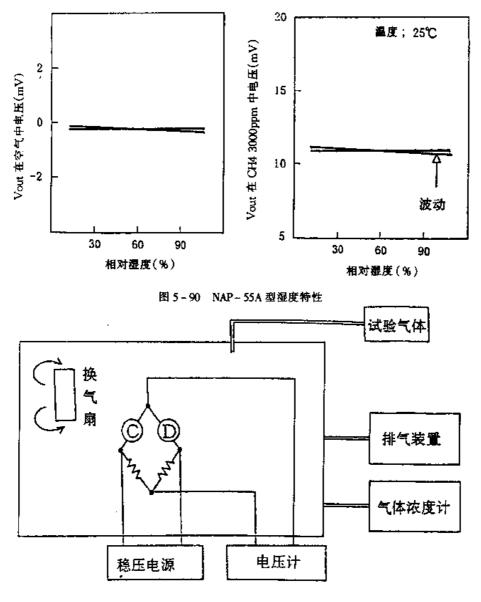



图 5-91 传感器试验装置方块图

试验槽应用注意

### 1) 试验槽

试验槽不能使用产生气体或粘度高的材料,建议使用金属或玻璃之类的材料制成的盛器。

试验槽内的容积要确保1个器件的容积在1升以上。

2) 供给空气

请使用清洁的户外空气,不要使用含有有机溶剂、可燃性气体的工场内的空气。

3) 气体浓度计

在煤气浓度的测定上,请利用能吸收红外线的测定器。

4) 气体的搅拌

气体的搅拌,请注意传感器不要直接对着强风,请向传感器吹入风速为 0.5m/s 以下微风。

5) 电源

传感器是交直流两用的,但是在进行正确测定的时候,请使用直流额定电压电源。

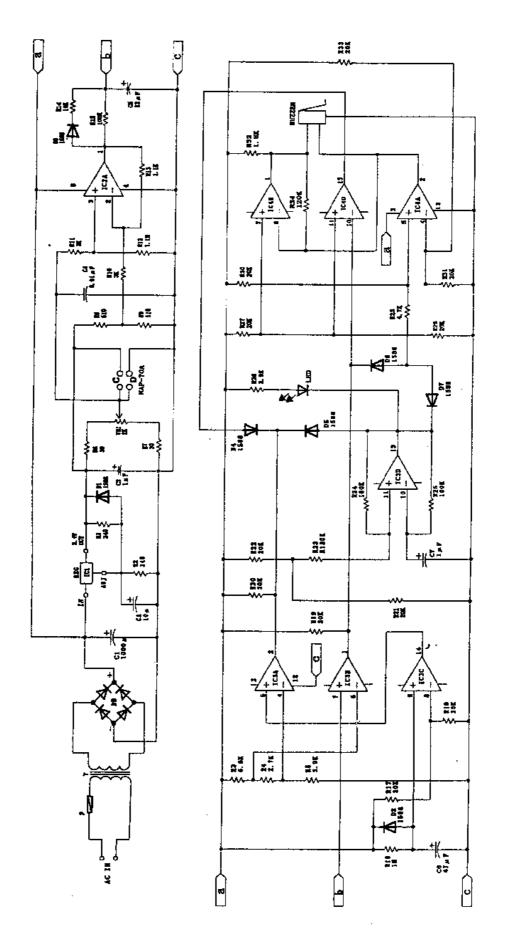



图 5-92 一氧化碳检测器推荐电路

#### 6) 电压计

传感器电桥外加的输出电压的测定,请使用输入阻抗 100kΩ 以上的电压表。

#### 7) 气体的排出

用具有每分钟相当于试验槽容积 10 倍以上的排气能力的排风机进行换气。

### 8) 试验槽内传感器的设置

把传感器放入试验槽内的时候,请将传感器按相同的方向放置,通常是水平方向。因为放 人方向如发生变化,在进行精密测定时会产生误差。

#### 气体浓度的调整

请依据容积法或者利用吸收红外线的浓度计进行浓度调整。用容积法进行浓度调整,按以下公式计算.

$$V(ml) = Vi \cdot C \cdot 10^{-6} \cdot \frac{273 + Tr}{273 + Tc}$$

V:注入气体的容器

Vi;试验槽容积(ml)

C:调整气体浓度(ppm)

Tc:试验槽内的温度(℃)

Tr:室温(℃)

传感器的测定方法

#### 1) 预备通电

传感器测定之前,给器件施加额定电压,预先进行 1h 以上的预热。

#### 2) 测定

先测定空气中输出值,待测定值稳定之后,再进行确认。

向试验槽内注入定量的气体,经过气体扩散后(通常 lmin 左右)再测定气体中的输出值。测定完毕之后,请将试验槽内的气体强行排出。

使用传感器的注意事项:

传感器不能跌落或用力撞击。

使用传感器时,请尽量避开腐蚀气体和有害煤气经常出现的场所。不能把器件浸入水中。

NAP - 55A/NAP - 66A/NAP - 70A 型不完全燃烧报警电路配套元件表

ICI	LM317 或 µPC317	R16	1MΩ 1/8W C
1C2	LM358 或 µPC358	R17	20kΩ 1/8W C
IC3	LM339 或 µPC339	R18	20kΩ 1/8W C
IC4	LM339 或 , PC339	R19	20kΩ 1/8W C
DB	TD2 · B	R20	20kΩ 1/8W C
D1 ~ D7	1588	R21	20kΩ 1/8W C
LED	红(灭灯时:黑色),电压1.7V	R22	20kΩ 1/8W C
R1	240Ω 1/8W C	R23	180kΩ 1/8W C
R2	240Ω 1/8W C	R24	100kΩ 1/8W C
R3	5.6kΩ 1/8W C	R25	100kΩ 1/8W C
R4	2.7kΩ 1/8W C	R26	3.9kΩ 1/8W C
R5	3.9kΩ 1/8W C	R27	20kΩ 1/8W C
R6	30Ω 1/8W C	R28	4.7kΩ 1/8W C
R7	30Ω 1/8W C	R29	20kΩ 1/8W C
R8	510Ω 1/8W M	R30	20kΩ !/8W C
R9	510Ω 1/8W M	R31	20kΩ 1/8W C
RIO	3kΩ 1/8W M	R32	1.8kΩ 1/8W C
RH	3kΩ 1/8W M	R33	20kΩ 1/8W C
R12	1.1MΩ 1/4W M	Cl	1000µF 25V 电解

R13	1.1MΩ 1/4W M	C2	10μF 50V 电解
R14	10kΩ 1/8W C	C3	1μF 50V 电解
R15	100kΩ 1/8W C	C4	0.01μF
C5	22μF 16V 电解		
C6	47年 50V 电解		
C7	1μF 50V 电解	·	
T	IN110 或 220V, OUT12V, 1W		
F	14		
传感器	NAP - 70A,55A,66A		
蜂鸣器	压电蜂鸣器		

# NEMOTO NAP-11A-FL型一氧化碳传感器应用电路

NAP-11AFL 传感器,米谢(MITSUTECH'S) $\mu$ COMNMM-11 和 EEPROM NMC-11 组成高级的一氧化碳检测器。这种组合不仅能产生低价的一氧化碳检测器,同样由于它的自动老化和

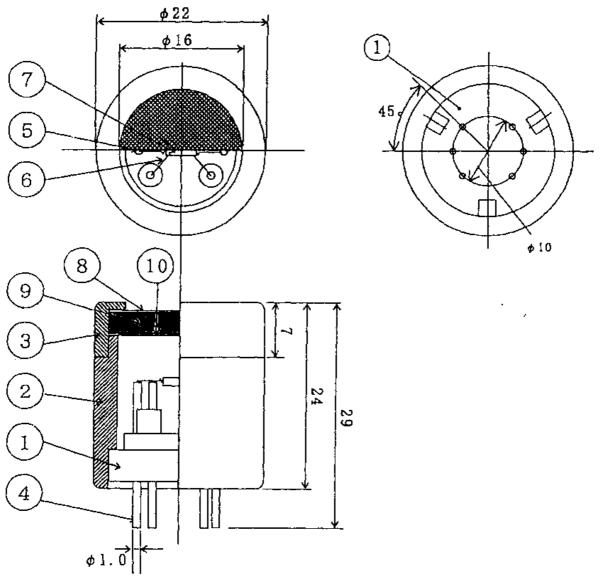



图 5-93 传感器结构图

自动校准功能,使它具有简单的质量控制过程。

NAP-11A-FL 传感器适用于检测家庭中由炉子或其他烧火设备产生的低浓度一氧化碳气体。由于它有极好的稳定性、抗干扰气体和环境温度、湿度特性,故可广泛用于住宅监测器件、通风设备和一氧化碳检测器等场合。

用途:用于自动通风电扇、CO 检测器和 CO 气体报警等场合。

特点:对低浓度 CO 气体具有高灵敏度(小于 200ppm),对环境温、湿度具有高稳定性,对于 扰气体如氢和乙醇等具有低灵敏度,可用 IC 集成电路制造简单的传感器电路。

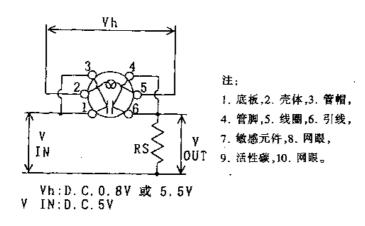



图 5-94 传感器电路图

### 额定值

加热电压

探头清洗电压: AC,5.5±0.3V(rms,50~60Hz)

 $DC, 5.5 \pm 0.3V$ 

工作电压:  $AC_10.8 \pm 0.04 \text{V} \text{(ms}, 50 \sim 60 \text{Hz)}$ 

 $DC_{1}0.8 \pm 0.04V$ 

加热电流

加热清洗电流: AC,170~190mA(rms,50~60Hz)

(加 5.5V) DC,170~190mA

工作电流 AC,25~40mA(rms,50~60Hz)

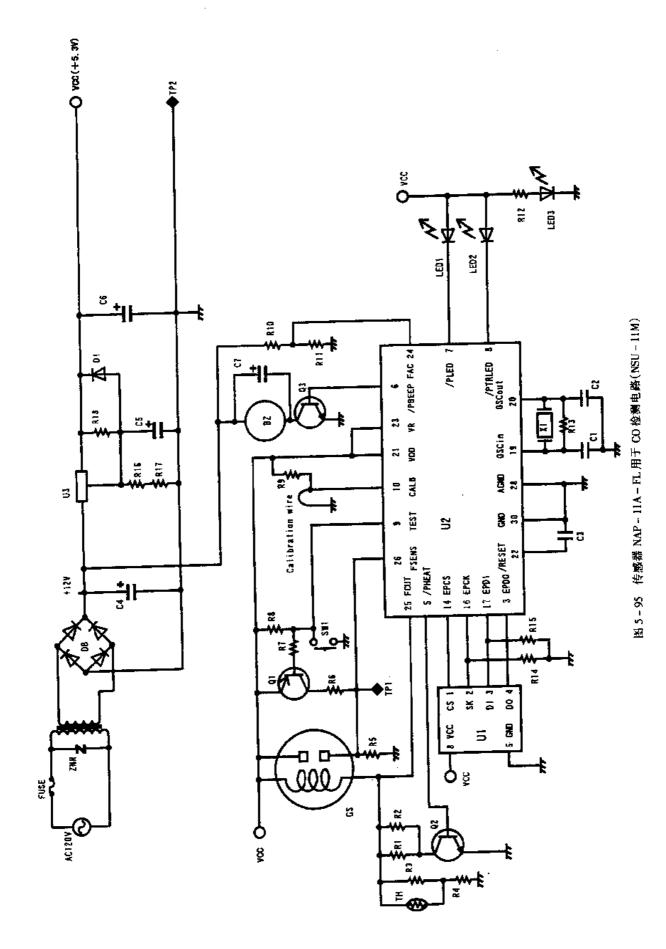
(加 0.8V) DC,25~40mA

电路外加电压: AC < 15V(rms, 50~60Hz)

DC < 15V

探头清洗时限: 探头清洗时间 1~3min

工作时间 6~10min


环境温、湿度

工作温、湿度:温度 - 10 ~ 70℃

湿度 < 95% RH

存储温、湿度: 温度 - 20~75℃

湿度 < 95% RH



· 489 ·

#### CO 检测器配套元件表

Rı	1Ω	C1	100 _P F	Q١	2SA952	GS	NAP – 11AFL	
R2	1Ω	C2	100pF	Q2	2SC2001			
R3	430Ω	СЗ	钽 10µF	Q3	250945	X1	2.0MHz	
R4	16Ω	C4	25V 1000μF	-				
R5	0.27 ~ 3.9kΩ	C5	25V 1μF	sw		DB	D4 A	
R6	240Ω	C6	25V 10μF					
R7	2.2kΩ	C7	25V 1μF	TP1	i i			
R8	10kΩ			TP2		- <del> </del>		
R9	10kΩ					Bz	蜂鸣器	
R10	20kΩ	Uı	NMC - 11	7				
R11	5.1kΩ	U2	NMM - 11	тн	500D − 5 500Ω/25℃ B = 3500			
R12	1kΩ	U3	μ <b>PC3</b> 17		B = 5500			
R13	1ΜΩ					D1	IS1588	
R14	ιοκΩ	ZNR	15G221K	_				
R15	10kΩ				117VAC -			
R16	750Ω	LED1	红	→ 变压器	12VAC 250mA			
R17	27Ω	LED2	黄				-	
R18	240Ω	LED3	<del></del>				····	

注:表中 R1,R2,R3,R4,R5,R10,R16,R17 和 R18 是金属膜电阻,1/4W,1%精变。

NAP-11A-FL 传感器用于 CO 检测电路参数。 电路中 CO 浓度和响应时间

CO 15ppm

30 日内不报警

35ррт

60min 内不报警

60ppm

20min 内不报警

100ppm

16~90min 内报警

200ppm

8~35min 内报警

400ppm

4~15min 内报警

电路的可靠性和气体选择性

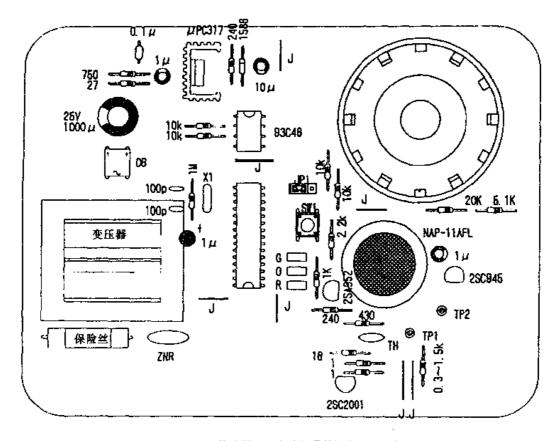



图 5-96 传感器应用电路板零件图(NSU-11)

### 下列气体浓度检测器不报警

500ppm 甲烷(沼气)

300ppm 丁烷(瓦斯)

500ppm 庚烷

200ppm 乙酸盐气体

200ppm 异丙基乙醇气体

1000ppm CO₂

# NMM-11型 CO 检测控制器集成电路

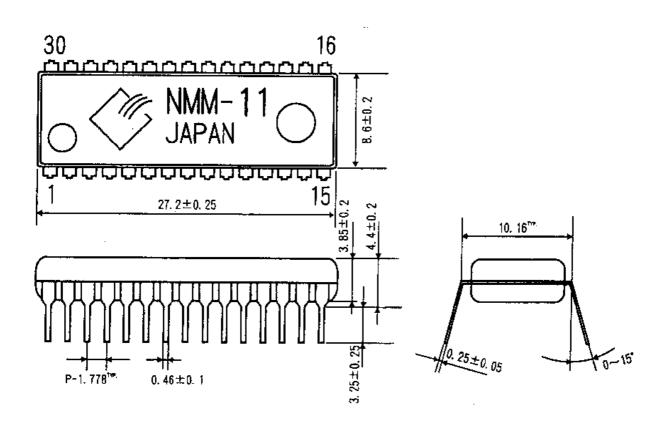
用途:用于 CO 检测器

特点:单片 CO 气体检测器控制器

EEPROM 存储器串行接口

蜂鸣器输出

LED 直接驱动


对 CO 检测器 3h 老化

对 CO 检测器校验

5.3V 工作电压

NMM-11 设计用于 CO 检测器,它的接口可直接连接半导体 CO 气体传感器 NAP-11A-FL 和控制 LED 指示灯及蜂鸣器,用于报警信号。





注:单位 mm 图 5 - 97 管脚及封装图

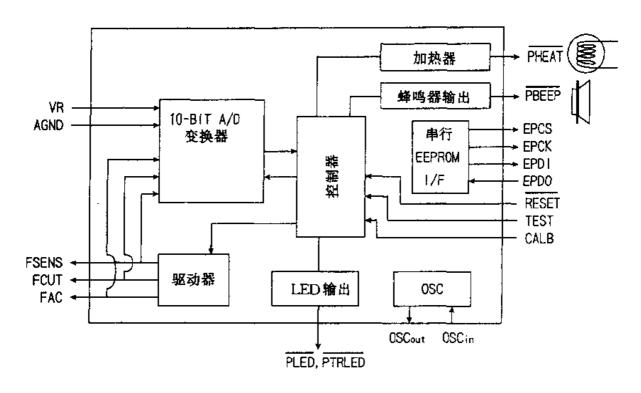



图 5-98 电路方块图

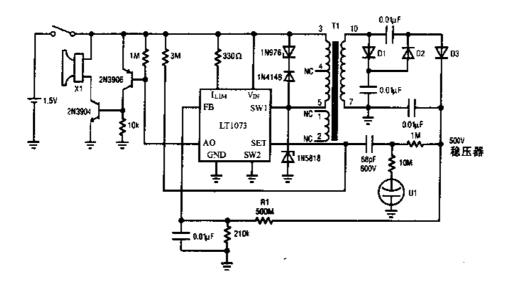
### 管脚说明

1	无用	30	GND 地
2	无用 .	29	<b>光</b> 用
3	EPDO→EEPROM 数据输出	28	←AGND A/D变换器模拟地
4	无用	27	<b>光</b> 用
5	PHEAT-加热器	26	←FSENS 传感器值
6	PBEEP≪ 蜂鸣器	25	←FCUT 断线信号
7	PLED ←报書 LED	24	←FAC AC 故障
8	PTRLED+ 断线 LED	23	←VR A/D变换基准
9	TEST→测试开关	22	←RESET 复位
10	CALB→校验开关	21	VDD 电源
11	<b>无用</b>	20	→ OSCout 振荡器輸出
12	无用	19	← OSCin 振荡器输入
13	<b>无</b> 用	18	<b>光用</b>
14	EPCS-EEPROM 芯片选择	17	→EPDI EEPROM 数据输入
15	<b>无用</b>	16	→EPCK EEPROM 时钟

### 最大绝对额定值

参 数	符号	单位	数值
电源电压	$V_{\mathrm{DD}}$	v	-0.3 ~ +7.0
输入电压	<i>y</i> ₁	V	$-0.3 \sim V_{DD} + 0.3$
輸出电压	$v_{\rm o}$	v	$-0.3 - V_{DD} + 0.3$
最大輸出电流	I _{OH}	mA	4
最大輸出电流	$I_{ m OLO}$	mA	30
最大輸出电流	I _{OLI}	mA	4
工作温度	$T_{ m OPH}$	ч	- 20 + 70
存储温度	$T_{ m STG}$	°C	- 55 + 150

### 推荐工作条件


参数	符号	单位	数值
电源电压	$v_{ m DB}$	V	5.3
最小时钟频率(OSC _{IN} -OSC _{OUT} )	fosc	Hz	2M

生产厂家: NEMOTO & CO.LTD 上海根本化轻有限公司

# 5.8 α、β、γ 粒子检测传感器应用电路

# α、β、γ粒子检测电路

用途: 用于医学和环卫部门。



注:T₁为变压器, × 1 8Ω 扬声器;D1、D2、D3 为 MUR1100;U1 氖灯。LT1073 是可调 DC – DC 变换器。 图 5 – 99 装有 1.5V 电池的 α、β、γ 粒子检测器

### LT1073 型微功耗 DC - DC 变换器

用途:用于α、β、γ粒子检测器和直流变换器等场合。

特点:工作电源电压 1.0V ~ 30V, 电源电流 95μA, 可工作于升压或降低型式、低电池电压 检测比较器, 内有 1A 电源开关, 用户可调节电流限制, 电压可固定式或可调式输出。

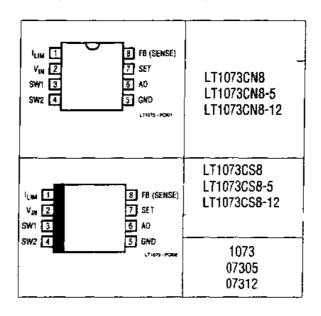



图 5-100 管脚图(顶视)

#### LT1073 管脚说明

- $1.I_{IJM}$ :通常应用该脚连到  $V_{IN}$ ,在  $I_{IJM}$ 和  $V_{IN}$ 之间连接电阻,要求低电流限制。
- 2. V_{IN:}电源输入。
- 3.SW1:功率管集电极,在升压型式连到指示器/二极管;在降压型式连到 V_{No}
- 4.SW2: 功率管发射极,在升压型式连到地;在降压型式连到指示器/二极管。
- 5.GND:接地。
- 6.AO;辅助增益块(GB)输出,集电极开路,电流沉 100μA。
- 7.SET: GB 输入, GB 具有正输人到 SET 脚和负输入到 212mV 基准。
- 8. FB/SENSE:对 LT1073 而育,该脚用于比较器输入;对 LT1073 5 和 LT1073 12 而言,该脚用于设定输出电压。

#### 最大绝对额定值

电源电压,升压型式	15V
电源电压,降压型式	36V
SW1 脚电压	50V
SW2 脚电压	$-0.4 \sim V_{1N}$
反馈脚电压(LT1073)(8 脚)	5V
开关电流	1.5A
最大功耗	500mW
工作温度(LT1073C)	0 ~ 70℃
存储温度	- 65 ~ 150℃

# 电参数( $T_A = 25$ °C, $V_{IN} = 1.5$ V)

符号	多 数 测试条件		单位	最小	典型	最大	
$I_{\mathbb{Q}}$	静态电流	开关斯		μA	_	95	130
		T.4.40	LT1073 5	μΑ		135	
ιQ	, 静念电流, 并压型以 。	无负载	元页载 LT1073 - 12			250	
		of cr m			1.15		12.6
$V_{ m IN}$	输入电压	升压型式		v	1.0		12.6
	#	降压型式	•				30
	比较器释放脚电压	LT1073		mV	202	212	222
Volt	<b>输出敏感电压</b>	LT1073 - 5		v	4.75	5.00	5.25
		LT1073 - 12			11.4	12.00	12.6
	比较器迟滞	LT1073		mV		5	130 35 50 12.6 12.6 30 12 222 00 5.25 00 12.6 5 10 15 250 00 600 9 23 2 80 8 50 0 120 15 0.4 35 1.0 0 600 0 750 0 1500 0 1500
	4A, 11, 10, 5%	LT1073 - 5			_	125	250
	糖出戊階	LT1073 - 12		mV		300	600
$f_{080}$	振荡频率			kHiz	15	19	23
DC	占空度	满载(V _{FB} < V	(REF)	%	65	72	80
ton	开关接通时间			hra	30	38	50
$I_{\mathrm{FB}}$	反馈脚偏压电流	LT1073, V _{FB} =	0V	пA		10	50
ISET	设定脚偏压电流	$V_{\text{SET}} = V_{\text{REF}}$		лА		60	120
V _{AO}	AO输出电流	$I_{AO} = -100$ m.	A	v		0.15	0.4
	基准稳压器	$1.0V \leqslant V_{\rm IN} \leqslant 1$	1.5V	07.737		0.35	1.0
		$1.5V \leq V_{\rm IN} \leq 1$	12 <b>V</b>	-   %/V		0.05	0.1
		$V_{\rm IN} = 1.5  \mathrm{V}, I_{\rm S}$	_{sw} = 400mA	i		300	,400
:							600
T7	TO MAKE THE ASSESSMENT TO THE LEASE	$V_{\rm IN}=1.5\rm V,I_{\rm S}$	_{sw} = 500mA	]_,[		400	550
$V_{ m CESAT}$	并 <b>天饱和电压</b> 并压型式			mV			750
		$V_{\rm IN} = 5  \mathrm{V}$ , $I_{\rm SW}$	= 1 A	] [	<u>-</u>	700	1000
				1			1500
Α _V	AZ 误差放大器增益	$R_{\rm L} = 100 {\rm k}\Omega$		V/V	400	1000	
IREV	反向电池电流		***	mA		750	
,	电流限	在 I _{LIM} 和 V _{IN} I	可接 220Ω	mA		400	
ILIM	电流限温度系数			%/℃		-0.3	
I _{LEAK}	开关断漏电流	在 SW1 脚测量	<u> </u>	μΑ		1	10
V _{\$w2}	地以下最大偏移电压	$I_{\text{SWI}} \leq 10 \mu \text{A}$ , $t$	f关断	mV		- 400	- 350

生产厂家:LINEAR TECHNOLOGY

# γ射线传感器测量用电路

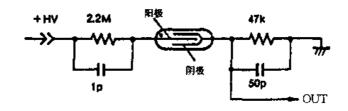



图 5-101 γ射线测量电路

### 技术参数

技术参数	单位	数值
放射起始电压	$V_{DG}$	< 400
台阶电压范围	V _{DC}	500 ~ 600
台阶电压斜率	% V	< 0.30
灵敏度(1)	cps/mR/h	$0.20 \pm 20\%$
背底(2)	cpm	<1
失效时间(在 600V)	he	< 15
推荐工作电压		在台阶电压范围内

#### 注:(1) 辐射源:Co-60

电源电压:台阶电压范围中心值

(2) 用 50mmPb 和 3mm Al 屏蔽 电源电压;台阶电压范围中心值

# γ射线脉冲积分电路

用途:在工业、农业、医疗卫生和科研工作中用于 7 放射性活度测量。

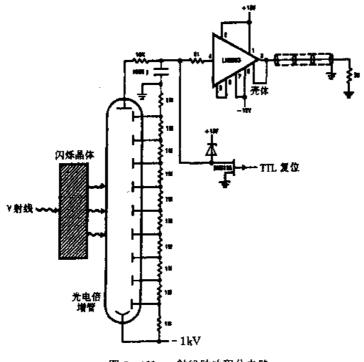



图 5-102 γ射线脉冲积分电路

γ射线通过闪烁晶体发光,由光电倍增管放大,通过电容积分,经 LH0063 快速和超快速缓冲、放大输出。

LH0063 是高速、FET 输入、电压跟随/缓冲器,在 DC ~ 100MHz 范围内具有高电流驱动能力。输出  $\pm$  250mA 至 50 $\Omega$  负载(  $\pm$  500mA 峰值),转换速率可达 6000 $V/\mu$ s。

### LH0063 技术参数

最大绝对值

电源电压

± 40V

消耗功率

5W

结温

175℃

输入电压

 $\pm V_S$ 

输出电流

±250mA(连续)

±500mA(蜂值)

引线焊接温度

(10_s)300℃

工作温度

-25°C ~ +85°C

存储温度

-65℃ ~ +150℃

**DC 参数**(V_S = ±15V)

多 数	条 件	单位	最小	典型	最大
输出偏压	$R_i \le 100 \text{k}\Omega$ , $T_J = 25 \text{°C}$	- mV		10	50
	$R_{\rm L} = 100\Omega$	mV			100
输出偏压平均温度系数	$R_s = 100 \text{k}\Omega$	μV/℃		300	
输入偏流	<i>T</i> _I = 25℃	nА		10	30
		nA,			100
电压增益	$V_{\rm in} = \pm 10 \text{V}$ , $R_{\rm s} \leqslant 100 \text{k}\Omega$ , $R_{\rm L} = 1 \text{k}\Omega$	V/V	0.94	0.96	1.0
电压增益	$V_{\rm in} = \pm 10 { m V}$ , $R_{\rm s} \leqslant 100 { m k} \Omega$	V/V	0.91	0.93	0.98
	$R_L = 50\Omega$ , $T_J = 25^{\circ}$ C			ļ	
输入电容	壳体与输出短路	рF		8.0	
输出阻抗	$V_{\rm OUT} = \pm 10 \text{V}$ , $R_{\star} \leq 100 \text{k}\Omega$ , $R_{\rm L} = 50\Omega$	Ω		1.0	4.0
输出电流摆动	$V_{\rm in} = \pm 10 \text{V}$ , $R_a = 100 \text{k}\Omega$	A	0.2	0.25	
输出电压摆动	$R_1 = 50\Omega$	v	± 10	± 13	
繪出电压摆动	$V_{\rm S} = \pm 5.0 \text{V}, R_{\rm L} = 50 \Omega, T_{\rm J} = 25 ^{\circ}\text{C}$	$V_{PP}$	5.09	7.0	
电源电流	$T_{\rm J} = 25^{\circ}{\rm C}$ , $R_{\rm L} = \infty$ , $V_{\rm S} = \pm 15^{\circ}{\rm V}$	mA		50	65
电源电流	$V_{\rm S} = \pm 5.0 \rm V$	mA		40	
消耗功率	$T_{\rm I} = 25^{\circ}{\rm C}$ , $R_{\rm L} = \infty$ , $V_{\rm S} = \pm 15{\rm V}$	w		1.5	1.95
消耗功率	$V_{\rm S} = \pm 5.0 \rm V$	mW		400	

### AC 参数 $(T_1 = 25\%, V_S = \pm 15V, R_S = 50\Omega, R_L = 50\Omega)$

参数	条 件	单位	最小	典型	最大
转换速率	$R_{\rm L} = 1.0 \mathrm{k}\Omega$ , $V_{\rm IN} = \pm 10 \mathrm{V}$	V/μ8		6000	
转换速率	$R_{\rm L} = 50\Omega$ , $V_{\rm IN} = \pm 10 \rm V$ , $T_{\rm J} = 25 \rm ^{\circ}C$	V/µs	2000	2400	
带寬	$V_{\rm IN} = 1.0 { m V}_{\rm con}$	MHz		200	
相位非线性	$B W = 1.0 Hz \sim 20 MHz$	(°)		2.0	
上升时间	$\Delta V_{\rm IN} = 0.5 \rm V$	ns		1.9	
传输延迟	$\Delta V_{\rm IN} = 0.5 \rm V$	ns		2.1	
谐波失真	1	%		< 0.1	•

### 碘化钠(铊)闪烁探测器配套用放大电路

NaI(T1)闪烁探测器在科学技术的很多方面得到广泛应用。如在核物理方面,对γ放射性核素作能谱分析和活度测量;在核医学方面,可作¹²⁵I 放免测量、¹³¹I 的测量和肾扫描测量等;还可用于反应堆控制和安全监测、地质调查、石油测井、宇宙γ射线测量等方面。

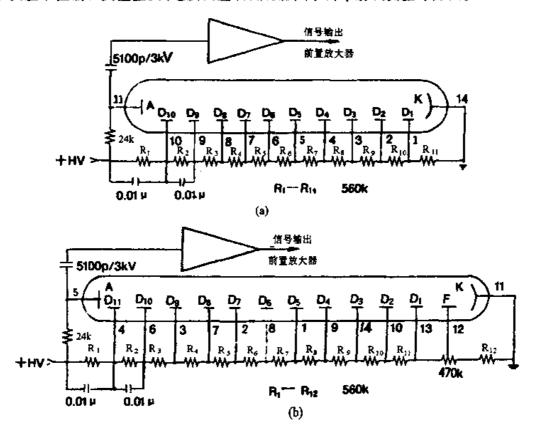



图 5-103 碘化钠(铊)闪烁探测器放大电路

NaI(T1)闪烁探测器由一个高分辨率的 NaI(T1)晶体和一只光电倍增管组成。采用有高导磁率的镀铬外壳作光磁屏蔽体。该组合体有较好的能量分辨率,有高的量子效率,低的暗电流,好的收集效率和稳定性。闪烁探测器型号如下:

SG1101型 闪烁体:NaI(T1) \$\psi 50 × 50(mm)\$
 光电倍增管:GDB44F \$\psi 51(mm)\$
 分辨率:≤8.5%(对¹³⁷Cs662keVγ射线)
 SG1301型 闪烁体:NaI(T1) \$\psi 50 × 50(mm)\$
 井:\$\psi 20 × 35(mm)\$
 光电倍增管:GDB44F \$\psi 51(mm)\$
 分辨率:≤9%(对¹³⁷Cs662keVγ射线)
 SG1102型 闪烁体:NaI(T1) \$\psi 45 × 25(mm)\$
 光电倍增管:GDB44F \$\psi 51(mm)\$
 分辨率:≤8.5%(对¹³⁷Cs662keVγ射线)
 SG1103型 闪烁体:NaI(T1) \$\psi 45 × 25(mm)\$

光电倍增管:GDB44F 951(mm)

分辨率: ≤8.5%(对¹³⁷Cs662keVγ射线)

SG1105 型

闪烁体:NaI(T1)\$75 × 75(mm)

光电倍增管: GDB76F +80(mm)

分辨率:≤18%(对¹³⁷Cs662keVγ射线)

其他类型,如测 X 射线用的铍窗薄片 NaI(TI)闪烁探测器,对 Mn Ka5.9keV 分辨率  $\leq$  55% 以及石油测井用的耐 100℃、150℃高温 NaI(TI)闪烁探测器都可配用该放大电路。

电路参数如下:

能量非线性:<2%

工作电压:参考电压 800V 直流。

使用环境:温 度:0~+40℃

相对湿度:≤90%RH(+30℃)

稳定性:优于±2%(8h 工作)

开启电源稳定 30min 后进行工作

## α 射线应用检测电路

图 8 – 104 中的  $D_1$ 、 $D_2$ 为传感器。由于  $\alpha$ 射线的强度相同,产生的电离电流也相同。但两个传感器加有极性相反的偏压,因此两个传感器的电流  $I_1$ 和  $I_2$ 绝对值相同而极性相反。结果, $I_1$ 和  $I_2$ 相互抵消, $IC_1$ 的输入电流为  $O_0$   $\alpha$ 射线源上因冷却而产生结露时, $\alpha$ 射线 1 的强度减弱,传感器  $D_1$ 的输出也就减小。而传感器  $D_2$ 处的  $\alpha$ 射线 2 的强度不变,因此  $I_1+I_2<0$ , $IC_1$ 的输出端为正电压。在露量不过多的范围内,冷却产生的露量和  $IC_1$ 的输出与  $E_0$ 成正比关系,因

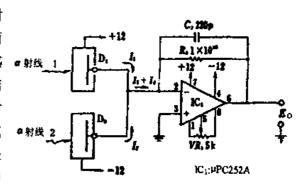



图 5-104 α射线检测电路

此通过 E₀来控制冷却器就可连续地测量大气的露点(湿度)。

- α射线的行程在通常的大气中不过数厘米。大气压力和温度的变化会使空气的密度发生变化,从而使行程也发生变化。传感器 D.起着补偿作用,即补偿空气密度的变化。
- α射线源为微弱的密封射线源,可用镅 241 等放射性元素为材料。这里用了 10 微居里的 镅 α射线源,电离电流为  $10^{-11}$ A。 $R_1$ 取  $1 \times 10^{10}$ Ω,可得到 100mV 的输出信号。

如上所述,与运放负输入端相连的电离电流线路必须保持高度的绝缘。高值电阻的表面 也必须保持清洁。电阻表面有附着物时,阻值往往会随温度而变化。电容  $C_1$ 和  $R_1$ 一起确定电 路的时间常数, $C_1$ 要采用聚苯乙烯电容,并注意不要粘上手汗等有机油脂。 $R_1$ 及聚四氟乙烯插 座等零件在使用前要用酒精之类的洗涤剂洗净。

## 核粒子检测电路

 $He3^4$ 粒子照射大面积硅二极管,使其导通,在  $1M\Omega$  上产生信号电压,输入 LH0033 放大输出。

LH0033 是高速、FET 输入、电压跟随/缓冲器,在 DC ~ 100MHz 范围内具有高驱动能力。输出  $\pm$  10mA 电流至  $1k\Omega$  负载(100mA 峰值),转换速率为  $1500V/\mu$ s。

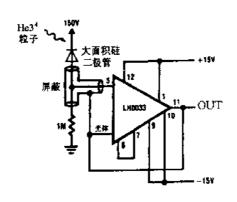



图 5-105 核粒子检测电路

工作温度 - 55℃~+125℃

存储温度 -65℃~+150℃

# LH0033 技术参数

最大额定值

电源电压 ±40V

_____

结温

175℃

功率消耗 2.2mW

±1.5V

输入电压

输出电流 ±100mA(连续)

±250mA(峰值)

引线焊接温度(10s) 300℃

DC 参数 ( $V_c = \pm 15$ V,  $T_{min} \le T_A \le T_{max}$ )

	条件	单位	LH0033			LH0033C			
参 數			最小	典型	最大	最小	典型	最大	
	$R_{\rm S} = 100\Omega, T_{\rm J} = 25^{\circ}{\rm C}$	mV		5.0	10	· ·	12	20	
m	$V_{\rm IN} = 0$ V, $R_{\rm S} = 100\Omega$	mV		. <u></u>	15			25	
偏压的平均温度系数	$R_{\rm S} = 100\Omega$ , $V_{\rm IN} = 0$ V	μV/°C		50	100		50	100	
	$V_{\rm IN} = 0  {\rm V}$								
	T₁ = 25℃	PA			250			500	
	T _A = 25℃	nA		i	2.5			5.0	
	$T_{\rm I} = T_{\rm A} = T_{\rm max}$	пА			10	_	·	20	
电压增益	$V_a = \pm 10 \text{V}$	V/V	0.97	0.98	1.00	0.96	0.98	1.00	
<b>-</b>	$R_5 = 100\Omega$								
	$R_{\rm L} = 1.0 {\rm k}\Omega$						_	<u> </u>	
输入阻抗	$R_{\rm L} = 1.0 {\rm k}\Omega$	Ω	1010	1011	<u> </u>	1010	1011	<u> </u>	
輸出阻抗	$V_{\rm IN} = \pm 1.0 \rm V$								
	$R_{\rm L} = 1.0 {\rm k}\Omega$	Ω		6.0	10		6.0	10	
輸出电压摆幅	$V_{\rm L}=\pm 14{\rm V}, R_{\rm L}=1.0{\rm k}\Omega$	v	± 12			± 12			
	$V_{\rm L} = \pm 10.5 \rm V$	<u> </u>		ļ !					
	$R_{\rm L} = 100\Omega, T_{\rm A} = 25{\rm ^{\circ}C}$	v	±9.0			±9.0			
电源电流	$V_{\rm IN} = 0 \rm V$	mA		20	22		21	24	
 功率消耗	$V_{\rm IN} = 0 \text{V}$	mW		600	660		630	720	

AC 参数( $T_1 = 25$ °C,  $V_S = \pm 15$ V,  $R_S = 50$ Ω,  $R_L = 1.0$ kΩ)

A **	ha Ju	34 D.		LH0033			LH0033C	
参 数	条件	单位	最小	典型	最大	最小	典型	最大
转换速率	V _{IN} = ± 10V	V/µs	1000	1500		1000	1400	
带宽	$V_{\rm IN} = 1.0 \rm V_{\rm mas}$	MHz		100		_	100	
相位非线性	B W = 1.0Hz ~ 20MHz	(°)		2.0			2.0	
上升时间	$\Delta V_{\rm IN} = 0.5 \rm V$	ns		2.9			3.2	
传输延迟	$\Delta V_{\rm IN} = 0.5 \rm V$	ns		1.2			1.5	
谐波失真	f > 1kHz	%		< 0.1%			< 0.1	

生产厂家: National Semiconductor

# 5.9 压力传感器应用电路

# KPY 系列硅压阻绝对压力传感器电路

用途:用于绝对压力的测量和控制。

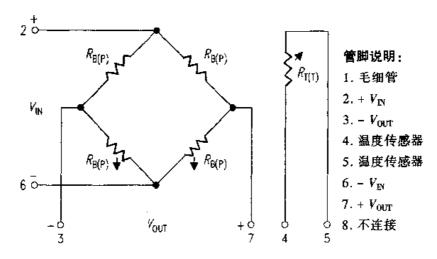



图 5-106 传感器电路图

#### 传感器型号

型	<b>탕</b>	符	号	特 点	单	砂	数	值
KPY42	A	<del></del>					0~0.6	
KPY43A  KPY44A  KPY45A  KPY46A  KPY47A						0~1.6 0~4		
				低压力和温度迟滞,快速响应,高灵敏度和线性,长期				
		<i>P</i> ₀ -	· P _N	稳定性好,内装温度传感器。		kPa	0~	10
						0~	25	
							0~	60

#### 最大额定值

AC / 10 / 10   10				
	 ,	符 号	单位	数值
 压力过 <b>载</b>	 	P _{MAX}	10 ² kPa	
	KPY42A			6
	KPY43A			10
	КРУ44А			16
	KPY45A			30
	крү46л			40
	KPY47A			70
工作温度	 		°C	- 40 ~ 125
	 	T _{skg}	ኚ	- 50 ~ 150
电源电压		V _{IN}	v	12

# 技术参数(T_A = 25℃, V_{IN} = 5V)

参数	符号	单位	最小	典型	最大
<u> </u>	$R_{\rm B}$	kΩ	4	-	8
灵敏度	s	mV/V10 ² kPa	·		
KPY42A			11.0	15.0	24.0
KPY43A			5.6	8.8	12.5
КРҮ44А			4.0	6.0	9.0
KPY45A			1.8	2.6	4.0
крү46А			0.88	1.2	2.0
KPY47 A			0.47	0.67	1.0
输出电压	$\nu_{ m fin}$	mV			
KPY42A			33	45	72
КРҮ43А			45	70	100
KPY44A			80	120	180
кру45а			90	130	200
KPY46A			110	150	250
КРУ47А	:		140	200	300
偏置电压	V _o	mV	·		
$P = P_0$			- 25	<u>-</u>	+ 25
线性误差	$F_{\mathtt{L}}$	% V _{fin}			
$P = P_0 \cdots P_N \qquad KPY42 \sim 45A$	]	]	-	±0.15	± 0.35
<b>КР</b> У46/47 A				± 0.15	-
压力迟滞		-	<u>.</u>		
$P_1 = P_0, P_2 = P_N, P_3 = P_0$ KPY42 - 47A	$P_{\mathrm{H}}$	% V _{fin}	_	± 0.1	_

技术参数(  $T_1=25\%$  ,  $T_2=125\%$  ,  $T_3=25\%$  ,  $V_{\rm IN}\simeq5{\rm V})$ 

参 数	符号	单位	最小	典型	最大
V _ы 温度系数	TC _{V6n}	%/K			
KPY42A			- 0.19	-0.15	-0.12
KPY43A			-0.19	~0.16	-0.13
KPY44A			- 0.19	-0.17	-0.14
KPY45A			- 0.19	-0.17	-0.14
KPY46A			-0.19	-0.17	-0.15
KPY47A			- 0.19	-0.17	-0.15
V _o 温度系数	TC _{vo}	%/K			
KPY42A			0.05	-	+0.05
KPY43A			-0.03	-	+0.03
KPY44A			-0.03	_	+0.03
KPY45A			-0.03	_	+0.03
KPY46A			-0.03	-	+ 0.03
KPY47 A			-0.01	_	+0.01
R _B 温度系数	TC _{RB}	%/K			
KPY42 ~ 47 A				+ 0.095	-
V ₀ ; V _m 温度迟滞	тн	% v. V _{fin}			· · · · · · · · · · · · · · · · · · ·
KPY42A			-0.5	-	+0.5
KPY43 ~ 47A		1	-0.3	- :	+0.3

# KPY 系列硅压阻绝对压力传感器电路

用途:用于绝对压力的测量和控制。

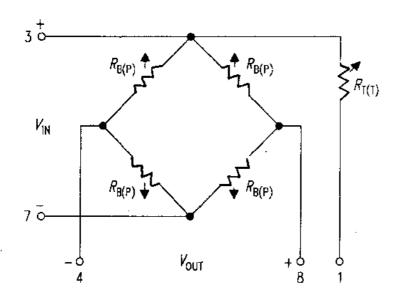



图 5-107 传感器电路图

#### 管脚说明:

- 1. 温度传感器
- 2. 不连接
- $3. + V_{IN}$
- 4. Vour
- 5. 不连接
- 6. 屏蔽
- $7.-V_{\rm IN}$
- 8. + V_{OUT}

#### 传感器型号

型号	符号	特 点	单位	数值
KPY62AG KPY63AG KPY64AG KPY65AG	<i>P</i> ₀ … <i>P</i> _N	低压力和温度迟滞,响应快,高灵敏度和线性,长期稳定性好,内装硅温度传感器,金属壳体。	10 ² kPa	0~0.6 0~1.6 0~4 0~10

## 最大額定值

参	数	符号	单位	数值
压力过载		P _{MAX}	10 ² kPa	
	KPY62AG			4
	KPY63AG			8
	KPY64AG		l	12
_	KPY65AG			20
工作温度		TA	°C	-40 ~ 125
存储温度		T _{stg}	°C	- 40 ~ 125
电源电压		$V_{\mathrm{IN}}$	v	12

# 技术参数( $T_A = 25\%$ , $V_{IN} = 5V$ )

参数	符号	单位	最小	典型	最大
桥阻	$R_{\rm B}$	kΩ	4		8
灵敏度	\$	mV/V10 ² kPa			·
KPY62AG		1	23.3	43.0	73.3
KPY63AG			11.3	20.0	30.0
KPY64AG			6.5	11.0	15.5
KPY65AG			3.6	5.2	8.0
输出电压	$V_{ m fin}$	mV			
KPY62AC		i !	70	130	220
KPY63AG			90	160	240
KPY64AG		1	130	220	310
KPY65AG			180	260	400
偏置电压	$V_{0}$	mV			
$P = P_0$			<b>- 25</b>	_	+ 25
线性误 <del>差</del>	$F_{L}$	% Văn			
$P = P_0 \cdot \cdots \cdot P_N \qquad \qquad \text{KPY62} \sim 65 \text{AG}$			-	± 0.2	±0.5
<b>压力迟滞</b>	D.	0/ V		·	
$P_1 = P_0, P_2 = P_N, P_3 = P_0$	$P_{H}$	% V _{fin}		. 6.1	
KPY62 ~ 65AG			-	± 0.1	_

技术参数( $T_1 = 25\%$ ,  $T_2 = 125\%$ ,  $T_3 = 25\%$ ,  $V_{IN} = 5V$ )

参数	符号	单位	最小	典型	最大
V _{fin} 温度系数 KPY62~65AG	$TC_{ m Vfin}$	%/K	-0.22	- 0.18	- 0, 15
V _O 温度系数 KPY62~63AG KPY64~65AG	$rc_{vo}$	%/K	- 0.04 - 0.02	-	+ 0.04 + 0.02
R _B 温度系数 KPY62~65AG	TC nB	%/K	_	+0.23	-
V ₀ ; V _m 温度迟滞 KPY62~65AG	TH	% V · V _{VEm}	-	±0.2	_

# KPY 硅压阻相对压力传感器电路

用途:用于相对压力的测量和控制。

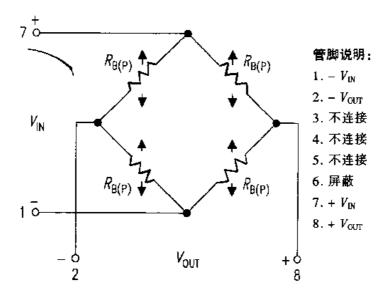



图 5-108 传感器电路图

#### 传感器型号

型号	符号	特 点	单位	数值
KPY32R	P ₀ - P _N	低压力和温度迟滞,快速响应,高灵敏度和 线性,长期稳定性好,金属壳体。	10 ² kFa	0 ~ 0.05

### 最大额定值

多 数	符号	単位	数值
压力过载	P _{MAX}	10 ² kPa	0.6
工作温度	T _A	%C	- 40 ~ 125
存储温度	T _{stg}	°C	- 50 ~ 150
电源电压	V _{IN}	V	12

## 技术参数(T_A = 25℃, V_{IN} = 5V)

参 数		单位	<u></u> 最小	典型	最大
桥阻	R _B	kΩ	4	-	8
灵敏度	ı	mV/V10°kPa	100.0	220.0	
输出电压	V _{6n}	mV	25.0	55.0	-
偏置电压	$v_{\rm o}$	mV			
$P = P_0$			- 25		+ 25
线性误差	$\overline{F_{ m L}}$	% V _{fin}			
$P = P_0 \cdot \cdot \cdot \cdot \cdot P_N$				±0.3	
压力迟滞	<i>P</i> _H	% V ₆ .			
$P_1 = P_0, P_2 = P_N, P_3 = P_0$			-	± 0.1	_

技术参数( $T_1 = 25\%$ ,  $T_2 = 125\%$ ,  $T_3 = 25\%$ ,  $V_{IN} = 5V$ )

参 数	符号	単位	最小	典型	最大
V ₆ .温度系数	$TC_{ m Vfm}$	%/K	- 0.19		- 0.10
V _o 温度系数	$rc_{vo}$	%/K	-0.05	-	+ 0.05
RB温度系数	TC _{RE}	%/K		+0.09	<b>-</b>
Vo; Vin温度迟滞	TH	% v. V _{fin}	-0.7	±0.2	+0.7

## KPY 硅压阻相对压力传感器电路

用途:用于相对压力的测量和控制。

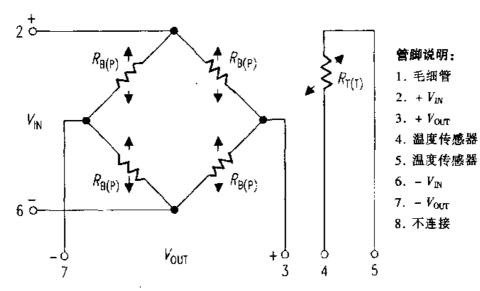



图 5-109 传感器电路图

#### 传感器型号

型号	符号	特 点	单位	数值
KPY51R				0 ~ 0.25
KPY52R				0~0.6
KPY53R	ם מ	低压力和温度迟滞,快速响应,高灵敏度和线性,长期	10²kPa	0~1.6
KPY54R	$P_0 \sim P_N$	稳定性好,内装硅温度传感器。	IU Kra	0~4
KPY55R				0 ~ 10
KPY56R				0 ~ 25

#### 最大额定值

参	数	符号	单位	数值
压力过载		P _{MAX}	10 ² kPa	
	KPY51R			. 2
	KPY52R			6
	KPY53R			10
	KPY54R			16
	KPY55R			30
	KPY56R			75
工作温度		TA	°C	- 40 125
存储温度		Tstg	r	- 50 ~ 130
电源电压		$V_{\rm in}$	V	12

技术参数(T_A = 25℃, V_{IN} = 5V)

参	数	符号	单位	最小	典型	最大
桥阻		$R_{\mathrm{B}}$	kΩ	4		8
灵敏度		5	mV/V10 ² kPa			
	KPY51R			16.8	24.0	32.0
	KPY52R			11.0	15.0	24.0
	KPY53R			5.6	8.8	12.5
	KPY54R			4.0	6.0	9.0
	KPY55R		}	1.8	2.6	4.0
<del></del> -	KPY56R		<u> </u>	0.88	1.2	2.0
输出电压		$V_{ m fin}$	m <b>V</b>			
	KPY51R		-	21	30	40
	KPY52R		}	33	45	72
	KPY53R			45	70	100
	KPY54R			80	120	180
	KPY55R			90	130	200
	KPY56R			110	150	250
偏置电压		$V_{\mathbf{c}}$	тV			
$P = P_0$		.0		- 25	-	+ 25
线性误差		$F_{L}$	% V _{6c}			
$P = P_0 - P_N$	KPY51 ~ 55R		}	-	± 0.15	± 0.35
	KPY56R				±0.15	-
医力迟滞					- <del></del>	
$P_1 = P_0, P_2 =$	$P_{N}, P_{3} = P_{0}$	$P_{ m H}$	% V ₅₁₁			
KPY51 - 56R			1	-	±0.1	_

## 技术参数( $T_1 = 25$ °C, $T_2 = 125$ °C, $T_3 = 25$ °C, $V_{IN} = 5$ V)

参数	符号	单位	最小	典型	最大
V _{an} 温度系数	TC _{Vfin}	%/K			
KPY51R			~0.20		-0.09
KPY52R			-0.20		-0.12
KPY53R			-0.20	, →	-0.13
KPY54R		İ	-0.20	-	-0.14
KPY55R			-0.20		-0.15
KPY56R	1		-0.20	-	-0.15
V _O 温度系数	TCvo	%/K			
KPY51R			0.03	<b>-</b>	+0.08
KPY52R		}	-0.03	_	+0.08
KPY53R			-0.03	-	+0.05
KPY54R			-0.03	-	+0.05
KPY55R			-0.03		+0.05
KPY56R			- 0.03	-	+0.05
R _B 温度系数	TC _{RB}	%/K			
KPY51…56R			-	+ 0.095	_
	TH	% V. V _{fin}		•	
KPY5156R	•		_	±0.2	

生产厂家:SIEMENS Semiconductor

# IC 压力传感器应用电路

### NPH 系列固态压力传感器(低压,中压)电路

这种产品是将已集成化的敏感芯片置于标准的 TO - 8 型电子外壳内;以便安装到印刷线路板上。

新的超大规模集成电路技术和微细加工技术已经把惠斯登电桥扩散在微细加工的硅片上,直接实现力一电转换,与所有的 Nova Sensor 扩散硅传感器一样,NPH 应用了 SenStable 温度补偿技术,使之具有优异的稳定性。

用户可以把标准信号调理电路用来放大 100mV 的输出信号。传感器可以跟大多数非腐蚀气体和干燥空气介质兼容。

经激光蚀刻的厚膜电阻网络 在混合陶瓷基片上,由它提供温度补偿。

用途:过程控制

气动控制系统

供暖、通风和空气调节

生物医学、灌注泵、血压计、呼吸器

航空:高度计、气压表、机舱压力传感器

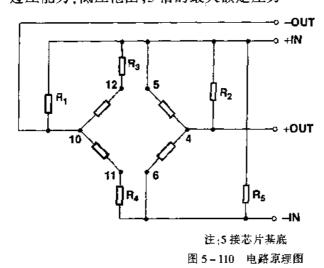
计算机外围设备

特点:固态、可靠性高

标准 TO-8 封装,适于 PC 板安装

拐耗低、尺寸小

可应用于表压、绝压和差压


可与非腐蚀气体和干燥空气介质兼容

供电 1.5mA 时,输出信号 100mV

温度精度:0.5%FSO(低压典型值)

0.4% FSO(中压典型值)

过压能力:低压范围,5倍的最大额定压力



4	+输出
5	+输人
5	輸人
10	-輸出
11	不连接
12	不连接

## 中压范围,4倍的最大额定压力

三段标准范围:

低压:0~10寸水柱;0~1Psi;0~5Psi;

中压:0~15Psi;0~30Psi;0~100Psi;

非线性:0.05%FSO(典型值)

3/16"压力接口

标准的带有温度补偿电阻的陶瓷基片

1.5mA 恒流供电(经放大到满刻度输出 3.00V_{DC})

注;Psi = 6.895kPa

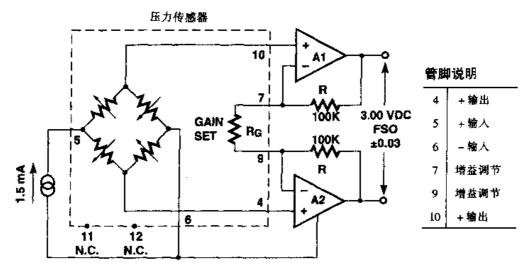



图 5-111 可适当调节量程的应用电路

技术参数

参 数	单位	数 值	注
基本参数			
压力范围 低压	kPa	0~2.5	
	kPa	0~7	
	kPa	0 ~ 30	•
中压	kPa	0~100	
	kPa	0 ~ 200	
	kPak	0 ~ 700	
最大压力 低压		5 倍额定压(9)	
	<u> </u>	4倍额定压(9)	
电参数		25℃(除非另有说明)	
輸入工作电流	mA	1.5	最大 2mA
绝缘电阻	Ω	107	$50V_{DC}$
輸入阻抗	Ω	4000	± 20%
<b>输</b> 出阻抗	Ω	5000	± 20%
电桥阻抗	Ω	5000	± 20%
环境条件			
温度范围			
工作温度	${\mathcal C}$	- 40 ~ + 125	
补偿范围	${\mathfrak C}$	0 ~ 70	
振动	g	10	20 ~ 2000Hz
中击 g		100	11 ms
寿命(动态压力循环)	周	$100 \times 10^6$	
机械特性			
重量	ę	< 5	
介质兼容		非腐蚀气体与干燥空气	

性能(8)						补偿(1)					
···		2.50kPa				7,30kPa			100,200,700kPa		
	单位	最小	典型	最大	最小	典型	最大	最小	典型	最大	注
零点漂移	mV	-8	± 2	8	-4	= 2	4	- 2	± 1	2	
满度输出	İ	}		1	}		i			}	ļ
2.5kPa	mV	25	50	90							(2)
7kPa	mV		1		50	75	150				(2)
30kPa	mV				75	100	125		; [		(2)
100,200,700kPa	. mV	ŀ		1	}		İ	75	100	125	(2)
线性度	%FSO	-1.0	0.1	1.0	-0.25	0.05	0.25	-0.1	0.05	0.1	(3)
迟滞与重复性	%FSO	-0.2	0.05	0.2	-0.2	0.05	0.2	- 0.05	0.01	0.05	
零点温漂(低压)	%FSO	-3	0.5	3	- 2	0.5	2				(4)
100kPa	%FSO			1			l	-0.6	-0.4	0.6	(4)
200 与 700kPa	%FSO							-0.5	-0.2	0.5	(4)
满度温漂(低压)	%FSO										(4)
100kPa	%FSO						ļ				(4)
200 与 700kPa	%FSO	l i		ĺ	í I		ĺ	i		'	(4)
温度迟滞	%FSO	- 0.75	±0.5	0.75	-0.5	±0.2	0.5	-0.1	±	0.1	(5)
	ļ				ŀ				0.05		
短期零点稳定性	μV/V					± 5					(6)
短期满量程稳定性	μV/V		·	,	'	± 5			ĺ	' ,	(6)
长期零点稳定性	%FSO		±0.5			±0.1	İ		± 0.1	İ	(7)
长期满量程稳定性	%FSO		±0.5			±0.1			±0.1		(7)

注:

- 1. 指具有零点、零点温度漂移和满量程温度漂移补偿电阻时的性能;
- 2.1.5mA 输入电流时测量到的满量程输出;
- 3. 最佳拟合直线;
- 4. 以 25℃时为基准,0~70℃;
- 5.0~70℃;
- 6. 标称零点/桥压---100 小时;
- 7.1年;
- 8. 除非另有规定,所有量值都是在 25℃、1.5mA 输入情况下测得的;
- 9. 中压为四倍额定压力或 250psi, 两者取小的。
- 10. 在补偿范围之外,性能有所下降。

生产厂家: Lucas Nova - Sensor 公司 康宇测控仪器仪表工程公司

## 信号调节电路

图 5-112 中所示信号调节电路提供了用作传感器激励的精确恒流源和由传感器中反馈 电阻 r 控制增益的仪用放大器,该电路稍加变动也可用于产生 0~5V 以外的其他输出幅度。

电流源是由 1%禁带的基准二极管 VR 控制,基准电流 Io 由下式定义:

$$I_0 = (E_0 - e_0)/R_2$$

其中: Eo-二极管基准电压: 1.235V ± 1%(LM385)

e₀-放大器 A₁ 的偏移

R2-反馈电阻值

选用失调电压小于 1mV 的放大器  $A_1$  和精度为  $\pm 1\%$  的电阻  $R_2$ ,则可产生电流  $I_0 = 0.996mA$ ,其典型精度为  $\pm 1.08\%$ 。

仪用放大器的第一个差动级 A2-A3有一个调零电位器(P),对于 OP227 放大器,相对于输



图 5-112 基本信号调节电路

入来说其零点范围典型值为  $\pm 4mV$ ,这时其差动输入偏移小于 0.5mV,这对于传感器偏移的典型值(小于  $\pm 1mV$ )而言就约有  $\pm 3.5mV$  的零位范围需要补偿。

放大器的第二级又提供了  $R_8/R_5$  的放大倍数,并将第一级的差动浮动电压转换成单端输出电压。

输出幅度的总精度受反馈电阻  $R_3$  至  $R_8$  的精度的影响,如果采用±0.1%精度的电阻,如 Mepco/Electra5063Z,典型的增益误差约为±0.24%。如果使用匹配较好的薄膜电阻,如 Beckman694-3-A,精度误差可进一步减小。在不加任何调试和压强测试的情况下,整个信号调节电路在某个参考温度下的幅度综合误差的典型值约为 1.1%,这个误差将叠加在传感器的精度±1%之上。

如果需要另外的校准和归一化,电阻 R₂ 可用一个电位器和一个电阻串联来替代(见图 5 - 112)。调节电位器可以设置电桥激励电流(I),使最大压强加到传感器上时输出电压(S)正好是所需值。

如果没有压力源,可用下面的步骤来减小放大器的增益误差。采用以下方法则电阻 R₃ 至 R₈ 可不用精密电阻,同样能达到±1%的传感器幅度误差。

#### 校准步骤:

- ——用一只精度为±0.1%的7.50kΩ 电阻代替电阻  $r_o$
- ——检查仪用放大器的增益 K 并计算增益比 X。

(与理想增益  $K_0 = 69.028 \text{V/V}$  相比),其中  $X = \text{K/K}_0$ 一通过调节电位器设置电流  $I_0 = 0.996/\text{X}(\text{mA})_3$ 

这样就完成了校准。

假设电桥电阻的最大值为  $6.4k\Omega(50℃)$ 时,电桥电流为 0.996mA,二极管参考电压是 1.235V,这样放大器 AI 的最大输出电压是 7.7V。而且对于 CA3420 放大器,在 1mA 输出电流时正向饱和压降为 0.3V,因而与所用电流源和放大器有关的最小激励电压是 8.0V(7.7V+0.3V)。

最大激励电压受所用的放大器的电压范围的限制。

### 传感器电流变送器电路

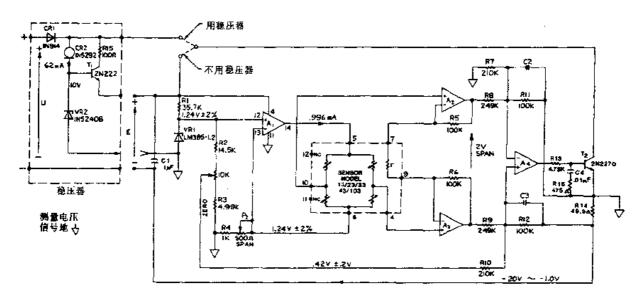



图 5-113 传感器两线电流变送器

图 5-113 所示是一个用于两线制 4 至 20mA 变送器的较为复杂的信号调节电路, 两线制工作是通过把所有信号都与晶体管  $T_2$  的发射极作比较而实现的。反馈电阻  $R_{11} \sim R_{12}$ 控制了电阻  $R_{14}$ 上的电压降, 这样从输入端口来看就是一个恒流源。

零点调节是通过电阻  $R_7 \sim R_{10}$ 把电位器  $P_1$  滑动臂上的电压加到第二级放大器  $A_4$  的差动输入端而实现的。

幅度的校准是通过调节电位器 P2 改变电桥电流而实现的。

频率响应由电容  $C_2$  和  $C_3$  来整形,其 3dB 频率是  $f = 1/(2R_{11}C_2)$ 。

一个可选用的电压调整器提供了反向极性保护(CRI),扩展了最大可用电源电压,并消除

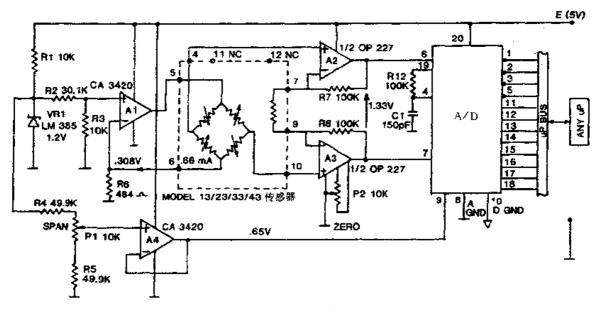
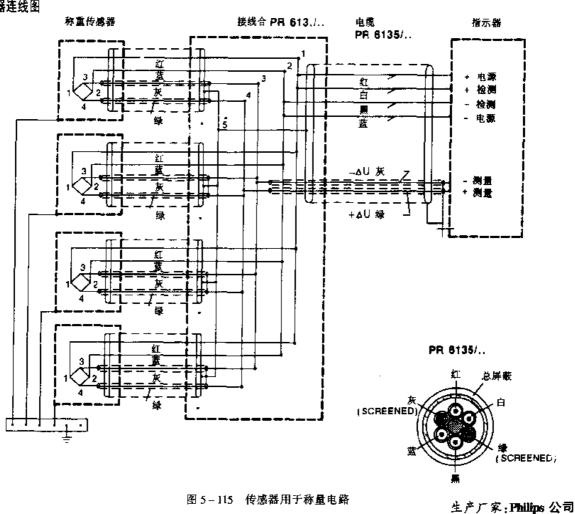



图 5-114 与传感器兼容的微机电路

了输出电流对激励电压的依赖。

图 5-114 所示是一个简单的微机兼容电路,放大器  $A_1$ 、 $A_2$ 、 $A_3$  组成了上文所述的基本信号调节电路,放大器  $A_2-A_3$  的差动输出端,控制 A/D 模数转换器 ADC0801 的差动输入。灵敏度的校准是通过放大器  $A_4$  来调节模/数转换器的基准电压而实现的。模数转换器 6、7 脚之间的电压范围是 9 脚基准电压的两倍。

为了能在单电源 5V 下工作,通过传感器的电流被减小到 0.66mA。电阻 R 上的电压降为 0.3V,使输出幅度大时允许在电桥上有电压增长。

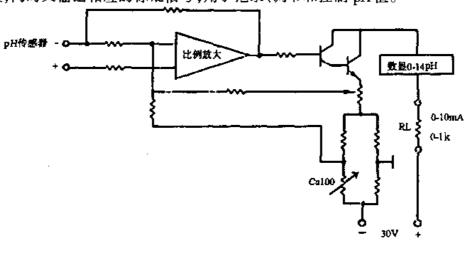

生产厂家: EG & G IC Sensors 北京新大云传感技术公司

#### 应变传感器连接线路

用途;用于罐和料斗称量、平台、汽车平衡和吊称等场合。

电路是称量显示 PR1613/00 型高精度测量控制部分电路,用于连接应变传感器。屏蔽输出电缆芯或总屏蔽取决于负载情况。技术参数;精度为国家计量标准;零点温漂 <  $1\mu$ V/10k;温漂范围 < 0.007%/10k;线性度 0.007%;测量信号电压 > 6mV;测量时间 100ms ~ 2s,分 100ms 递增;电源电压  $12 \sim 20$ V;最低负载  $87\Omega(4 \times 350\Omega)$  传感器)。

#### 传感器连线图




# 5.10 化学传感器应用电路

## pH工业酸度计电路

用途:本产品为工业水处理和化工生产过程中连续测量介质溶液 pH 值的专用仪器。特别适用于染化、制革、造纸、轻纺、制糖、医药及污水处理工程中。

电路由 pH 传感器和数显转换器二部分组成,其中 pH 传感器采用高纯度金属锑作测量电极,固体电极作参比电极,带有温补铜电阻。由于采用机械清洗装置,所以具有良好的抗沾污能力。而配套的数显转换器采用集成 A/D 转换单元,用 13mm 共阳极 LED 红色数码管显示 0~14pH 值,同时又输出相应的标准信号,用于记录、调节和控制 pH 值。



(a)

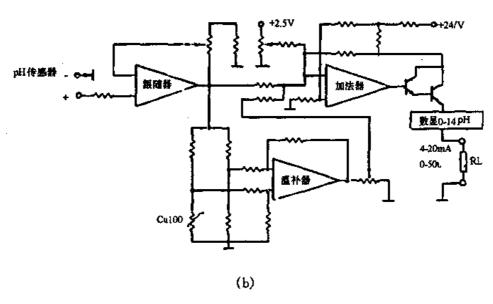



图 5-116 pH 工业酸度计电路

#### 传感器技术参数

有效测量范围		2 ~ 12pH
测量精度		±0.2pH±1个字
输出信号	VDC	0~1
输出阻抗	$\mathbf{k}\Omega$	≤50
被测液温度	${\mathfrak C}$	常压式≤60 和≤100 二种,压力式≤100 和≤130 二种
工作压力	MPa	≤0.59(6kgf/cm²)
清洗装置转速	r/min	4.5
电机工作电压	VAC	串接后用于 220 ± 10%
温补铜电阻规格	Ω	Cu100
使用环境温度	С	0 ~ 45
使用环境湿度	% RH	40~95

生产厂家:中德合资杭州金港仪器仪表有限公司

### pH 计电路

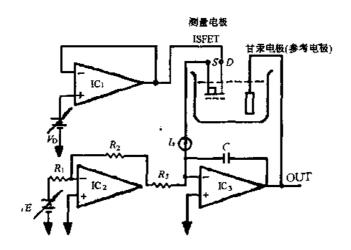



图 5-117 pH 计电路

电路中 ISFET 为离子敏感场效应管,测量栅源电压  $V_{CS}$ 与 pH 值的变化曲线,保持  $V_{DS}$ 与  $I_D$  不变,测量电路示于图。记录  $V_{out}$ 的变化值,即可测得  $V_{CS}$ 与 pH 变化曲线(二者呈线性关系)。

ISFET 之所以能感知缓冲溶液中离子的浓度,是由于 ISFET 绝缘栅上的化学薄膜与缓冲溶液界面处的离子活度产生的能斯特(Nemst)电位以及参考电极与溶液之间的电位差(-E)、参考电位( $V_G$ )三者之和组成了 ISFET 化学薄膜栅极对地的电位  $V_G$ 。

由普通的 MOSFET 的  $I_{\rm D}$ 、 $V_{\rm DS}$ 、 $V_{\rm CS}$  (栅极电压)和阈值电压  $V_{\rm T}$ 之间的关系式可知,当  $V_{\rm DS}$ 、 $V_{\rm CS}$ 一定时,漏源电流随离子活度变化,即  $I_{\rm D}$  随 pH 值变化,当  $I_{\rm D}$  一定时, $V_{\rm CS}$ 随 pH 值变化而变化。

只要保证 1pA 的输入偏置,ICL8007A 就可构成一个理想的 pH 计的采样和保持电路。

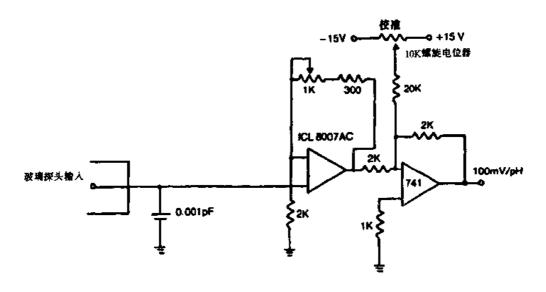



图 5-118 pH 传感器测量电路

## pH 探头放大及温度补偿电路

图 8-119 中**表示聚苯乙烯电容*表示用 RN60C 型薄膜电阻。为了校准,探头插入 pH=7 的溶液中,温度调到溶液温度,然后调整,使输出读数为 7V。

电路中  $R_2 = 50k\Omega$ ,  $R_4 = 330k\Omega \pm 1\%$ ;  $R_2 = 100k\Omega$ ,  $R_4 = 75k\Omega \pm 1\%$ ;  $R_2 = 200k\Omega$ ,  $R_4 = 56k\Omega \pm 1\%$ 。典型探头为镀金电极 # 465 - 35。

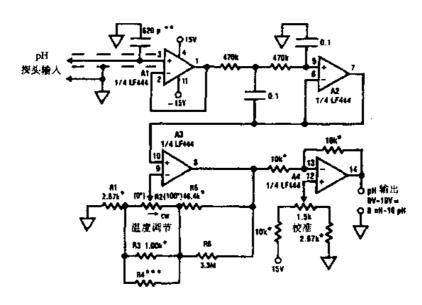



图 5~119 pH 探头放大及温度补偿电路

封装型号为 LF444AMD, LF444CM, LF444ACN, LF444CN 或 LF444MD LF444 技术参数 最大绝对值

电源电压	LF444A	LF444
	± 22V	± 18V
差动输入电压	± 38V	± 30V
输人电压范围	± 19V	± 15V

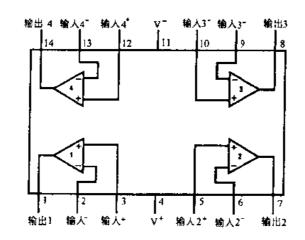



图 5-120 双列直插式封装图(顶视)

	Et 5 120 NOVE IN PARTICION (	x m
输出短路持续时间	连续	连续
功耗	D封装	N.M 封装
	$900 \mathrm{mW}$	670mW
T _j 最大	150℃	115℃
$Q_{jA}($ 典型 $)$	100℃/W	85℃/W
工作温度	- 55°C ~ 125°C	
存储温度	- 65℃ ~ 150℃	

# LF444 电路及连接图

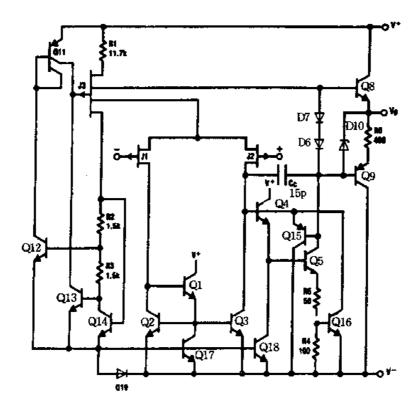



图 5-121 LF444 1/4 电路图

参 数	<i>h</i> hr ⊑	77 J.H.	単位		LF444A		LF444			
麥 教	符号	<b>注</b>	条件		最小	典型	最大	最小	典型	最大
		$R_{\rm S} = 10  \mathrm{k}$ , $T_{\rm A}$	= 25°C	mV		2	5		3	10
输入失调电压	$v_{os}$	$0\% \leqslant T_{\Lambda} \leqslant +$	-70℃	mV			6.5			12
		$-55^{\circ}\text{C} \leq T_{\text{A}}$	≤ + 125°C	mV			_8			
輸入失调电压平均温度系数	$\Delta V_{OS}/\Delta T$	$R_{\rm S} = 10 {\rm k}\Omega$		μV/°C		10			10	
	·		$T_{\rm j} = 25\%$	pA		5	25		5	50
输入失调电流	$I_{08}$	$V_{\rm S} = +15  \rm V$	$T_{\rm j} = 70\%$	nA			1.5			1.5
		}	$T_{\rm j} = 125 {\rm ^{\circ}C}$	nA			10			
输入偏置电流	$I_{\rm B}$ $V_{\rm S}$		$T_{\rm j} = 25{\rm ^{\circ}C}$	pA	Ľ .	10	50		01	100
		$V_8 = \pm 15 \text{V}$	$T_{\rm j} = 70{\rm ^{\circ}C}$	пA			3			3
			$T_{\rm j} = 125{\rm ^{\circ}C}$	nA			20			
输入电阻	R _{IN}	$T_{\rm j} = 25\%$		Ω		1012		- 1	1012	
大信号电压增益	$A_{V0L}$	$V_{\rm S} \approx \pm 15  \text{V},  \text{V}$ $R_{\rm L} \approx 10  \text{k} \Omega,  T_{\rm L}$	Ĭ	V/mV	50	100		25	100	
		温度范围		V/mV	25			15		
输出电压摆动	Vo	$V_{\rm S} \approx \pm 15 \text{V}$ , $I$	$R_1 = 10 \text{k}\Omega$	v	± 12	± 13		± 12	± 13	
£A , [] [] [] [] []				v		+ 18	- 7		+ 14	
输入共模电压范围 !	V _{CM}			V	± 16	- 17	-	± 11	- 12	
共模抑制比	CMRR	$R_{\rm S} \leq 10 {\rm k}\Omega$		d₿	80	100		70	95	•
电源电压抑制比	PSRR			dB	80	100	1	70	90	
电源电流	$I_{\mathrm{S}}$			mA		0.6	0.8		0.6	1.0

#### AC 参数

参 数 符号		条件	単位	LF444A	1.F444		
<i>≫</i> <b>x</b> .	117.5	2KTF	1 <del>1</del> 1 1	最小 典型 最大	最小 典型 最大		
放大器至放大器耦合		:	dВ	- 120	- 120		
转换速率	SR	$V_{\rm S} = \pm 15  \rm V$ , $T_{\rm A} = 25  \rm ^{\circ} \rm C$	V/μ8	1	1		
增益带宽乘积	GBW	$V_{\rm S} = \pm 15  \rm V, T_{\rm A} = 25  \rm ^{\circ} \rm C$	. MHz	1	1		
等效输入噪声电压密度	e _n	$T_{\rm A} \approx 25\%$ , $R_{\rm S} = 100\Omega$ f = 1 kHz	nV∕√ <del>Hz</del>	35	35		
等效輸人噪声电流密度	in	$T_A = 25$ °C, $f = 1$ kHz	PA/√Hz	0.01	0.01		

# pH 探头放大电路

电路中 LMC6001 放大器具有非常高的输入阻抗,阻抗值在  $10M\Omega \sim 1000M\Omega$  之间,来自 pH 探头的电流信号可以非常小。LMC6001 放大器的输入电流可小于 25fA。

pH 探头为标准 Ag/AgCl 探头,输出信号 59.16mV/pH,(在 25℃时,0V 输出,pH 为 7)。pH 探头输出与绝对温度成比例。 $R_l$  电阻用于温度补偿。从 pH 为 7 开始,LMC6001 放大探头信号,输出电压为  $\pm$  100mV/pH。第二级反相和偏置运放 LMC6041,在整个探头输出信号范围内,使输出与 pH 直接成比例。 $D_i$  是 ESD(静电)保护二极管。 $R_3$  用于调节放大探头信号范围。 $R_8$  用于调输出。

LMC6001 为超低输入电流放大器。

LMC6001 系列为 8 脚封装, 2 脚为反相输入, 3 脚为同相输入, 4 脚为  $V^-$ , 6 脚为输出, 7 脚为  $V^+$ , 其它脚空。

LMC6001 系列的输入电流 25tA, 低功耗 750μA, 低 Vos350μV, 低噪声 22πV/√Hz(1kHz 时)

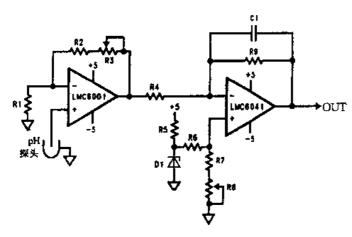



图 5-122 pH 探头放大电路

#### 元件说明:

R1:100k,3500ppm/°C

R2:68.1k

R3, R8:5k

R4. R9; 100k

R5:36.5k

R6:619k

R7:97.6k

D1:LM4040DIZ-2.5

 $C1:2.2\mu$ 

最大额定值

差动输入电压 ±电源电压

在输入/输出端电压 V++0.3V, V--0.3V

电源电压 -0.3V~+16V

存储温度 -65℃~+150℃

结温 + 150℃

在输入端电流 ± 10mA

在输出端电流 ± 30mA

 在电源端电流
 40mA

 ESD(静电保护)
 2000V

工作条件

温度范围 -40℃ ≤ T_J ≤ +85℃

电源电压 4.5V≤V⁺≤15.5V

DC 参数(T_A = 25°C)

	Ar /ul.	符号	单位	立 典型值	极限值			
参 数	条件				LMC6001A1	LMC6001B1	LMC6001C1	
输入偏置电流	任一个输入, V _{CM} = 0 V _S = ±5V	$I_{\mathrm{B}}$	fA	10	2.5 2000	100 4000	1000 4000	
输入失调电流		$I_{0s}$	fA	5	1000	2000	2000	
44 1 16 17 17		Vos	mV		0.35 1.0	1.0 1.7	1.0 2.0	
输入失调电压	$V_{\rm S} = \pm 5 \text{V}$ , $V_{\rm CM} = 0 \text{V}$	V _{os}	mV		0.7 1.35	1.35 2.0	1.35	
输入失调电压 漂移		TCVos	μV∕°C	2.5	* 10	10		
輸入电阻		R _{IN}	$10^{12}\Omega$	>1				
共模抑制比	$0V \leqslant V_{CH} \leqslant 7.5V$ $V^{+} = 10V$	CMRR	dВ	83	75 72	72 68	66 63	
正电源抑制比	5V ≤ V ⁺ ≤ 15V	+ PSRR	dB	83	73 70	66 63	66 63	
负电源抑制比	0V ≥ V ⁻ ≥ - 10V	- PSRR	dB	94	80 77	<b>74</b> 7L	74 71	
	源, $R_{\rm L}=2{ m k}\Omega$	AV	V/mV	1400	400 300	300 200	300 200	
大信号电压增益	$\mathcal{T}_{L}$ , $R_{L}=2\mathbf{k}\Omega$	AV	V/mV	350	180 100	90 60	90 60	

	Ar 155	Ave	36.63	4 100 4	,	极限值	<u> </u>
参数	条 件	符号	単位   	典型值	LM6001A1	LM6001B1	LM6001C1
++ + + + + + + + + + + + + + + + + + +	V+ = 5V ~ 15V	I/	V -0.4 -0.1		-0.1	-0.1 0	
共模输入电压	CMRR≥60dB	V _{OM}	v	V* -1.9	V ⁺ - 2.3 V ⁺ - 2.5	V+ -2.3 V+ -2.5	V* -2.3 V* -2.5
	V* = 5V	I.	v	4.87	4.80 4.73	4.75 4.67	4.75 4.67
\$25 the property of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state o	$R_{\rm L} = 2k\Omega \not\equiv 2.5 \text{V}$	V _o	v	0.10	0.14 0.17	0,20 0.24	-0.1 -0.1 0 V* -2.3 V* -2.5 V* -2.5 4.75 4.67 4.67 0.20 0.20
輸出电压摆幅	V+ = 15V		V 14.63		14.50 14.34	,	
	$R_L = 2k\Omega \Xi 7.5V$	V _o	v	0.26	0.35 0.45	]	
	源, $V^{+}=5$ V, $V_{O}=0$ V	$I_{0}$	mA	22	16 10	ŀ	
輸出电流	$\partial \overline{L}$ , $V^+ = 5V$ , $V_0 \approx 5V$	10	mА	21	16 13		
<b>物 11 15 2%</b>	源,V ⁺ = 15V,V ₀ =0V	<i>I</i> ₀	mA 30 28 22				
	$\mathfrak{N}$ , $V^+ = 15V$ , $V_0 = 13V$	I ₀	V -0.4				
中瀬中端	$V^{+} = 5V, V_{0} = 1.5V$	$I_{\mathrm{S}}$	μΑ	450	į.		
电源电流	$V^+ = 15V, V_0 = 7.5V$	I _S	μА	550	l	· · · · · · · · · · · · · · · · · · ·	

LMC6041 是 CMOS 微功耗运算放大器,8 引脚封装,2 脚为反相输入,3 脚为同相输入,4 脚为  $V^-$ ,6 脚为输出,7 脚为  $V^+$ 。

特点:低电源电流 14µA,单电源 4.5~15.5V,超低输入电流 2fA。

最大额定值:差动输入电压:±电源电压;电源电压(V⁺,V⁻):16V;引线焊接温度:260℃;存储温度:-65~+150℃;结温:110℃;ESD(静电保护)500V;输入端电流:±5mA;输出端电流:±18mA;电源端电流:35mA;输入/输出端电压: $(V^+)$ +0.3V、 $(V^-)$ -0.3V。

工作条件:温度范围 –  $40\% \le T_J \le +85\%$ ;电源电压  $4.5\% \le V^+ \le 15.5\%$ 

参数	条 件		符号	単位	典型值	极限值		
参数	条件		্পভ	平1年	央公祖 	LMC6041A1	LMC60411	
绘工生调中压			1/	V	1	3	6	
<b>偷人失调电</b> 压			$V_{\rm os}$	m <b>V</b>	] 1	3.3	6.3	
<b>输</b> 人失调电压温漂			TC Vos	μ <b>V</b> /°C	1.3			
偷人偏置电流			l _B	PA	0.002	4	4	
输入失调电流			I _{OS}	PA	0.001	2	2	
ஓ入电阻				$10^{12}\Omega$	> 10			
共模抑制比	$0V \leqslant V_{CM} \leqslant 12.0V$ $V^+ = 15V$		CMRR	dВ	75	68 66	62 60	
	5V ≤ V ⁺ ≤ 15	37			-	68	62	
正电源抑制比		•	+ PSRR	d₿	75	66	60	
	$V_0 = 2.5V$							
负电源抑制比	0V ≥ V - ≥ - 1	.OV	- PSRR	dB	94	84	74	
	$V_0 = 2.5 \text{V}$	$V_0 = 2.5 \text{V}$				83	73	
				v	0.4	0.1	0.1	
共模输入电压范围	$V^+ = 5V \sim 15V$		CMR	<u> </u>	0,4	0	0	
代快福八·电压 在 图	CMRR≥50dB		Layir	V V+ -1.9V		V* −2.3V	$V^* - 2.3$	
				γ	V* -1.9V	V+ -2.5V	$V^+ - 2.43$	
大信号电压增嗌	" " " " " " " " " " " " " " " " " " " "					400	300	
		源	AV	V/mV	1000	300	200	
	$R_{\rm L} = 100 {\rm k}\Omega$		<u> </u>			180	90	
		沉	AV	V/mV	500	120	70	
						200	100	
		源	AV	V/mV	1000	160	80	
	$R_1 = 25 \text{k}\Omega$			V/mV	250			
		Ħ.	AV			100	50	
			1			60	40	
			v	4.987	4.970	4.940		
	V + = 5V		$ v_0 $			4.950	4.910	
	$R_{\rm L} = 100 \mathrm{k}\Omega$ , V ⁺	$R_{\rm L} = 100 {\rm k}\Omega$ , V ⁺ /2		v	0.004	0.030	0.060	
				*	0.004	0.050	0.090	
				••	4.000	4.920	4.870	
	$V^+ = 5V$			V 4.980		4.870	4.820	
	$R_L = 25 k\Omega, V^+$	/2	$V_0$			0.080	0.130	
				v	0.010	0.130	0.180	
<b>备出</b> 摆幅						14.920	14,880	
	$V^+ = 15V$			V	14.970	14.880	14.820	
		0	$V_0$		<del>                                     </del>			
	$R_{\rm L} = 100 {\rm k}\Omega, {\rm V}^+$	/ <b>L</b>		v	0.007	0.030	0.060	
					· <del> </del>	0.050	0.090	
				ν	14.950	14.900	14.850	
	$V^+ = 15 \text{V}$		V _o			14.850	14.800	
	$R_{\rm L} = 25 \mathrm{k}\Omega$ , $\mathrm{V}^+$ .	/2		v	0.022	0.100	0.150	
				•	, 0,22	0.150	0.200	

	参 数	条件	符号	单位	# 20 /5	极限值		
<b>多</b>		条件	শিস	单位	典型值	LMC6041A1	LMC6041I	
输出电流		源,V _O = OV	$I_0$	o mA 22		16 10	13 8	
V+ = 5V		沉, V ₀ ≈ 5V	I ₀	mA	A 2I	16 8	13 8	
輸出电流 V ⁺ = 15V	源, V _O = 0V	I ₀	mA	40	15 10	15 10		
	$\overline{\mathcal{U}}$ , $V_{\mathrm{O}} = 13\mathrm{V}$	Ιο	mA	39	24 8	21		
		$V_0 = 1.5$ V	Is	μΑ	14	20 24	26 30	
电源电流	V+ = 15V	$I_{ m S}$	μΑ	18	26 31	34 29		

#### AC 参数

参数	条件	<i>₩</i> . ₽.	74 77	典型值	极限值		
参数:	· 宋 竹	符号	单位		LMC6041AI	LMC60411	
转换速率		SR	V/µs	0.02	0.015 0.010	0.010 0.007	
<b>增益带宽乘</b> 积		GBW	kHz	75			
相范围		φm	(°)	60			
<b>輸</b> 入 噪声电压	f = 1kH2	e _n	nV∕√Hz	83			
输入 操声电流	f = 1kHz	i,	PA∕√Hz	0.0002		_	
全遊波 失真	f = (kHz, $AV$ = $-5R_{\rm L} = 100k\Omega, V_0 = 2VFF\pm 5V 电源$	ТНД	%	0.01			

生产厂家:National Semiconductor

## FD-2型氧化还原电位计电极应用电路

用途:用于对化工、水冶厂浸出容器中矿浆的氧化还原电位进行连续测量,并输出 0~10mA 直流标准信号。与其他仪器配套,可用来控制氧化剂的加入量,使工艺合理,浸出率提高,酸耗和氧化剂的消耗减少;电路还可用于造纸漂白和污水处理等场合。

FD~2型氧化还原电位计以铂电极为测量电极,固体电极为参比电极,它们对地有一个电位差,输入到转换器进行阻抗变换、相减运算和放大后得到 0~10mA 的标准信号输出,指示出

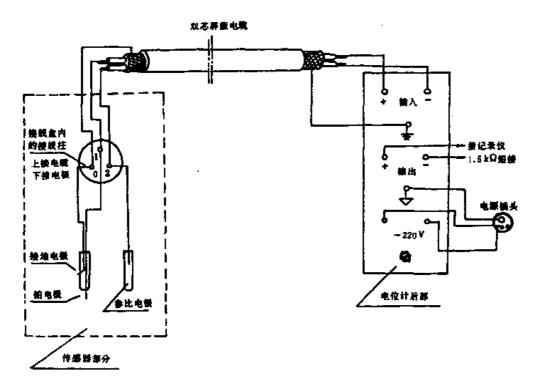



图 5-123 氧化还原电位计电极应用电路

## 矿浆的氧化还原电位。

### 技术参数

200-10-200		
传感器		
环境温度	C	0 ~ 80;0 ~ 50
工作压力	MPa	<0.2
传感器总长	m	1~3
各电极间绝缘电阻	Ω	> 10 ¹²
转换器		
测量范围	mV	0 ~ 1000
输出信号	mA DC	0 ~ 10
<u></u> 负载电阻	kΩ	0~1.5
测量精度	% .	± 1.5
输人阻抗	Ω	> 10%
工作温度	C	0 ~ 45
相对湿度	% RH	< 80
电源电压		~ 220V,50Hz
传感器、转换器连接	电缆	<50m
		· · · · · · · · · · · · · · · · · · ·

生产厂家:中国核工业总公司国营二六五厂

#### 特殊用途传感器集成电路

		技术特性						
型号	输出	输出		<b>丁作温度℃</b>		- 生产厂家		
	方式	特 性	V _{cc} (V) 标称值	最小	最大			
CS191		稳压;4V _{out} (输出)	20	- 45	125	<del> </del>		
CS209	1	电磁接近传感器	20	- 45	125			
CS209AD14	1	金属接近传感器	20	-40	125	†		
CS209AD8	}	金属接近传感器	, 20	- 40	125	Cherry Semi		
CS209AN8		] 【金属接近传感器	20	- 40	125	}		
C30994E	<b>-</b> j	y射线檢測器	]	- 30	35	EG&G		
IH3602A	$\neg$	单片湿度传感器,集成热敏电阻	5.0	0	85	Hycal		
1H3602C	į	单片湿度传感器,集成电阻温度计(RTD)	5.0	0	85	}		
MC2830D	_	声控开关,具有反馈的 MIC(微音)放大器	5.0	0	70	Motornia		
MC2830P		声控开关,具有反馈的 MIC 放大器	5.0	0	70			
ML237B - DP		6通道触模控制接口	36.0	- 10	65			
M1238B - DC		8.通道触模控制接口	36.0	- 10	65	Plessey semi		
ML239B - DG		8 通道触模控制接口	36.0	- 10	65	,		
ULN2457A		象限灯监视器(10~16V系统)	32 *	- 40	85	Allegro		
ULN2457L		象限灯监视器(24V系统)	32 *	- 40	85	_		
AD693AE	线性	供电电路用 4~20mA 传感器	24	- 40	85	Analog Dvc		
AD693AO	性	动力电路用 4~20mA 传感器	24	- 40	85	_		
S346	电流	极性保护	22,0	- 40	70	SGS-Thomson		
NE5520D		LVDI(差动变压器式位移传感器)信号调节器	20	0	70	<del></del>		
NES520F		LVDT 信号调节器	20	0	70	Philips Comp		
NE5520N		LVDT 信号调节器	20	Ð	70	-		
NES521 D	:	LVDT 信号调节器; V _{OUT} 7.0V	± 10	0	70	•		
¥E5521D	7 :	LVDT 信号调节器: Vour7.0V	± 10	0	70	Philip Semi		
E5521F	بين ا	LVDT 信号调节器; SR(扫描)1.5V/μs	± 10	0	70	Philips Comp		
NE5521N	线	LVDT信号调节器; Voor7.0V	± 10	0	70			
IE5521N		LVDT信号调节器; Vour7.0V	± 10	0	70	Philip Semp		
RF3L06	电	B _i (双)CMOS线性线传感器	3.0	- 20	60	Ricoh Co		
RF3L06	] - [	B, CMOS 线性线传感器	3.0	- 20	60			
A5521D	<u> </u>	LVDT信号调节器; Vour7.0V	± 10	- 40	85	Philips Comp		
A5521D		LVDT 信号调节器; Vour7.0V	± 10	- 40	85	Philip Semi		
A5521 N		LVDT 信号调节器; Vour7.0V	± 10	- 40	85	Philips Comp		
A5521N		LVDT 信号调节器; Vour7.0V	± 10	- 40	85	Philip Semi		
E5521F	7 [	LVDT 信号调节器; Vour7.0V	± 10	- 55	125	Philips Comp		
CM1703	7	极性保护	16.0	- 25	70	SGS-Thomson		
LS4201		空气流量/温度传感器;主/辅报警电路	5.0	10	60	Warren G-V		
LS4202	1	空气流量/温度传感器;主/辅报警电路	5.0	10	60			
LS4203	_ j	空气流量/温度传感器;主/辅报警电路	5.0	10	60			
C33164D3	- ] " [	微小功耗欠压传感电路	3.0	- 40	85			
C33164D5	集电极开路	微小功耗欠压传感电路	4.3	- 40	85			
C33164P3	极	微小功耗欠压传感电路	3.0	40	85			
C33164P5	开     <b>2</b>	微小功耗欠压传感电路	4.3	- 40	85			
C34164D3	PI	微小功耗欠压传感电路	3.0	0	70	Motorola		
C34164D5		微小功耗欠压传感电路	4.3	0	70			
C34164P3	1 1	微小功耗欠压传感电路	3.0	0	70			
IC34164P5		微小功耗欠压传感电路	4.3	0	70			

		]	技术特性				***	
型	号	输出	#f. 44.	V _{cc} (V)	V _{cc} (V) 工作温度		一 C 生产厂家	
	方式	特性 性	标称值	最小	最大			
SAF1005 -	100		空气流量传感器,100FPM(公尺/分)	5.0	10	60		
SAF1005 -	1000	İ	空气流量传感器,1000FPM	5.0	10	60		
SAF1005 ~	1500		空气流量传感器,1500FPM	5.0	10	60		
SAF1005 -	250		空气流量传感器,250FPM	5.0	10	60		
SAF1005 -	50		空气流量传感器,50FPM	5.0	10	60		
SAF1005 -	500∙		空气流量传感器,500FPM	5.0	10	60		
SAF1005	750		空气流量传感器,750FPM	5.0	10	60		
SAF1006 -	100		空气流量传感器,100FPM	5.0	10	60		
SAF1006 -	1000		空气流量传感器,1000FPM	5.0	10	60		
SAF1006	1500		空气流量传感器,1500FPM	5.0	10	60		
SAF1006 -	250		空气流量传感器,250FPM	5.0	10	60		
SAF1006	50		空气流量传感器,50FPM	5.0	10	60		
SAF1006	500		空气流量传感器,500FPM	5.0	10	60		
SAF1006 -	750		空气流量传感器,750FPM	5.0	10	60		
SAF1007 -	100		空气流量传感器,100FPM,真空密封	5.0	10	60		
SAF1007 -	1000		空气流量传感器,1000FPM,真空密封	5.0	10	60		
SAF1007 -	1500		空气流量传感器,1500FPM,真空密封	5.0	10	60		
SAF1007 ~ 3	250		空气流量传感器,250FPM,真空密封	5.0	10	60		
SAF1007 – :	50		空气流量传感器,50FPM,真空密封	5.0	10	60		
SAF1007 - 3	500		空气流量传感器,500FPM,真空密封	5.0	10	60		
SAF1007 - 1	750		空气流量传感器,750FPM,真空密封	5.0	10	60		
SAF1008 - 3	100		空气流量传感器,100FPM,真空密封	5.0	10	60		
SAF1008 – 1	1000	集	空气流量传感器,1000FPM,真空密封	5.0	10	60		
SAF1009 - 1	1500	集电极	空气流量传感器,1500FPM,真空密封	5.0	10	60		
SAF1008 – 2	250	开路	空气流量传感器,250FPM,真空密封	5.0	10	60	Warren G-V	
SAF1008 - 5	50	PHT	空气流量传感器,50FPM,真空密封	5.0	10	60		
SAF1008 - 5	500		空气流量传感器,500FPM,真空密封	5.0	10	60		
SAF1008 - 7	750		空气流量传感器,750FPM,真空密封	5.0	10	60		
SAF1025 – 1	100		空气流量传感器,100FPM,N.O.(常开)	5.0	10	60		
SAF1025 1	000		空气流量传感器,1000FPM,N.O.	5.0	10	60		
AF1025 – 1	500		空气流量传感器,1500FPM,N.O.	5.0	10	60		
SAF1025 - 2			空气流量传感器,250FPM,N.O.	5.0	10	60		
SAF1025 - 5	-		空气流量传感器,50FPM,N.O.	5.0	10	60		
SAF1025 - 5	600	<b>i</b>	空气流量传感器,500FPM,N.Q.	5.0	10	60		
AF1025 7	50		空气流量传感器,750FPM,N.O.	5.0	10	60		
SAF 1026 – 1	.00		空气流量传感器,100FPM,N.O.	5.0	10	60		
AF1026 – 1	,		空气流量传感器,1000FPM,N.O.	5.0	10	60		
AF1026 - 1	500		空气流量传感器,1500FPM,N.O.	5.0	10	60		
AF 1026 - 2	50		空气流量传感器,250FPM,N.O.	5.0	10	60		
AF1026 - 5	o I		空气流量传感器,50FPM,N.O.	5.0	10	60		
AF1026 - 5	· •		空气流量传感器,500FPM,N.O.	5.0	10	60		
AF1026 - 7			空气流量传感器,750FPM,N.O.	5.0	10	60		
AF1027 - 10			空气流量传感器,100FPM,N.O.,真空密封	5.0	10	60		
AF1027 - 10	1		空气流量传感器,1000FPM,N.O.,真空密封	5.0	10	60		
AF1027 – 1:			空气流量传感器,1500FPM,N.O.,真空密封	5.0	10	60		
AF1027 - 2			空气流量传感器,250FPM,N.O.,真空密封	5.0	10	60		
AF1027 - 50	1	- 1	空气流量传感器,50FPM,N.O.,真空密封	5.0	10	60		

						续表	
<u> </u>		技术特性					
型	输出	4+ 10	V _{CC} (V)	工作温度℃		生产厂家	
	方式	特性 	标称值	最小	最大	]	
SAF1027 - 500	-	空气流量传感器,500FPM,N.O.,真空密封	5.0	10	60		
SAF1027 - 750	Ì	空气流量传感器,750FPM,N.O.,真空密封	5.0	10	60		
SAF1028 - 100		空气流量传感器,100FPM,N.O.,真空密封	5.0	10	60		
\$AF1028 - 1000	1 .	空气流量传感器,1000FPM,N.O.,真空密封	5.0	10	60	1	
SAF1028 - 1500	集电极开	空气流量传感器,1500FPM,N.O.,真空密封	5.0	10	60		
SAF1028 - 250	极	空气流量传感器,250FPM,N.O.,真空密封	5.0	10	60	Warren G-V	
SAF1028 - 50	开路	空气流量传感器,50FPM,N.O.,真空密封	5.0	10	60		
SAF1028 - 500	) PH	空气流量传感器,500FPM,N.O.,真空密封	5.0	10	60		
SAF1028 - 750	]	空气流量传感器,750FPM,N.O.,真空密封	5.0	10	60		
SLB0586A	٦,	通/断/调制遥控传感器	5.0	0	80	Siemens Ant	
SLB0586G		通/断/调制光遥控传感器	5.0	0	80		
AD693AD		动力电路用 4~20mA 传感器	24	- 40	85	Analog Dvc	
BP01	7	血压传感器	30	0	70	Sensyn	
KMI10/1(A)		数字电流 I 输出与旋转速度成比例	12	- 40	150	Philips Comp	
L9703	7	八脚接地接触监视电路	25 *	- 40	125	SGS-Thomson	
19704		八脚电源接触监视电路	25 *	- 40	125		
L9704D	其	八脚电源接触监视电路	25 *	- 40	125		
MA571	其他方式	PCM CODEC(脉冲调制编码)增益控制开关	5.0	0	<b>7</b> 0	Marconi	
TDAO159ADP	瓮	接近检测器,探测涡流损失	16 *	- 25	85		
TDAO159AFP	1	接近检测器,探测涡流振失	16 *	- 25	85	SGS-Thomson	
TEA7203	_(	汽车灯和保险监视电路	13.5	- 40	85		
JB31AN		BW(箔式无引线)应变计信号调节器	± 15	- 40	85		
1B31SD		BW应变计信号调节器	± 15	- 55	125	Analog Dvc	
1B32AN		桥传感器、信号调节器	± 15 (	<b>- 40</b>	85		



Powered by xiaoguo's publishing studio QQ:8204136